kernel/
opp.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Operating performance points.
4//!
5//! This module provides rust abstractions for interacting with the OPP subsystem.
6//!
7//! C header: [`include/linux/pm_opp.h`](srctree/include/linux/pm_opp.h)
8//!
9//! Reference: <https://docs.kernel.org/power/opp.html>
10
11use crate::{
12    clk::Hertz,
13    cpumask::{Cpumask, CpumaskVar},
14    device::Device,
15    error::{code::*, from_err_ptr, from_result, to_result, Error, Result, VTABLE_DEFAULT_ERROR},
16    ffi::c_ulong,
17    prelude::*,
18    str::CString,
19    types::{ARef, AlwaysRefCounted, Opaque},
20};
21
22#[cfg(CONFIG_CPU_FREQ)]
23/// Frequency table implementation.
24mod freq {
25    use super::*;
26    use crate::cpufreq;
27    use core::ops::Deref;
28
29    /// OPP frequency table.
30    ///
31    /// A [`cpufreq::Table`] created from [`Table`].
32    pub struct FreqTable {
33        dev: ARef<Device>,
34        ptr: *mut bindings::cpufreq_frequency_table,
35    }
36
37    impl FreqTable {
38        /// Creates a new instance of [`FreqTable`] from [`Table`].
39        pub(crate) fn new(table: &Table) -> Result<Self> {
40            let mut ptr: *mut bindings::cpufreq_frequency_table = ptr::null_mut();
41
42            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
43            // requirements.
44            to_result(unsafe {
45                bindings::dev_pm_opp_init_cpufreq_table(table.dev.as_raw(), &mut ptr)
46            })?;
47
48            Ok(Self {
49                dev: table.dev.clone(),
50                ptr,
51            })
52        }
53
54        /// Returns a reference to the underlying [`cpufreq::Table`].
55        #[inline]
56        fn table(&self) -> &cpufreq::Table {
57            // SAFETY: The `ptr` is guaranteed by the C code to be valid.
58            unsafe { cpufreq::Table::from_raw(self.ptr) }
59        }
60    }
61
62    impl Deref for FreqTable {
63        type Target = cpufreq::Table;
64
65        #[inline]
66        fn deref(&self) -> &Self::Target {
67            self.table()
68        }
69    }
70
71    impl Drop for FreqTable {
72        fn drop(&mut self) {
73            // SAFETY: The pointer was created via `dev_pm_opp_init_cpufreq_table`, and is only
74            // freed here.
75            unsafe {
76                bindings::dev_pm_opp_free_cpufreq_table(self.dev.as_raw(), &mut self.as_raw())
77            };
78        }
79    }
80}
81
82#[cfg(CONFIG_CPU_FREQ)]
83pub use freq::FreqTable;
84
85use core::{marker::PhantomData, ptr};
86
87use macros::vtable;
88
89/// Creates a null-terminated slice of pointers to [`Cstring`]s.
90fn to_c_str_array(names: &[CString]) -> Result<KVec<*const u8>> {
91    // Allocated a null-terminated vector of pointers.
92    let mut list = KVec::with_capacity(names.len() + 1, GFP_KERNEL)?;
93
94    for name in names.iter() {
95        list.push(name.as_ptr() as _, GFP_KERNEL)?;
96    }
97
98    list.push(ptr::null(), GFP_KERNEL)?;
99    Ok(list)
100}
101
102/// The voltage unit.
103///
104/// Represents voltage in microvolts, wrapping a [`c_ulong`] value.
105///
106/// ## Examples
107///
108/// ```
109/// use kernel::opp::MicroVolt;
110///
111/// let raw = 90500;
112/// let volt = MicroVolt(raw);
113///
114/// assert_eq!(usize::from(volt), raw);
115/// assert_eq!(volt, MicroVolt(raw));
116/// ```
117#[derive(Copy, Clone, PartialEq, Eq, Debug)]
118pub struct MicroVolt(pub c_ulong);
119
120impl From<MicroVolt> for c_ulong {
121    #[inline]
122    fn from(volt: MicroVolt) -> Self {
123        volt.0
124    }
125}
126
127/// The power unit.
128///
129/// Represents power in microwatts, wrapping a [`c_ulong`] value.
130///
131/// ## Examples
132///
133/// ```
134/// use kernel::opp::MicroWatt;
135///
136/// let raw = 1000000;
137/// let power = MicroWatt(raw);
138///
139/// assert_eq!(usize::from(power), raw);
140/// assert_eq!(power, MicroWatt(raw));
141/// ```
142#[derive(Copy, Clone, PartialEq, Eq, Debug)]
143pub struct MicroWatt(pub c_ulong);
144
145impl From<MicroWatt> for c_ulong {
146    #[inline]
147    fn from(power: MicroWatt) -> Self {
148        power.0
149    }
150}
151
152/// Handle for a dynamically created [`OPP`].
153///
154/// The associated [`OPP`] is automatically removed when the [`Token`] is dropped.
155///
156/// ## Examples
157///
158/// The following example demonstrates how to create an [`OPP`] dynamically.
159///
160/// ```
161/// use kernel::clk::Hertz;
162/// use kernel::device::Device;
163/// use kernel::error::Result;
164/// use kernel::opp::{Data, MicroVolt, Token};
165/// use kernel::types::ARef;
166///
167/// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
168///     let data = Data::new(freq, volt, level, false);
169///
170///     // OPP is removed once token goes out of scope.
171///     data.add_opp(dev)
172/// }
173/// ```
174pub struct Token {
175    dev: ARef<Device>,
176    freq: Hertz,
177}
178
179impl Token {
180    /// Dynamically adds an [`OPP`] and returns a [`Token`] that removes it on drop.
181    fn new(dev: &ARef<Device>, mut data: Data) -> Result<Self> {
182        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
183        // requirements.
184        to_result(unsafe { bindings::dev_pm_opp_add_dynamic(dev.as_raw(), &mut data.0) })?;
185        Ok(Self {
186            dev: dev.clone(),
187            freq: data.freq(),
188        })
189    }
190}
191
192impl Drop for Token {
193    fn drop(&mut self) {
194        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
195        // requirements.
196        unsafe { bindings::dev_pm_opp_remove(self.dev.as_raw(), self.freq.into()) };
197    }
198}
199
200/// OPP data.
201///
202/// Rust abstraction for the C `struct dev_pm_opp_data`, used to define operating performance
203/// points (OPPs) dynamically.
204///
205/// ## Examples
206///
207/// The following example demonstrates how to create an [`OPP`] with [`Data`].
208///
209/// ```
210/// use kernel::clk::Hertz;
211/// use kernel::device::Device;
212/// use kernel::error::Result;
213/// use kernel::opp::{Data, MicroVolt, Token};
214/// use kernel::types::ARef;
215///
216/// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
217///     let data = Data::new(freq, volt, level, false);
218///
219///     // OPP is removed once token goes out of scope.
220///     data.add_opp(dev)
221/// }
222/// ```
223#[repr(transparent)]
224pub struct Data(bindings::dev_pm_opp_data);
225
226impl Data {
227    /// Creates a new instance of [`Data`].
228    ///
229    /// This can be used to define a dynamic OPP to be added to a device.
230    pub fn new(freq: Hertz, volt: MicroVolt, level: u32, turbo: bool) -> Self {
231        Self(bindings::dev_pm_opp_data {
232            turbo,
233            freq: freq.into(),
234            u_volt: volt.into(),
235            level,
236        })
237    }
238
239    /// Adds an [`OPP`] dynamically.
240    ///
241    /// Returns a [`Token`] that ensures the OPP is automatically removed
242    /// when it goes out of scope.
243    #[inline]
244    pub fn add_opp(self, dev: &ARef<Device>) -> Result<Token> {
245        Token::new(dev, self)
246    }
247
248    /// Returns the frequency associated with this OPP data.
249    #[inline]
250    fn freq(&self) -> Hertz {
251        Hertz(self.0.freq)
252    }
253}
254
255/// [`OPP`] search options.
256///
257/// ## Examples
258///
259/// Defines how to search for an [`OPP`] in a [`Table`] relative to a frequency.
260///
261/// ```
262/// use kernel::clk::Hertz;
263/// use kernel::error::Result;
264/// use kernel::opp::{OPP, SearchType, Table};
265/// use kernel::types::ARef;
266///
267/// fn find_opp(table: &Table, freq: Hertz) -> Result<ARef<OPP>> {
268///     let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
269///
270///     pr_info!("OPP frequency is: {:?}\n", opp.freq(None));
271///     pr_info!("OPP voltage is: {:?}\n", opp.voltage());
272///     pr_info!("OPP level is: {}\n", opp.level());
273///     pr_info!("OPP power is: {:?}\n", opp.power());
274///
275///     Ok(opp)
276/// }
277/// ```
278#[derive(Copy, Clone, Debug, Eq, PartialEq)]
279pub enum SearchType {
280    /// Match the exact frequency.
281    Exact,
282    /// Find the highest frequency less than or equal to the given value.
283    Floor,
284    /// Find the lowest frequency greater than or equal to the given value.
285    Ceil,
286}
287
288/// OPP configuration callbacks.
289///
290/// Implement this trait to customize OPP clock and regulator setup for your device.
291#[vtable]
292pub trait ConfigOps {
293    /// This is typically used to scale clocks when transitioning between OPPs.
294    #[inline]
295    fn config_clks(_dev: &Device, _table: &Table, _opp: &OPP, _scaling_down: bool) -> Result {
296        build_error!(VTABLE_DEFAULT_ERROR)
297    }
298
299    /// This provides access to the old and new OPPs, allowing for safe regulator adjustments.
300    #[inline]
301    fn config_regulators(
302        _dev: &Device,
303        _opp_old: &OPP,
304        _opp_new: &OPP,
305        _data: *mut *mut bindings::regulator,
306        _count: u32,
307    ) -> Result {
308        build_error!(VTABLE_DEFAULT_ERROR)
309    }
310}
311
312/// OPP configuration token.
313///
314/// Returned by the OPP core when configuration is applied to a [`Device`]. The associated
315/// configuration is automatically cleared when the token is dropped.
316pub struct ConfigToken(i32);
317
318impl Drop for ConfigToken {
319    fn drop(&mut self) {
320        // SAFETY: This is the same token value returned by the C code via `dev_pm_opp_set_config`.
321        unsafe { bindings::dev_pm_opp_clear_config(self.0) };
322    }
323}
324
325/// OPP configurations.
326///
327/// Rust abstraction for the C `struct dev_pm_opp_config`.
328///
329/// ## Examples
330///
331/// The following example demonstrates how to set OPP property-name configuration for a [`Device`].
332///
333/// ```
334/// use kernel::device::Device;
335/// use kernel::error::Result;
336/// use kernel::opp::{Config, ConfigOps, ConfigToken};
337/// use kernel::str::CString;
338/// use kernel::types::ARef;
339/// use kernel::macros::vtable;
340///
341/// #[derive(Default)]
342/// struct Driver;
343///
344/// #[vtable]
345/// impl ConfigOps for Driver {}
346///
347/// fn configure(dev: &ARef<Device>) -> Result<ConfigToken> {
348///     let name = CString::try_from_fmt(fmt!("{}", "slow"))?;
349///
350///     // The OPP configuration is cleared once the [`ConfigToken`] goes out of scope.
351///     Config::<Driver>::new()
352///         .set_prop_name(name)?
353///         .set(dev)
354/// }
355/// ```
356#[derive(Default)]
357pub struct Config<T: ConfigOps>
358where
359    T: Default,
360{
361    clk_names: Option<KVec<CString>>,
362    prop_name: Option<CString>,
363    regulator_names: Option<KVec<CString>>,
364    supported_hw: Option<KVec<u32>>,
365
366    // Tuple containing (required device, index)
367    required_dev: Option<(ARef<Device>, u32)>,
368    _data: PhantomData<T>,
369}
370
371impl<T: ConfigOps + Default> Config<T> {
372    /// Creates a new instance of [`Config`].
373    #[inline]
374    pub fn new() -> Self {
375        Self::default()
376    }
377
378    /// Initializes clock names.
379    pub fn set_clk_names(mut self, names: KVec<CString>) -> Result<Self> {
380        if self.clk_names.is_some() {
381            return Err(EBUSY);
382        }
383
384        if names.is_empty() {
385            return Err(EINVAL);
386        }
387
388        self.clk_names = Some(names);
389        Ok(self)
390    }
391
392    /// Initializes property name.
393    pub fn set_prop_name(mut self, name: CString) -> Result<Self> {
394        if self.prop_name.is_some() {
395            return Err(EBUSY);
396        }
397
398        self.prop_name = Some(name);
399        Ok(self)
400    }
401
402    /// Initializes regulator names.
403    pub fn set_regulator_names(mut self, names: KVec<CString>) -> Result<Self> {
404        if self.regulator_names.is_some() {
405            return Err(EBUSY);
406        }
407
408        if names.is_empty() {
409            return Err(EINVAL);
410        }
411
412        self.regulator_names = Some(names);
413
414        Ok(self)
415    }
416
417    /// Initializes required devices.
418    pub fn set_required_dev(mut self, dev: ARef<Device>, index: u32) -> Result<Self> {
419        if self.required_dev.is_some() {
420            return Err(EBUSY);
421        }
422
423        self.required_dev = Some((dev, index));
424        Ok(self)
425    }
426
427    /// Initializes supported hardware.
428    pub fn set_supported_hw(mut self, hw: KVec<u32>) -> Result<Self> {
429        if self.supported_hw.is_some() {
430            return Err(EBUSY);
431        }
432
433        if hw.is_empty() {
434            return Err(EINVAL);
435        }
436
437        self.supported_hw = Some(hw);
438        Ok(self)
439    }
440
441    /// Sets the configuration with the OPP core.
442    ///
443    /// The returned [`ConfigToken`] will remove the configuration when dropped.
444    pub fn set(self, dev: &Device) -> Result<ConfigToken> {
445        let (_clk_list, clk_names) = match &self.clk_names {
446            Some(x) => {
447                let list = to_c_str_array(x)?;
448                let ptr = list.as_ptr();
449                (Some(list), ptr)
450            }
451            None => (None, ptr::null()),
452        };
453
454        let (_regulator_list, regulator_names) = match &self.regulator_names {
455            Some(x) => {
456                let list = to_c_str_array(x)?;
457                let ptr = list.as_ptr();
458                (Some(list), ptr)
459            }
460            None => (None, ptr::null()),
461        };
462
463        let prop_name = self
464            .prop_name
465            .as_ref()
466            .map_or(ptr::null(), |p| p.as_char_ptr());
467
468        let (supported_hw, supported_hw_count) = self
469            .supported_hw
470            .as_ref()
471            .map_or((ptr::null(), 0), |hw| (hw.as_ptr(), hw.len() as u32));
472
473        let (required_dev, required_dev_index) = self
474            .required_dev
475            .as_ref()
476            .map_or((ptr::null_mut(), 0), |(dev, idx)| (dev.as_raw(), *idx));
477
478        let mut config = bindings::dev_pm_opp_config {
479            clk_names,
480            config_clks: if T::HAS_CONFIG_CLKS {
481                Some(Self::config_clks)
482            } else {
483                None
484            },
485            prop_name,
486            regulator_names,
487            config_regulators: if T::HAS_CONFIG_REGULATORS {
488                Some(Self::config_regulators)
489            } else {
490                None
491            },
492            supported_hw,
493            supported_hw_count,
494
495            required_dev,
496            required_dev_index,
497        };
498
499        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
500        // requirements. The OPP core guarantees not to access fields of [`Config`] after this call
501        // and so we don't need to save a copy of them for future use.
502        let ret = unsafe { bindings::dev_pm_opp_set_config(dev.as_raw(), &mut config) };
503        if ret < 0 {
504            Err(Error::from_errno(ret))
505        } else {
506            Ok(ConfigToken(ret))
507        }
508    }
509
510    /// Config's clk callback.
511    ///
512    /// SAFETY: Called from C. Inputs must be valid pointers.
513    extern "C" fn config_clks(
514        dev: *mut bindings::device,
515        opp_table: *mut bindings::opp_table,
516        opp: *mut bindings::dev_pm_opp,
517        _data: *mut kernel::ffi::c_void,
518        scaling_down: bool,
519    ) -> kernel::ffi::c_int {
520        from_result(|| {
521            // SAFETY: 'dev' is guaranteed by the C code to be valid.
522            let dev = unsafe { Device::get_device(dev) };
523            T::config_clks(
524                &dev,
525                // SAFETY: 'opp_table' is guaranteed by the C code to be valid.
526                &unsafe { Table::from_raw_table(opp_table, &dev) },
527                // SAFETY: 'opp' is guaranteed by the C code to be valid.
528                unsafe { OPP::from_raw_opp(opp)? },
529                scaling_down,
530            )
531            .map(|()| 0)
532        })
533    }
534
535    /// Config's regulator callback.
536    ///
537    /// SAFETY: Called from C. Inputs must be valid pointers.
538    extern "C" fn config_regulators(
539        dev: *mut bindings::device,
540        old_opp: *mut bindings::dev_pm_opp,
541        new_opp: *mut bindings::dev_pm_opp,
542        regulators: *mut *mut bindings::regulator,
543        count: kernel::ffi::c_uint,
544    ) -> kernel::ffi::c_int {
545        from_result(|| {
546            // SAFETY: 'dev' is guaranteed by the C code to be valid.
547            let dev = unsafe { Device::get_device(dev) };
548            T::config_regulators(
549                &dev,
550                // SAFETY: 'old_opp' is guaranteed by the C code to be valid.
551                unsafe { OPP::from_raw_opp(old_opp)? },
552                // SAFETY: 'new_opp' is guaranteed by the C code to be valid.
553                unsafe { OPP::from_raw_opp(new_opp)? },
554                regulators,
555                count,
556            )
557            .map(|()| 0)
558        })
559    }
560}
561
562/// A reference-counted OPP table.
563///
564/// Rust abstraction for the C `struct opp_table`.
565///
566/// # Invariants
567///
568/// The pointer stored in `Self` is non-null and valid for the lifetime of the [`Table`].
569///
570/// Instances of this type are reference-counted.
571///
572/// ## Examples
573///
574/// The following example demonstrates how to get OPP [`Table`] for a [`Cpumask`] and set its
575/// frequency.
576///
577/// ```
578/// use kernel::clk::Hertz;
579/// use kernel::cpumask::Cpumask;
580/// use kernel::device::Device;
581/// use kernel::error::Result;
582/// use kernel::opp::Table;
583/// use kernel::types::ARef;
584///
585/// fn get_table(dev: &ARef<Device>, mask: &mut Cpumask, freq: Hertz) -> Result<Table> {
586///     let mut opp_table = Table::from_of_cpumask(dev, mask)?;
587///
588///     if opp_table.opp_count()? == 0 {
589///         return Err(EINVAL);
590///     }
591///
592///     pr_info!("Max transition latency is: {} ns\n", opp_table.max_transition_latency_ns());
593///     pr_info!("Suspend frequency is: {:?}\n", opp_table.suspend_freq());
594///
595///     opp_table.set_rate(freq)?;
596///     Ok(opp_table)
597/// }
598/// ```
599pub struct Table {
600    ptr: *mut bindings::opp_table,
601    dev: ARef<Device>,
602    #[allow(dead_code)]
603    em: bool,
604    #[allow(dead_code)]
605    of: bool,
606    cpus: Option<CpumaskVar>,
607}
608
609/// SAFETY: It is okay to send ownership of [`Table`] across thread boundaries.
610unsafe impl Send for Table {}
611
612/// SAFETY: It is okay to access [`Table`] through shared references from other threads because
613/// we're either accessing properties that don't change or that are properly synchronised by C code.
614unsafe impl Sync for Table {}
615
616impl Table {
617    /// Creates a new reference-counted [`Table`] from a raw pointer.
618    ///
619    /// # Safety
620    ///
621    /// Callers must ensure that `ptr` is valid and non-null.
622    unsafe fn from_raw_table(ptr: *mut bindings::opp_table, dev: &ARef<Device>) -> Self {
623        // SAFETY: By the safety requirements, ptr is valid and its refcount will be incremented.
624        //
625        // INVARIANT: The reference-count is decremented when [`Table`] goes out of scope.
626        unsafe { bindings::dev_pm_opp_get_opp_table_ref(ptr) };
627
628        Self {
629            ptr,
630            dev: dev.clone(),
631            em: false,
632            of: false,
633            cpus: None,
634        }
635    }
636
637    /// Creates a new reference-counted [`Table`] instance for a [`Device`].
638    pub fn from_dev(dev: &Device) -> Result<Self> {
639        // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
640        // requirements.
641        //
642        // INVARIANT: The reference-count is incremented by the C code and is decremented when
643        // [`Table`] goes out of scope.
644        let ptr = from_err_ptr(unsafe { bindings::dev_pm_opp_get_opp_table(dev.as_raw()) })?;
645
646        Ok(Self {
647            ptr,
648            dev: dev.into(),
649            em: false,
650            of: false,
651            cpus: None,
652        })
653    }
654
655    /// Creates a new reference-counted [`Table`] instance for a [`Device`] based on device tree
656    /// entries.
657    #[cfg(CONFIG_OF)]
658    pub fn from_of(dev: &ARef<Device>, index: i32) -> Result<Self> {
659        // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
660        // requirements.
661        //
662        // INVARIANT: The reference-count is incremented by the C code and is decremented when
663        // [`Table`] goes out of scope.
664        to_result(unsafe { bindings::dev_pm_opp_of_add_table_indexed(dev.as_raw(), index) })?;
665
666        // Get the newly created [`Table`].
667        let mut table = Self::from_dev(dev)?;
668        table.of = true;
669
670        Ok(table)
671    }
672
673    /// Remove device tree based [`Table`].
674    #[cfg(CONFIG_OF)]
675    #[inline]
676    fn remove_of(&self) {
677        // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
678        // requirements. We took the reference from [`from_of`] earlier, it is safe to drop the
679        // same now.
680        unsafe { bindings::dev_pm_opp_of_remove_table(self.dev.as_raw()) };
681    }
682
683    /// Creates a new reference-counted [`Table`] instance for a [`Cpumask`] based on device tree
684    /// entries.
685    #[cfg(CONFIG_OF)]
686    pub fn from_of_cpumask(dev: &Device, cpumask: &mut Cpumask) -> Result<Self> {
687        // SAFETY: The cpumask is valid and the returned pointer will be owned by the [`Table`]
688        // instance.
689        //
690        // INVARIANT: The reference-count is incremented by the C code and is decremented when
691        // [`Table`] goes out of scope.
692        to_result(unsafe { bindings::dev_pm_opp_of_cpumask_add_table(cpumask.as_raw()) })?;
693
694        // Fetch the newly created table.
695        let mut table = Self::from_dev(dev)?;
696        table.cpus = Some(CpumaskVar::try_clone(cpumask)?);
697
698        Ok(table)
699    }
700
701    /// Remove device tree based [`Table`] for a [`Cpumask`].
702    #[cfg(CONFIG_OF)]
703    #[inline]
704    fn remove_of_cpumask(&self, cpumask: &Cpumask) {
705        // SAFETY: The cpumask is valid and we took the reference from [`from_of_cpumask`] earlier,
706        // it is safe to drop the same now.
707        unsafe { bindings::dev_pm_opp_of_cpumask_remove_table(cpumask.as_raw()) };
708    }
709
710    /// Returns the number of [`OPP`]s in the [`Table`].
711    pub fn opp_count(&self) -> Result<u32> {
712        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
713        // requirements.
714        let ret = unsafe { bindings::dev_pm_opp_get_opp_count(self.dev.as_raw()) };
715        if ret < 0 {
716            Err(Error::from_errno(ret))
717        } else {
718            Ok(ret as u32)
719        }
720    }
721
722    /// Returns max clock latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
723    #[inline]
724    pub fn max_clock_latency_ns(&self) -> usize {
725        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
726        // requirements.
727        unsafe { bindings::dev_pm_opp_get_max_clock_latency(self.dev.as_raw()) }
728    }
729
730    /// Returns max volt latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
731    #[inline]
732    pub fn max_volt_latency_ns(&self) -> usize {
733        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
734        // requirements.
735        unsafe { bindings::dev_pm_opp_get_max_volt_latency(self.dev.as_raw()) }
736    }
737
738    /// Returns max transition latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
739    #[inline]
740    pub fn max_transition_latency_ns(&self) -> usize {
741        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
742        // requirements.
743        unsafe { bindings::dev_pm_opp_get_max_transition_latency(self.dev.as_raw()) }
744    }
745
746    /// Returns the suspend [`OPP`]'s frequency.
747    #[inline]
748    pub fn suspend_freq(&self) -> Hertz {
749        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
750        // requirements.
751        Hertz(unsafe { bindings::dev_pm_opp_get_suspend_opp_freq(self.dev.as_raw()) })
752    }
753
754    /// Synchronizes regulators used by the [`Table`].
755    #[inline]
756    pub fn sync_regulators(&self) -> Result {
757        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
758        // requirements.
759        to_result(unsafe { bindings::dev_pm_opp_sync_regulators(self.dev.as_raw()) })
760    }
761
762    /// Gets sharing CPUs.
763    #[inline]
764    pub fn sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
765        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
766        // requirements.
767        to_result(unsafe { bindings::dev_pm_opp_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) })
768    }
769
770    /// Sets sharing CPUs.
771    pub fn set_sharing_cpus(&mut self, cpumask: &mut Cpumask) -> Result {
772        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
773        // requirements.
774        to_result(unsafe {
775            bindings::dev_pm_opp_set_sharing_cpus(self.dev.as_raw(), cpumask.as_raw())
776        })?;
777
778        if let Some(mask) = self.cpus.as_mut() {
779            // Update the cpumask as this will be used while removing the table.
780            cpumask.copy(mask);
781        }
782
783        Ok(())
784    }
785
786    /// Gets sharing CPUs from device tree.
787    #[cfg(CONFIG_OF)]
788    #[inline]
789    pub fn of_sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
790        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
791        // requirements.
792        to_result(unsafe {
793            bindings::dev_pm_opp_of_get_sharing_cpus(dev.as_raw(), cpumask.as_raw())
794        })
795    }
796
797    /// Updates the voltage value for an [`OPP`].
798    #[inline]
799    pub fn adjust_voltage(
800        &self,
801        freq: Hertz,
802        volt: MicroVolt,
803        volt_min: MicroVolt,
804        volt_max: MicroVolt,
805    ) -> Result {
806        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
807        // requirements.
808        to_result(unsafe {
809            bindings::dev_pm_opp_adjust_voltage(
810                self.dev.as_raw(),
811                freq.into(),
812                volt.into(),
813                volt_min.into(),
814                volt_max.into(),
815            )
816        })
817    }
818
819    /// Creates [`FreqTable`] from [`Table`].
820    #[cfg(CONFIG_CPU_FREQ)]
821    #[inline]
822    pub fn cpufreq_table(&mut self) -> Result<FreqTable> {
823        FreqTable::new(self)
824    }
825
826    /// Configures device with [`OPP`] matching the frequency value.
827    #[inline]
828    pub fn set_rate(&self, freq: Hertz) -> Result {
829        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
830        // requirements.
831        to_result(unsafe { bindings::dev_pm_opp_set_rate(self.dev.as_raw(), freq.into()) })
832    }
833
834    /// Configures device with [`OPP`].
835    #[inline]
836    pub fn set_opp(&self, opp: &OPP) -> Result {
837        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
838        // requirements.
839        to_result(unsafe { bindings::dev_pm_opp_set_opp(self.dev.as_raw(), opp.as_raw()) })
840    }
841
842    /// Finds [`OPP`] based on frequency.
843    pub fn opp_from_freq(
844        &self,
845        freq: Hertz,
846        available: Option<bool>,
847        index: Option<u32>,
848        stype: SearchType,
849    ) -> Result<ARef<OPP>> {
850        let raw_dev = self.dev.as_raw();
851        let index = index.unwrap_or(0);
852        let mut rate = freq.into();
853
854        let ptr = from_err_ptr(match stype {
855            SearchType::Exact => {
856                if let Some(available) = available {
857                    // SAFETY: The requirements are satisfied by the existence of [`Device`] and
858                    // its safety requirements. The returned pointer will be owned by the new
859                    // [`OPP`] instance.
860                    unsafe {
861                        bindings::dev_pm_opp_find_freq_exact_indexed(
862                            raw_dev, rate, index, available,
863                        )
864                    }
865                } else {
866                    return Err(EINVAL);
867                }
868            }
869
870            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
871            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
872            SearchType::Ceil => unsafe {
873                bindings::dev_pm_opp_find_freq_ceil_indexed(raw_dev, &mut rate, index)
874            },
875
876            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
877            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
878            SearchType::Floor => unsafe {
879                bindings::dev_pm_opp_find_freq_floor_indexed(raw_dev, &mut rate, index)
880            },
881        })?;
882
883        // SAFETY: The `ptr` is guaranteed by the C code to be valid.
884        unsafe { OPP::from_raw_opp_owned(ptr) }
885    }
886
887    /// Finds [`OPP`] based on level.
888    pub fn opp_from_level(&self, mut level: u32, stype: SearchType) -> Result<ARef<OPP>> {
889        let raw_dev = self.dev.as_raw();
890
891        let ptr = from_err_ptr(match stype {
892            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
893            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
894            SearchType::Exact => unsafe { bindings::dev_pm_opp_find_level_exact(raw_dev, level) },
895
896            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
897            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
898            SearchType::Ceil => unsafe {
899                bindings::dev_pm_opp_find_level_ceil(raw_dev, &mut level)
900            },
901
902            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
903            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
904            SearchType::Floor => unsafe {
905                bindings::dev_pm_opp_find_level_floor(raw_dev, &mut level)
906            },
907        })?;
908
909        // SAFETY: The `ptr` is guaranteed by the C code to be valid.
910        unsafe { OPP::from_raw_opp_owned(ptr) }
911    }
912
913    /// Finds [`OPP`] based on bandwidth.
914    pub fn opp_from_bw(&self, mut bw: u32, index: i32, stype: SearchType) -> Result<ARef<OPP>> {
915        let raw_dev = self.dev.as_raw();
916
917        let ptr = from_err_ptr(match stype {
918            // The OPP core doesn't support this yet.
919            SearchType::Exact => return Err(EINVAL),
920
921            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
922            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
923            SearchType::Ceil => unsafe {
924                bindings::dev_pm_opp_find_bw_ceil(raw_dev, &mut bw, index)
925            },
926
927            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
928            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
929            SearchType::Floor => unsafe {
930                bindings::dev_pm_opp_find_bw_floor(raw_dev, &mut bw, index)
931            },
932        })?;
933
934        // SAFETY: The `ptr` is guaranteed by the C code to be valid.
935        unsafe { OPP::from_raw_opp_owned(ptr) }
936    }
937
938    /// Enables the [`OPP`].
939    #[inline]
940    pub fn enable_opp(&self, freq: Hertz) -> Result {
941        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
942        // requirements.
943        to_result(unsafe { bindings::dev_pm_opp_enable(self.dev.as_raw(), freq.into()) })
944    }
945
946    /// Disables the [`OPP`].
947    #[inline]
948    pub fn disable_opp(&self, freq: Hertz) -> Result {
949        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
950        // requirements.
951        to_result(unsafe { bindings::dev_pm_opp_disable(self.dev.as_raw(), freq.into()) })
952    }
953
954    /// Registers with the Energy model.
955    #[cfg(CONFIG_OF)]
956    pub fn of_register_em(&mut self, cpumask: &mut Cpumask) -> Result {
957        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
958        // requirements.
959        to_result(unsafe {
960            bindings::dev_pm_opp_of_register_em(self.dev.as_raw(), cpumask.as_raw())
961        })?;
962
963        self.em = true;
964        Ok(())
965    }
966
967    /// Unregisters with the Energy model.
968    #[cfg(all(CONFIG_OF, CONFIG_ENERGY_MODEL))]
969    #[inline]
970    fn of_unregister_em(&self) {
971        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
972        // requirements. We registered with the EM framework earlier, it is safe to unregister now.
973        unsafe { bindings::em_dev_unregister_perf_domain(self.dev.as_raw()) };
974    }
975}
976
977impl Drop for Table {
978    fn drop(&mut self) {
979        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe
980        // to relinquish it now.
981        unsafe { bindings::dev_pm_opp_put_opp_table(self.ptr) };
982
983        #[cfg(CONFIG_OF)]
984        {
985            #[cfg(CONFIG_ENERGY_MODEL)]
986            if self.em {
987                self.of_unregister_em();
988            }
989
990            if self.of {
991                self.remove_of();
992            } else if let Some(cpumask) = self.cpus.take() {
993                self.remove_of_cpumask(&cpumask);
994            }
995        }
996    }
997}
998
999/// A reference-counted Operating performance point (OPP).
1000///
1001/// Rust abstraction for the C `struct dev_pm_opp`.
1002///
1003/// # Invariants
1004///
1005/// The pointer stored in `Self` is non-null and valid for the lifetime of the [`OPP`].
1006///
1007/// Instances of this type are reference-counted. The reference count is incremented by the
1008/// `dev_pm_opp_get` function and decremented by `dev_pm_opp_put`. The Rust type `ARef<OPP>`
1009/// represents a pointer that owns a reference count on the [`OPP`].
1010///
1011/// A reference to the [`OPP`], &[`OPP`], isn't refcounted by the Rust code.
1012///
1013/// ## Examples
1014///
1015/// The following example demonstrates how to get [`OPP`] corresponding to a frequency value and
1016/// configure the device with it.
1017///
1018/// ```
1019/// use kernel::clk::Hertz;
1020/// use kernel::error::Result;
1021/// use kernel::opp::{SearchType, Table};
1022///
1023/// fn configure_opp(table: &Table, freq: Hertz) -> Result {
1024///     let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
1025///
1026///     if opp.freq(None) != freq {
1027///         return Err(EINVAL);
1028///     }
1029///
1030///     table.set_opp(&opp)
1031/// }
1032/// ```
1033#[repr(transparent)]
1034pub struct OPP(Opaque<bindings::dev_pm_opp>);
1035
1036/// SAFETY: It is okay to send the ownership of [`OPP`] across thread boundaries.
1037unsafe impl Send for OPP {}
1038
1039/// SAFETY: It is okay to access [`OPP`] through shared references from other threads because we're
1040/// either accessing properties that don't change or that are properly synchronised by C code.
1041unsafe impl Sync for OPP {}
1042
1043/// SAFETY: The type invariants guarantee that [`OPP`] is always refcounted.
1044unsafe impl AlwaysRefCounted for OPP {
1045    fn inc_ref(&self) {
1046        // SAFETY: The existence of a shared reference means that the refcount is nonzero.
1047        unsafe { bindings::dev_pm_opp_get(self.0.get()) };
1048    }
1049
1050    unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
1051        // SAFETY: The safety requirements guarantee that the refcount is nonzero.
1052        unsafe { bindings::dev_pm_opp_put(obj.cast().as_ptr()) }
1053    }
1054}
1055
1056impl OPP {
1057    /// Creates an owned reference to a [`OPP`] from a valid pointer.
1058    ///
1059    /// The refcount is incremented by the C code and will be decremented by `dec_ref` when the
1060    /// [`ARef`] object is dropped.
1061    ///
1062    /// # Safety
1063    ///
1064    /// The caller must ensure that `ptr` is valid and the refcount of the [`OPP`] is incremented.
1065    /// The caller must also ensure that it doesn't explicitly drop the refcount of the [`OPP`], as
1066    /// the returned [`ARef`] object takes over the refcount increment on the underlying object and
1067    /// the same will be dropped along with it.
1068    pub unsafe fn from_raw_opp_owned(ptr: *mut bindings::dev_pm_opp) -> Result<ARef<Self>> {
1069        let ptr = ptr::NonNull::new(ptr).ok_or(ENODEV)?;
1070
1071        // SAFETY: The safety requirements guarantee the validity of the pointer.
1072        //
1073        // INVARIANT: The reference-count is decremented when [`OPP`] goes out of scope.
1074        Ok(unsafe { ARef::from_raw(ptr.cast()) })
1075    }
1076
1077    /// Creates a reference to a [`OPP`] from a valid pointer.
1078    ///
1079    /// The refcount is not updated by the Rust API unless the returned reference is converted to
1080    /// an [`ARef`] object.
1081    ///
1082    /// # Safety
1083    ///
1084    /// The caller must ensure that `ptr` is valid and remains valid for the duration of `'a`.
1085    #[inline]
1086    pub unsafe fn from_raw_opp<'a>(ptr: *mut bindings::dev_pm_opp) -> Result<&'a Self> {
1087        // SAFETY: The caller guarantees that the pointer is not dangling and stays valid for the
1088        // duration of 'a. The cast is okay because [`OPP`] is `repr(transparent)`.
1089        Ok(unsafe { &*ptr.cast() })
1090    }
1091
1092    #[inline]
1093    fn as_raw(&self) -> *mut bindings::dev_pm_opp {
1094        self.0.get()
1095    }
1096
1097    /// Returns the frequency of an [`OPP`].
1098    pub fn freq(&self, index: Option<u32>) -> Hertz {
1099        let index = index.unwrap_or(0);
1100
1101        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1102        // use it.
1103        Hertz(unsafe { bindings::dev_pm_opp_get_freq_indexed(self.as_raw(), index) })
1104    }
1105
1106    /// Returns the voltage of an [`OPP`].
1107    #[inline]
1108    pub fn voltage(&self) -> MicroVolt {
1109        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1110        // use it.
1111        MicroVolt(unsafe { bindings::dev_pm_opp_get_voltage(self.as_raw()) })
1112    }
1113
1114    /// Returns the level of an [`OPP`].
1115    #[inline]
1116    pub fn level(&self) -> u32 {
1117        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1118        // use it.
1119        unsafe { bindings::dev_pm_opp_get_level(self.as_raw()) }
1120    }
1121
1122    /// Returns the power of an [`OPP`].
1123    #[inline]
1124    pub fn power(&self) -> MicroWatt {
1125        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1126        // use it.
1127        MicroWatt(unsafe { bindings::dev_pm_opp_get_power(self.as_raw()) })
1128    }
1129
1130    /// Returns the required pstate of an [`OPP`].
1131    #[inline]
1132    pub fn required_pstate(&self, index: u32) -> u32 {
1133        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1134        // use it.
1135        unsafe { bindings::dev_pm_opp_get_required_pstate(self.as_raw(), index) }
1136    }
1137
1138    /// Returns true if the [`OPP`] is turbo.
1139    #[inline]
1140    pub fn is_turbo(&self) -> bool {
1141        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1142        // use it.
1143        unsafe { bindings::dev_pm_opp_is_turbo(self.as_raw()) }
1144    }
1145}