kernel/opp.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Operating performance points.
4//!
5//! This module provides rust abstractions for interacting with the OPP subsystem.
6//!
7//! C header: [`include/linux/pm_opp.h`](srctree/include/linux/pm_opp.h)
8//!
9//! Reference: <https://docs.kernel.org/power/opp.html>
10
11use crate::{
12 clk::Hertz,
13 cpumask::{Cpumask, CpumaskVar},
14 device::Device,
15 error::{code::*, from_err_ptr, from_result, to_result, Error, Result, VTABLE_DEFAULT_ERROR},
16 ffi::c_ulong,
17 prelude::*,
18 str::CString,
19 types::{ARef, AlwaysRefCounted, Opaque},
20};
21
22#[cfg(CONFIG_CPU_FREQ)]
23/// Frequency table implementation.
24mod freq {
25 use super::*;
26 use crate::cpufreq;
27 use core::ops::Deref;
28
29 /// OPP frequency table.
30 ///
31 /// A [`cpufreq::Table`] created from [`Table`].
32 pub struct FreqTable {
33 dev: ARef<Device>,
34 ptr: *mut bindings::cpufreq_frequency_table,
35 }
36
37 impl FreqTable {
38 /// Creates a new instance of [`FreqTable`] from [`Table`].
39 pub(crate) fn new(table: &Table) -> Result<Self> {
40 let mut ptr: *mut bindings::cpufreq_frequency_table = ptr::null_mut();
41
42 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
43 // requirements.
44 to_result(unsafe {
45 bindings::dev_pm_opp_init_cpufreq_table(table.dev.as_raw(), &mut ptr)
46 })?;
47
48 Ok(Self {
49 dev: table.dev.clone(),
50 ptr,
51 })
52 }
53
54 /// Returns a reference to the underlying [`cpufreq::Table`].
55 #[inline]
56 fn table(&self) -> &cpufreq::Table {
57 // SAFETY: The `ptr` is guaranteed by the C code to be valid.
58 unsafe { cpufreq::Table::from_raw(self.ptr) }
59 }
60 }
61
62 impl Deref for FreqTable {
63 type Target = cpufreq::Table;
64
65 #[inline]
66 fn deref(&self) -> &Self::Target {
67 self.table()
68 }
69 }
70
71 impl Drop for FreqTable {
72 fn drop(&mut self) {
73 // SAFETY: The pointer was created via `dev_pm_opp_init_cpufreq_table`, and is only
74 // freed here.
75 unsafe {
76 bindings::dev_pm_opp_free_cpufreq_table(self.dev.as_raw(), &mut self.as_raw())
77 };
78 }
79 }
80}
81
82#[cfg(CONFIG_CPU_FREQ)]
83pub use freq::FreqTable;
84
85use core::{marker::PhantomData, ptr};
86
87use macros::vtable;
88
89/// Creates a null-terminated slice of pointers to [`Cstring`]s.
90fn to_c_str_array(names: &[CString]) -> Result<KVec<*const u8>> {
91 // Allocated a null-terminated vector of pointers.
92 let mut list = KVec::with_capacity(names.len() + 1, GFP_KERNEL)?;
93
94 for name in names.iter() {
95 list.push(name.as_ptr() as _, GFP_KERNEL)?;
96 }
97
98 list.push(ptr::null(), GFP_KERNEL)?;
99 Ok(list)
100}
101
102/// The voltage unit.
103///
104/// Represents voltage in microvolts, wrapping a [`c_ulong`] value.
105///
106/// ## Examples
107///
108/// ```
109/// use kernel::opp::MicroVolt;
110///
111/// let raw = 90500;
112/// let volt = MicroVolt(raw);
113///
114/// assert_eq!(usize::from(volt), raw);
115/// assert_eq!(volt, MicroVolt(raw));
116/// ```
117#[derive(Copy, Clone, PartialEq, Eq, Debug)]
118pub struct MicroVolt(pub c_ulong);
119
120impl From<MicroVolt> for c_ulong {
121 #[inline]
122 fn from(volt: MicroVolt) -> Self {
123 volt.0
124 }
125}
126
127/// The power unit.
128///
129/// Represents power in microwatts, wrapping a [`c_ulong`] value.
130///
131/// ## Examples
132///
133/// ```
134/// use kernel::opp::MicroWatt;
135///
136/// let raw = 1000000;
137/// let power = MicroWatt(raw);
138///
139/// assert_eq!(usize::from(power), raw);
140/// assert_eq!(power, MicroWatt(raw));
141/// ```
142#[derive(Copy, Clone, PartialEq, Eq, Debug)]
143pub struct MicroWatt(pub c_ulong);
144
145impl From<MicroWatt> for c_ulong {
146 #[inline]
147 fn from(power: MicroWatt) -> Self {
148 power.0
149 }
150}
151
152/// Handle for a dynamically created [`OPP`].
153///
154/// The associated [`OPP`] is automatically removed when the [`Token`] is dropped.
155///
156/// ## Examples
157///
158/// The following example demonstrates how to create an [`OPP`] dynamically.
159///
160/// ```
161/// use kernel::clk::Hertz;
162/// use kernel::device::Device;
163/// use kernel::error::Result;
164/// use kernel::opp::{Data, MicroVolt, Token};
165/// use kernel::types::ARef;
166///
167/// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
168/// let data = Data::new(freq, volt, level, false);
169///
170/// // OPP is removed once token goes out of scope.
171/// data.add_opp(dev)
172/// }
173/// ```
174pub struct Token {
175 dev: ARef<Device>,
176 freq: Hertz,
177}
178
179impl Token {
180 /// Dynamically adds an [`OPP`] and returns a [`Token`] that removes it on drop.
181 fn new(dev: &ARef<Device>, mut data: Data) -> Result<Self> {
182 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
183 // requirements.
184 to_result(unsafe { bindings::dev_pm_opp_add_dynamic(dev.as_raw(), &mut data.0) })?;
185 Ok(Self {
186 dev: dev.clone(),
187 freq: data.freq(),
188 })
189 }
190}
191
192impl Drop for Token {
193 fn drop(&mut self) {
194 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
195 // requirements.
196 unsafe { bindings::dev_pm_opp_remove(self.dev.as_raw(), self.freq.into()) };
197 }
198}
199
200/// OPP data.
201///
202/// Rust abstraction for the C `struct dev_pm_opp_data`, used to define operating performance
203/// points (OPPs) dynamically.
204///
205/// ## Examples
206///
207/// The following example demonstrates how to create an [`OPP`] with [`Data`].
208///
209/// ```
210/// use kernel::clk::Hertz;
211/// use kernel::device::Device;
212/// use kernel::error::Result;
213/// use kernel::opp::{Data, MicroVolt, Token};
214/// use kernel::types::ARef;
215///
216/// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
217/// let data = Data::new(freq, volt, level, false);
218///
219/// // OPP is removed once token goes out of scope.
220/// data.add_opp(dev)
221/// }
222/// ```
223#[repr(transparent)]
224pub struct Data(bindings::dev_pm_opp_data);
225
226impl Data {
227 /// Creates a new instance of [`Data`].
228 ///
229 /// This can be used to define a dynamic OPP to be added to a device.
230 pub fn new(freq: Hertz, volt: MicroVolt, level: u32, turbo: bool) -> Self {
231 Self(bindings::dev_pm_opp_data {
232 turbo,
233 freq: freq.into(),
234 u_volt: volt.into(),
235 level,
236 })
237 }
238
239 /// Adds an [`OPP`] dynamically.
240 ///
241 /// Returns a [`Token`] that ensures the OPP is automatically removed
242 /// when it goes out of scope.
243 #[inline]
244 pub fn add_opp(self, dev: &ARef<Device>) -> Result<Token> {
245 Token::new(dev, self)
246 }
247
248 /// Returns the frequency associated with this OPP data.
249 #[inline]
250 fn freq(&self) -> Hertz {
251 Hertz(self.0.freq)
252 }
253}
254
255/// [`OPP`] search options.
256///
257/// ## Examples
258///
259/// Defines how to search for an [`OPP`] in a [`Table`] relative to a frequency.
260///
261/// ```
262/// use kernel::clk::Hertz;
263/// use kernel::error::Result;
264/// use kernel::opp::{OPP, SearchType, Table};
265/// use kernel::types::ARef;
266///
267/// fn find_opp(table: &Table, freq: Hertz) -> Result<ARef<OPP>> {
268/// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
269///
270/// pr_info!("OPP frequency is: {:?}\n", opp.freq(None));
271/// pr_info!("OPP voltage is: {:?}\n", opp.voltage());
272/// pr_info!("OPP level is: {}\n", opp.level());
273/// pr_info!("OPP power is: {:?}\n", opp.power());
274///
275/// Ok(opp)
276/// }
277/// ```
278#[derive(Copy, Clone, Debug, Eq, PartialEq)]
279pub enum SearchType {
280 /// Match the exact frequency.
281 Exact,
282 /// Find the highest frequency less than or equal to the given value.
283 Floor,
284 /// Find the lowest frequency greater than or equal to the given value.
285 Ceil,
286}
287
288/// OPP configuration callbacks.
289///
290/// Implement this trait to customize OPP clock and regulator setup for your device.
291#[vtable]
292pub trait ConfigOps {
293 /// This is typically used to scale clocks when transitioning between OPPs.
294 #[inline]
295 fn config_clks(_dev: &Device, _table: &Table, _opp: &OPP, _scaling_down: bool) -> Result {
296 build_error!(VTABLE_DEFAULT_ERROR)
297 }
298
299 /// This provides access to the old and new OPPs, allowing for safe regulator adjustments.
300 #[inline]
301 fn config_regulators(
302 _dev: &Device,
303 _opp_old: &OPP,
304 _opp_new: &OPP,
305 _data: *mut *mut bindings::regulator,
306 _count: u32,
307 ) -> Result {
308 build_error!(VTABLE_DEFAULT_ERROR)
309 }
310}
311
312/// OPP configuration token.
313///
314/// Returned by the OPP core when configuration is applied to a [`Device`]. The associated
315/// configuration is automatically cleared when the token is dropped.
316pub struct ConfigToken(i32);
317
318impl Drop for ConfigToken {
319 fn drop(&mut self) {
320 // SAFETY: This is the same token value returned by the C code via `dev_pm_opp_set_config`.
321 unsafe { bindings::dev_pm_opp_clear_config(self.0) };
322 }
323}
324
325/// OPP configurations.
326///
327/// Rust abstraction for the C `struct dev_pm_opp_config`.
328///
329/// ## Examples
330///
331/// The following example demonstrates how to set OPP property-name configuration for a [`Device`].
332///
333/// ```
334/// use kernel::device::Device;
335/// use kernel::error::Result;
336/// use kernel::opp::{Config, ConfigOps, ConfigToken};
337/// use kernel::str::CString;
338/// use kernel::types::ARef;
339/// use kernel::macros::vtable;
340///
341/// #[derive(Default)]
342/// struct Driver;
343///
344/// #[vtable]
345/// impl ConfigOps for Driver {}
346///
347/// fn configure(dev: &ARef<Device>) -> Result<ConfigToken> {
348/// let name = CString::try_from_fmt(fmt!("{}", "slow"))?;
349///
350/// // The OPP configuration is cleared once the [`ConfigToken`] goes out of scope.
351/// Config::<Driver>::new()
352/// .set_prop_name(name)?
353/// .set(dev)
354/// }
355/// ```
356#[derive(Default)]
357pub struct Config<T: ConfigOps>
358where
359 T: Default,
360{
361 clk_names: Option<KVec<CString>>,
362 prop_name: Option<CString>,
363 regulator_names: Option<KVec<CString>>,
364 supported_hw: Option<KVec<u32>>,
365
366 // Tuple containing (required device, index)
367 required_dev: Option<(ARef<Device>, u32)>,
368 _data: PhantomData<T>,
369}
370
371impl<T: ConfigOps + Default> Config<T> {
372 /// Creates a new instance of [`Config`].
373 #[inline]
374 pub fn new() -> Self {
375 Self::default()
376 }
377
378 /// Initializes clock names.
379 pub fn set_clk_names(mut self, names: KVec<CString>) -> Result<Self> {
380 if self.clk_names.is_some() {
381 return Err(EBUSY);
382 }
383
384 if names.is_empty() {
385 return Err(EINVAL);
386 }
387
388 self.clk_names = Some(names);
389 Ok(self)
390 }
391
392 /// Initializes property name.
393 pub fn set_prop_name(mut self, name: CString) -> Result<Self> {
394 if self.prop_name.is_some() {
395 return Err(EBUSY);
396 }
397
398 self.prop_name = Some(name);
399 Ok(self)
400 }
401
402 /// Initializes regulator names.
403 pub fn set_regulator_names(mut self, names: KVec<CString>) -> Result<Self> {
404 if self.regulator_names.is_some() {
405 return Err(EBUSY);
406 }
407
408 if names.is_empty() {
409 return Err(EINVAL);
410 }
411
412 self.regulator_names = Some(names);
413
414 Ok(self)
415 }
416
417 /// Initializes required devices.
418 pub fn set_required_dev(mut self, dev: ARef<Device>, index: u32) -> Result<Self> {
419 if self.required_dev.is_some() {
420 return Err(EBUSY);
421 }
422
423 self.required_dev = Some((dev, index));
424 Ok(self)
425 }
426
427 /// Initializes supported hardware.
428 pub fn set_supported_hw(mut self, hw: KVec<u32>) -> Result<Self> {
429 if self.supported_hw.is_some() {
430 return Err(EBUSY);
431 }
432
433 if hw.is_empty() {
434 return Err(EINVAL);
435 }
436
437 self.supported_hw = Some(hw);
438 Ok(self)
439 }
440
441 /// Sets the configuration with the OPP core.
442 ///
443 /// The returned [`ConfigToken`] will remove the configuration when dropped.
444 pub fn set(self, dev: &Device) -> Result<ConfigToken> {
445 let (_clk_list, clk_names) = match &self.clk_names {
446 Some(x) => {
447 let list = to_c_str_array(x)?;
448 let ptr = list.as_ptr();
449 (Some(list), ptr)
450 }
451 None => (None, ptr::null()),
452 };
453
454 let (_regulator_list, regulator_names) = match &self.regulator_names {
455 Some(x) => {
456 let list = to_c_str_array(x)?;
457 let ptr = list.as_ptr();
458 (Some(list), ptr)
459 }
460 None => (None, ptr::null()),
461 };
462
463 let prop_name = self
464 .prop_name
465 .as_ref()
466 .map_or(ptr::null(), |p| p.as_char_ptr());
467
468 let (supported_hw, supported_hw_count) = self
469 .supported_hw
470 .as_ref()
471 .map_or((ptr::null(), 0), |hw| (hw.as_ptr(), hw.len() as u32));
472
473 let (required_dev, required_dev_index) = self
474 .required_dev
475 .as_ref()
476 .map_or((ptr::null_mut(), 0), |(dev, idx)| (dev.as_raw(), *idx));
477
478 let mut config = bindings::dev_pm_opp_config {
479 clk_names,
480 config_clks: if T::HAS_CONFIG_CLKS {
481 Some(Self::config_clks)
482 } else {
483 None
484 },
485 prop_name,
486 regulator_names,
487 config_regulators: if T::HAS_CONFIG_REGULATORS {
488 Some(Self::config_regulators)
489 } else {
490 None
491 },
492 supported_hw,
493 supported_hw_count,
494
495 required_dev,
496 required_dev_index,
497 };
498
499 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
500 // requirements. The OPP core guarantees not to access fields of [`Config`] after this call
501 // and so we don't need to save a copy of them for future use.
502 let ret = unsafe { bindings::dev_pm_opp_set_config(dev.as_raw(), &mut config) };
503 if ret < 0 {
504 Err(Error::from_errno(ret))
505 } else {
506 Ok(ConfigToken(ret))
507 }
508 }
509
510 /// Config's clk callback.
511 ///
512 /// SAFETY: Called from C. Inputs must be valid pointers.
513 extern "C" fn config_clks(
514 dev: *mut bindings::device,
515 opp_table: *mut bindings::opp_table,
516 opp: *mut bindings::dev_pm_opp,
517 _data: *mut kernel::ffi::c_void,
518 scaling_down: bool,
519 ) -> kernel::ffi::c_int {
520 from_result(|| {
521 // SAFETY: 'dev' is guaranteed by the C code to be valid.
522 let dev = unsafe { Device::get_device(dev) };
523 T::config_clks(
524 &dev,
525 // SAFETY: 'opp_table' is guaranteed by the C code to be valid.
526 &unsafe { Table::from_raw_table(opp_table, &dev) },
527 // SAFETY: 'opp' is guaranteed by the C code to be valid.
528 unsafe { OPP::from_raw_opp(opp)? },
529 scaling_down,
530 )
531 .map(|()| 0)
532 })
533 }
534
535 /// Config's regulator callback.
536 ///
537 /// SAFETY: Called from C. Inputs must be valid pointers.
538 extern "C" fn config_regulators(
539 dev: *mut bindings::device,
540 old_opp: *mut bindings::dev_pm_opp,
541 new_opp: *mut bindings::dev_pm_opp,
542 regulators: *mut *mut bindings::regulator,
543 count: kernel::ffi::c_uint,
544 ) -> kernel::ffi::c_int {
545 from_result(|| {
546 // SAFETY: 'dev' is guaranteed by the C code to be valid.
547 let dev = unsafe { Device::get_device(dev) };
548 T::config_regulators(
549 &dev,
550 // SAFETY: 'old_opp' is guaranteed by the C code to be valid.
551 unsafe { OPP::from_raw_opp(old_opp)? },
552 // SAFETY: 'new_opp' is guaranteed by the C code to be valid.
553 unsafe { OPP::from_raw_opp(new_opp)? },
554 regulators,
555 count,
556 )
557 .map(|()| 0)
558 })
559 }
560}
561
562/// A reference-counted OPP table.
563///
564/// Rust abstraction for the C `struct opp_table`.
565///
566/// # Invariants
567///
568/// The pointer stored in `Self` is non-null and valid for the lifetime of the [`Table`].
569///
570/// Instances of this type are reference-counted.
571///
572/// ## Examples
573///
574/// The following example demonstrates how to get OPP [`Table`] for a [`Cpumask`] and set its
575/// frequency.
576///
577/// ```
578/// use kernel::clk::Hertz;
579/// use kernel::cpumask::Cpumask;
580/// use kernel::device::Device;
581/// use kernel::error::Result;
582/// use kernel::opp::Table;
583/// use kernel::types::ARef;
584///
585/// fn get_table(dev: &ARef<Device>, mask: &mut Cpumask, freq: Hertz) -> Result<Table> {
586/// let mut opp_table = Table::from_of_cpumask(dev, mask)?;
587///
588/// if opp_table.opp_count()? == 0 {
589/// return Err(EINVAL);
590/// }
591///
592/// pr_info!("Max transition latency is: {} ns\n", opp_table.max_transition_latency_ns());
593/// pr_info!("Suspend frequency is: {:?}\n", opp_table.suspend_freq());
594///
595/// opp_table.set_rate(freq)?;
596/// Ok(opp_table)
597/// }
598/// ```
599pub struct Table {
600 ptr: *mut bindings::opp_table,
601 dev: ARef<Device>,
602 #[allow(dead_code)]
603 em: bool,
604 #[allow(dead_code)]
605 of: bool,
606 cpus: Option<CpumaskVar>,
607}
608
609/// SAFETY: It is okay to send ownership of [`Table`] across thread boundaries.
610unsafe impl Send for Table {}
611
612/// SAFETY: It is okay to access [`Table`] through shared references from other threads because
613/// we're either accessing properties that don't change or that are properly synchronised by C code.
614unsafe impl Sync for Table {}
615
616impl Table {
617 /// Creates a new reference-counted [`Table`] from a raw pointer.
618 ///
619 /// # Safety
620 ///
621 /// Callers must ensure that `ptr` is valid and non-null.
622 unsafe fn from_raw_table(ptr: *mut bindings::opp_table, dev: &ARef<Device>) -> Self {
623 // SAFETY: By the safety requirements, ptr is valid and its refcount will be incremented.
624 //
625 // INVARIANT: The reference-count is decremented when [`Table`] goes out of scope.
626 unsafe { bindings::dev_pm_opp_get_opp_table_ref(ptr) };
627
628 Self {
629 ptr,
630 dev: dev.clone(),
631 em: false,
632 of: false,
633 cpus: None,
634 }
635 }
636
637 /// Creates a new reference-counted [`Table`] instance for a [`Device`].
638 pub fn from_dev(dev: &Device) -> Result<Self> {
639 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
640 // requirements.
641 //
642 // INVARIANT: The reference-count is incremented by the C code and is decremented when
643 // [`Table`] goes out of scope.
644 let ptr = from_err_ptr(unsafe { bindings::dev_pm_opp_get_opp_table(dev.as_raw()) })?;
645
646 Ok(Self {
647 ptr,
648 dev: dev.into(),
649 em: false,
650 of: false,
651 cpus: None,
652 })
653 }
654
655 /// Creates a new reference-counted [`Table`] instance for a [`Device`] based on device tree
656 /// entries.
657 #[cfg(CONFIG_OF)]
658 pub fn from_of(dev: &ARef<Device>, index: i32) -> Result<Self> {
659 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
660 // requirements.
661 //
662 // INVARIANT: The reference-count is incremented by the C code and is decremented when
663 // [`Table`] goes out of scope.
664 to_result(unsafe { bindings::dev_pm_opp_of_add_table_indexed(dev.as_raw(), index) })?;
665
666 // Get the newly created [`Table`].
667 let mut table = Self::from_dev(dev)?;
668 table.of = true;
669
670 Ok(table)
671 }
672
673 /// Remove device tree based [`Table`].
674 #[cfg(CONFIG_OF)]
675 #[inline]
676 fn remove_of(&self) {
677 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
678 // requirements. We took the reference from [`from_of`] earlier, it is safe to drop the
679 // same now.
680 unsafe { bindings::dev_pm_opp_of_remove_table(self.dev.as_raw()) };
681 }
682
683 /// Creates a new reference-counted [`Table`] instance for a [`Cpumask`] based on device tree
684 /// entries.
685 #[cfg(CONFIG_OF)]
686 pub fn from_of_cpumask(dev: &Device, cpumask: &mut Cpumask) -> Result<Self> {
687 // SAFETY: The cpumask is valid and the returned pointer will be owned by the [`Table`]
688 // instance.
689 //
690 // INVARIANT: The reference-count is incremented by the C code and is decremented when
691 // [`Table`] goes out of scope.
692 to_result(unsafe { bindings::dev_pm_opp_of_cpumask_add_table(cpumask.as_raw()) })?;
693
694 // Fetch the newly created table.
695 let mut table = Self::from_dev(dev)?;
696 table.cpus = Some(CpumaskVar::try_clone(cpumask)?);
697
698 Ok(table)
699 }
700
701 /// Remove device tree based [`Table`] for a [`Cpumask`].
702 #[cfg(CONFIG_OF)]
703 #[inline]
704 fn remove_of_cpumask(&self, cpumask: &Cpumask) {
705 // SAFETY: The cpumask is valid and we took the reference from [`from_of_cpumask`] earlier,
706 // it is safe to drop the same now.
707 unsafe { bindings::dev_pm_opp_of_cpumask_remove_table(cpumask.as_raw()) };
708 }
709
710 /// Returns the number of [`OPP`]s in the [`Table`].
711 pub fn opp_count(&self) -> Result<u32> {
712 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
713 // requirements.
714 let ret = unsafe { bindings::dev_pm_opp_get_opp_count(self.dev.as_raw()) };
715 if ret < 0 {
716 Err(Error::from_errno(ret))
717 } else {
718 Ok(ret as u32)
719 }
720 }
721
722 /// Returns max clock latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
723 #[inline]
724 pub fn max_clock_latency_ns(&self) -> usize {
725 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
726 // requirements.
727 unsafe { bindings::dev_pm_opp_get_max_clock_latency(self.dev.as_raw()) }
728 }
729
730 /// Returns max volt latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
731 #[inline]
732 pub fn max_volt_latency_ns(&self) -> usize {
733 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
734 // requirements.
735 unsafe { bindings::dev_pm_opp_get_max_volt_latency(self.dev.as_raw()) }
736 }
737
738 /// Returns max transition latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
739 #[inline]
740 pub fn max_transition_latency_ns(&self) -> usize {
741 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
742 // requirements.
743 unsafe { bindings::dev_pm_opp_get_max_transition_latency(self.dev.as_raw()) }
744 }
745
746 /// Returns the suspend [`OPP`]'s frequency.
747 #[inline]
748 pub fn suspend_freq(&self) -> Hertz {
749 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
750 // requirements.
751 Hertz(unsafe { bindings::dev_pm_opp_get_suspend_opp_freq(self.dev.as_raw()) })
752 }
753
754 /// Synchronizes regulators used by the [`Table`].
755 #[inline]
756 pub fn sync_regulators(&self) -> Result {
757 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
758 // requirements.
759 to_result(unsafe { bindings::dev_pm_opp_sync_regulators(self.dev.as_raw()) })
760 }
761
762 /// Gets sharing CPUs.
763 #[inline]
764 pub fn sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
765 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
766 // requirements.
767 to_result(unsafe { bindings::dev_pm_opp_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) })
768 }
769
770 /// Sets sharing CPUs.
771 pub fn set_sharing_cpus(&mut self, cpumask: &mut Cpumask) -> Result {
772 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
773 // requirements.
774 to_result(unsafe {
775 bindings::dev_pm_opp_set_sharing_cpus(self.dev.as_raw(), cpumask.as_raw())
776 })?;
777
778 if let Some(mask) = self.cpus.as_mut() {
779 // Update the cpumask as this will be used while removing the table.
780 cpumask.copy(mask);
781 }
782
783 Ok(())
784 }
785
786 /// Gets sharing CPUs from device tree.
787 #[cfg(CONFIG_OF)]
788 #[inline]
789 pub fn of_sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
790 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
791 // requirements.
792 to_result(unsafe {
793 bindings::dev_pm_opp_of_get_sharing_cpus(dev.as_raw(), cpumask.as_raw())
794 })
795 }
796
797 /// Updates the voltage value for an [`OPP`].
798 #[inline]
799 pub fn adjust_voltage(
800 &self,
801 freq: Hertz,
802 volt: MicroVolt,
803 volt_min: MicroVolt,
804 volt_max: MicroVolt,
805 ) -> Result {
806 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
807 // requirements.
808 to_result(unsafe {
809 bindings::dev_pm_opp_adjust_voltage(
810 self.dev.as_raw(),
811 freq.into(),
812 volt.into(),
813 volt_min.into(),
814 volt_max.into(),
815 )
816 })
817 }
818
819 /// Creates [`FreqTable`] from [`Table`].
820 #[cfg(CONFIG_CPU_FREQ)]
821 #[inline]
822 pub fn cpufreq_table(&mut self) -> Result<FreqTable> {
823 FreqTable::new(self)
824 }
825
826 /// Configures device with [`OPP`] matching the frequency value.
827 #[inline]
828 pub fn set_rate(&self, freq: Hertz) -> Result {
829 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
830 // requirements.
831 to_result(unsafe { bindings::dev_pm_opp_set_rate(self.dev.as_raw(), freq.into()) })
832 }
833
834 /// Configures device with [`OPP`].
835 #[inline]
836 pub fn set_opp(&self, opp: &OPP) -> Result {
837 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
838 // requirements.
839 to_result(unsafe { bindings::dev_pm_opp_set_opp(self.dev.as_raw(), opp.as_raw()) })
840 }
841
842 /// Finds [`OPP`] based on frequency.
843 pub fn opp_from_freq(
844 &self,
845 freq: Hertz,
846 available: Option<bool>,
847 index: Option<u32>,
848 stype: SearchType,
849 ) -> Result<ARef<OPP>> {
850 let raw_dev = self.dev.as_raw();
851 let index = index.unwrap_or(0);
852 let mut rate = freq.into();
853
854 let ptr = from_err_ptr(match stype {
855 SearchType::Exact => {
856 if let Some(available) = available {
857 // SAFETY: The requirements are satisfied by the existence of [`Device`] and
858 // its safety requirements. The returned pointer will be owned by the new
859 // [`OPP`] instance.
860 unsafe {
861 bindings::dev_pm_opp_find_freq_exact_indexed(
862 raw_dev, rate, index, available,
863 )
864 }
865 } else {
866 return Err(EINVAL);
867 }
868 }
869
870 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
871 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
872 SearchType::Ceil => unsafe {
873 bindings::dev_pm_opp_find_freq_ceil_indexed(raw_dev, &mut rate, index)
874 },
875
876 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
877 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
878 SearchType::Floor => unsafe {
879 bindings::dev_pm_opp_find_freq_floor_indexed(raw_dev, &mut rate, index)
880 },
881 })?;
882
883 // SAFETY: The `ptr` is guaranteed by the C code to be valid.
884 unsafe { OPP::from_raw_opp_owned(ptr) }
885 }
886
887 /// Finds [`OPP`] based on level.
888 pub fn opp_from_level(&self, mut level: u32, stype: SearchType) -> Result<ARef<OPP>> {
889 let raw_dev = self.dev.as_raw();
890
891 let ptr = from_err_ptr(match stype {
892 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
893 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
894 SearchType::Exact => unsafe { bindings::dev_pm_opp_find_level_exact(raw_dev, level) },
895
896 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
897 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
898 SearchType::Ceil => unsafe {
899 bindings::dev_pm_opp_find_level_ceil(raw_dev, &mut level)
900 },
901
902 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
903 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
904 SearchType::Floor => unsafe {
905 bindings::dev_pm_opp_find_level_floor(raw_dev, &mut level)
906 },
907 })?;
908
909 // SAFETY: The `ptr` is guaranteed by the C code to be valid.
910 unsafe { OPP::from_raw_opp_owned(ptr) }
911 }
912
913 /// Finds [`OPP`] based on bandwidth.
914 pub fn opp_from_bw(&self, mut bw: u32, index: i32, stype: SearchType) -> Result<ARef<OPP>> {
915 let raw_dev = self.dev.as_raw();
916
917 let ptr = from_err_ptr(match stype {
918 // The OPP core doesn't support this yet.
919 SearchType::Exact => return Err(EINVAL),
920
921 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
922 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
923 SearchType::Ceil => unsafe {
924 bindings::dev_pm_opp_find_bw_ceil(raw_dev, &mut bw, index)
925 },
926
927 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
928 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
929 SearchType::Floor => unsafe {
930 bindings::dev_pm_opp_find_bw_floor(raw_dev, &mut bw, index)
931 },
932 })?;
933
934 // SAFETY: The `ptr` is guaranteed by the C code to be valid.
935 unsafe { OPP::from_raw_opp_owned(ptr) }
936 }
937
938 /// Enables the [`OPP`].
939 #[inline]
940 pub fn enable_opp(&self, freq: Hertz) -> Result {
941 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
942 // requirements.
943 to_result(unsafe { bindings::dev_pm_opp_enable(self.dev.as_raw(), freq.into()) })
944 }
945
946 /// Disables the [`OPP`].
947 #[inline]
948 pub fn disable_opp(&self, freq: Hertz) -> Result {
949 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
950 // requirements.
951 to_result(unsafe { bindings::dev_pm_opp_disable(self.dev.as_raw(), freq.into()) })
952 }
953
954 /// Registers with the Energy model.
955 #[cfg(CONFIG_OF)]
956 pub fn of_register_em(&mut self, cpumask: &mut Cpumask) -> Result {
957 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
958 // requirements.
959 to_result(unsafe {
960 bindings::dev_pm_opp_of_register_em(self.dev.as_raw(), cpumask.as_raw())
961 })?;
962
963 self.em = true;
964 Ok(())
965 }
966
967 /// Unregisters with the Energy model.
968 #[cfg(all(CONFIG_OF, CONFIG_ENERGY_MODEL))]
969 #[inline]
970 fn of_unregister_em(&self) {
971 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
972 // requirements. We registered with the EM framework earlier, it is safe to unregister now.
973 unsafe { bindings::em_dev_unregister_perf_domain(self.dev.as_raw()) };
974 }
975}
976
977impl Drop for Table {
978 fn drop(&mut self) {
979 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe
980 // to relinquish it now.
981 unsafe { bindings::dev_pm_opp_put_opp_table(self.ptr) };
982
983 #[cfg(CONFIG_OF)]
984 {
985 #[cfg(CONFIG_ENERGY_MODEL)]
986 if self.em {
987 self.of_unregister_em();
988 }
989
990 if self.of {
991 self.remove_of();
992 } else if let Some(cpumask) = self.cpus.take() {
993 self.remove_of_cpumask(&cpumask);
994 }
995 }
996 }
997}
998
999/// A reference-counted Operating performance point (OPP).
1000///
1001/// Rust abstraction for the C `struct dev_pm_opp`.
1002///
1003/// # Invariants
1004///
1005/// The pointer stored in `Self` is non-null and valid for the lifetime of the [`OPP`].
1006///
1007/// Instances of this type are reference-counted. The reference count is incremented by the
1008/// `dev_pm_opp_get` function and decremented by `dev_pm_opp_put`. The Rust type `ARef<OPP>`
1009/// represents a pointer that owns a reference count on the [`OPP`].
1010///
1011/// A reference to the [`OPP`], &[`OPP`], isn't refcounted by the Rust code.
1012///
1013/// ## Examples
1014///
1015/// The following example demonstrates how to get [`OPP`] corresponding to a frequency value and
1016/// configure the device with it.
1017///
1018/// ```
1019/// use kernel::clk::Hertz;
1020/// use kernel::error::Result;
1021/// use kernel::opp::{SearchType, Table};
1022///
1023/// fn configure_opp(table: &Table, freq: Hertz) -> Result {
1024/// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
1025///
1026/// if opp.freq(None) != freq {
1027/// return Err(EINVAL);
1028/// }
1029///
1030/// table.set_opp(&opp)
1031/// }
1032/// ```
1033#[repr(transparent)]
1034pub struct OPP(Opaque<bindings::dev_pm_opp>);
1035
1036/// SAFETY: It is okay to send the ownership of [`OPP`] across thread boundaries.
1037unsafe impl Send for OPP {}
1038
1039/// SAFETY: It is okay to access [`OPP`] through shared references from other threads because we're
1040/// either accessing properties that don't change or that are properly synchronised by C code.
1041unsafe impl Sync for OPP {}
1042
1043/// SAFETY: The type invariants guarantee that [`OPP`] is always refcounted.
1044unsafe impl AlwaysRefCounted for OPP {
1045 fn inc_ref(&self) {
1046 // SAFETY: The existence of a shared reference means that the refcount is nonzero.
1047 unsafe { bindings::dev_pm_opp_get(self.0.get()) };
1048 }
1049
1050 unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
1051 // SAFETY: The safety requirements guarantee that the refcount is nonzero.
1052 unsafe { bindings::dev_pm_opp_put(obj.cast().as_ptr()) }
1053 }
1054}
1055
1056impl OPP {
1057 /// Creates an owned reference to a [`OPP`] from a valid pointer.
1058 ///
1059 /// The refcount is incremented by the C code and will be decremented by `dec_ref` when the
1060 /// [`ARef`] object is dropped.
1061 ///
1062 /// # Safety
1063 ///
1064 /// The caller must ensure that `ptr` is valid and the refcount of the [`OPP`] is incremented.
1065 /// The caller must also ensure that it doesn't explicitly drop the refcount of the [`OPP`], as
1066 /// the returned [`ARef`] object takes over the refcount increment on the underlying object and
1067 /// the same will be dropped along with it.
1068 pub unsafe fn from_raw_opp_owned(ptr: *mut bindings::dev_pm_opp) -> Result<ARef<Self>> {
1069 let ptr = ptr::NonNull::new(ptr).ok_or(ENODEV)?;
1070
1071 // SAFETY: The safety requirements guarantee the validity of the pointer.
1072 //
1073 // INVARIANT: The reference-count is decremented when [`OPP`] goes out of scope.
1074 Ok(unsafe { ARef::from_raw(ptr.cast()) })
1075 }
1076
1077 /// Creates a reference to a [`OPP`] from a valid pointer.
1078 ///
1079 /// The refcount is not updated by the Rust API unless the returned reference is converted to
1080 /// an [`ARef`] object.
1081 ///
1082 /// # Safety
1083 ///
1084 /// The caller must ensure that `ptr` is valid and remains valid for the duration of `'a`.
1085 #[inline]
1086 pub unsafe fn from_raw_opp<'a>(ptr: *mut bindings::dev_pm_opp) -> Result<&'a Self> {
1087 // SAFETY: The caller guarantees that the pointer is not dangling and stays valid for the
1088 // duration of 'a. The cast is okay because [`OPP`] is `repr(transparent)`.
1089 Ok(unsafe { &*ptr.cast() })
1090 }
1091
1092 #[inline]
1093 fn as_raw(&self) -> *mut bindings::dev_pm_opp {
1094 self.0.get()
1095 }
1096
1097 /// Returns the frequency of an [`OPP`].
1098 pub fn freq(&self, index: Option<u32>) -> Hertz {
1099 let index = index.unwrap_or(0);
1100
1101 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1102 // use it.
1103 Hertz(unsafe { bindings::dev_pm_opp_get_freq_indexed(self.as_raw(), index) })
1104 }
1105
1106 /// Returns the voltage of an [`OPP`].
1107 #[inline]
1108 pub fn voltage(&self) -> MicroVolt {
1109 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1110 // use it.
1111 MicroVolt(unsafe { bindings::dev_pm_opp_get_voltage(self.as_raw()) })
1112 }
1113
1114 /// Returns the level of an [`OPP`].
1115 #[inline]
1116 pub fn level(&self) -> u32 {
1117 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1118 // use it.
1119 unsafe { bindings::dev_pm_opp_get_level(self.as_raw()) }
1120 }
1121
1122 /// Returns the power of an [`OPP`].
1123 #[inline]
1124 pub fn power(&self) -> MicroWatt {
1125 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1126 // use it.
1127 MicroWatt(unsafe { bindings::dev_pm_opp_get_power(self.as_raw()) })
1128 }
1129
1130 /// Returns the required pstate of an [`OPP`].
1131 #[inline]
1132 pub fn required_pstate(&self, index: u32) -> u32 {
1133 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1134 // use it.
1135 unsafe { bindings::dev_pm_opp_get_required_pstate(self.as_raw(), index) }
1136 }
1137
1138 /// Returns true if the [`OPP`] is turbo.
1139 #[inline]
1140 pub fn is_turbo(&self) -> bool {
1141 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1142 // use it.
1143 unsafe { bindings::dev_pm_opp_is_turbo(self.as_raw()) }
1144 }
1145}