kernel/opp.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Operating performance points.
4//!
5//! This module provides rust abstractions for interacting with the OPP subsystem.
6//!
7//! C header: [`include/linux/pm_opp.h`](srctree/include/linux/pm_opp.h)
8//!
9//! Reference: <https://docs.kernel.org/power/opp.html>
10
11use crate::{
12 clk::Hertz,
13 cpumask::{Cpumask, CpumaskVar},
14 device::Device,
15 error::{code::*, from_err_ptr, from_result, to_result, Error, Result, VTABLE_DEFAULT_ERROR},
16 ffi::c_ulong,
17 prelude::*,
18 str::CString,
19 sync::aref::{ARef, AlwaysRefCounted},
20 types::Opaque,
21};
22
23#[cfg(CONFIG_CPU_FREQ)]
24/// Frequency table implementation.
25mod freq {
26 use super::*;
27 use crate::cpufreq;
28 use core::ops::Deref;
29
30 /// OPP frequency table.
31 ///
32 /// A [`cpufreq::Table`] created from [`Table`].
33 pub struct FreqTable {
34 dev: ARef<Device>,
35 ptr: *mut bindings::cpufreq_frequency_table,
36 }
37
38 impl FreqTable {
39 /// Creates a new instance of [`FreqTable`] from [`Table`].
40 pub(crate) fn new(table: &Table) -> Result<Self> {
41 let mut ptr: *mut bindings::cpufreq_frequency_table = ptr::null_mut();
42
43 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
44 // requirements.
45 to_result(unsafe {
46 bindings::dev_pm_opp_init_cpufreq_table(table.dev.as_raw(), &mut ptr)
47 })?;
48
49 Ok(Self {
50 dev: table.dev.clone(),
51 ptr,
52 })
53 }
54
55 /// Returns a reference to the underlying [`cpufreq::Table`].
56 #[inline]
57 fn table(&self) -> &cpufreq::Table {
58 // SAFETY: The `ptr` is guaranteed by the C code to be valid.
59 unsafe { cpufreq::Table::from_raw(self.ptr) }
60 }
61 }
62
63 impl Deref for FreqTable {
64 type Target = cpufreq::Table;
65
66 #[inline]
67 fn deref(&self) -> &Self::Target {
68 self.table()
69 }
70 }
71
72 impl Drop for FreqTable {
73 fn drop(&mut self) {
74 // SAFETY: The pointer was created via `dev_pm_opp_init_cpufreq_table`, and is only
75 // freed here.
76 unsafe {
77 bindings::dev_pm_opp_free_cpufreq_table(self.dev.as_raw(), &mut self.as_raw())
78 };
79 }
80 }
81}
82
83#[cfg(CONFIG_CPU_FREQ)]
84pub use freq::FreqTable;
85
86use core::{marker::PhantomData, ptr};
87
88use macros::vtable;
89
90/// Creates a null-terminated slice of pointers to [`Cstring`]s.
91fn to_c_str_array(names: &[CString]) -> Result<KVec<*const u8>> {
92 // Allocated a null-terminated vector of pointers.
93 let mut list = KVec::with_capacity(names.len() + 1, GFP_KERNEL)?;
94
95 for name in names.iter() {
96 list.push(name.as_ptr().cast(), GFP_KERNEL)?;
97 }
98
99 list.push(ptr::null(), GFP_KERNEL)?;
100 Ok(list)
101}
102
103/// The voltage unit.
104///
105/// Represents voltage in microvolts, wrapping a [`c_ulong`] value.
106///
107/// # Examples
108///
109/// ```
110/// use kernel::opp::MicroVolt;
111///
112/// let raw = 90500;
113/// let volt = MicroVolt(raw);
114///
115/// assert_eq!(usize::from(volt), raw);
116/// assert_eq!(volt, MicroVolt(raw));
117/// ```
118#[derive(Copy, Clone, PartialEq, Eq, Debug)]
119pub struct MicroVolt(pub c_ulong);
120
121impl From<MicroVolt> for c_ulong {
122 #[inline]
123 fn from(volt: MicroVolt) -> Self {
124 volt.0
125 }
126}
127
128/// The power unit.
129///
130/// Represents power in microwatts, wrapping a [`c_ulong`] value.
131///
132/// # Examples
133///
134/// ```
135/// use kernel::opp::MicroWatt;
136///
137/// let raw = 1000000;
138/// let power = MicroWatt(raw);
139///
140/// assert_eq!(usize::from(power), raw);
141/// assert_eq!(power, MicroWatt(raw));
142/// ```
143#[derive(Copy, Clone, PartialEq, Eq, Debug)]
144pub struct MicroWatt(pub c_ulong);
145
146impl From<MicroWatt> for c_ulong {
147 #[inline]
148 fn from(power: MicroWatt) -> Self {
149 power.0
150 }
151}
152
153/// Handle for a dynamically created [`OPP`].
154///
155/// The associated [`OPP`] is automatically removed when the [`Token`] is dropped.
156///
157/// # Examples
158///
159/// The following example demonstrates how to create an [`OPP`] dynamically.
160///
161/// ```
162/// use kernel::clk::Hertz;
163/// use kernel::device::Device;
164/// use kernel::error::Result;
165/// use kernel::opp::{Data, MicroVolt, Token};
166/// use kernel::sync::aref::ARef;
167///
168/// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
169/// let data = Data::new(freq, volt, level, false);
170///
171/// // OPP is removed once token goes out of scope.
172/// data.add_opp(dev)
173/// }
174/// ```
175pub struct Token {
176 dev: ARef<Device>,
177 freq: Hertz,
178}
179
180impl Token {
181 /// Dynamically adds an [`OPP`] and returns a [`Token`] that removes it on drop.
182 fn new(dev: &ARef<Device>, mut data: Data) -> Result<Self> {
183 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
184 // requirements.
185 to_result(unsafe { bindings::dev_pm_opp_add_dynamic(dev.as_raw(), &mut data.0) })?;
186 Ok(Self {
187 dev: dev.clone(),
188 freq: data.freq(),
189 })
190 }
191}
192
193impl Drop for Token {
194 fn drop(&mut self) {
195 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
196 // requirements.
197 unsafe { bindings::dev_pm_opp_remove(self.dev.as_raw(), self.freq.into()) };
198 }
199}
200
201/// OPP data.
202///
203/// Rust abstraction for the C `struct dev_pm_opp_data`, used to define operating performance
204/// points (OPPs) dynamically.
205///
206/// # Examples
207///
208/// The following example demonstrates how to create an [`OPP`] with [`Data`].
209///
210/// ```
211/// use kernel::clk::Hertz;
212/// use kernel::device::Device;
213/// use kernel::error::Result;
214/// use kernel::opp::{Data, MicroVolt, Token};
215/// use kernel::sync::aref::ARef;
216///
217/// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
218/// let data = Data::new(freq, volt, level, false);
219///
220/// // OPP is removed once token goes out of scope.
221/// data.add_opp(dev)
222/// }
223/// ```
224#[repr(transparent)]
225pub struct Data(bindings::dev_pm_opp_data);
226
227impl Data {
228 /// Creates a new instance of [`Data`].
229 ///
230 /// This can be used to define a dynamic OPP to be added to a device.
231 pub fn new(freq: Hertz, volt: MicroVolt, level: u32, turbo: bool) -> Self {
232 Self(bindings::dev_pm_opp_data {
233 turbo,
234 freq: freq.into(),
235 u_volt: volt.into(),
236 level,
237 })
238 }
239
240 /// Adds an [`OPP`] dynamically.
241 ///
242 /// Returns a [`Token`] that ensures the OPP is automatically removed
243 /// when it goes out of scope.
244 #[inline]
245 pub fn add_opp(self, dev: &ARef<Device>) -> Result<Token> {
246 Token::new(dev, self)
247 }
248
249 /// Returns the frequency associated with this OPP data.
250 #[inline]
251 fn freq(&self) -> Hertz {
252 Hertz(self.0.freq)
253 }
254}
255
256/// [`OPP`] search options.
257///
258/// # Examples
259///
260/// Defines how to search for an [`OPP`] in a [`Table`] relative to a frequency.
261///
262/// ```
263/// use kernel::clk::Hertz;
264/// use kernel::error::Result;
265/// use kernel::opp::{OPP, SearchType, Table};
266/// use kernel::sync::aref::ARef;
267///
268/// fn find_opp(table: &Table, freq: Hertz) -> Result<ARef<OPP>> {
269/// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
270///
271/// pr_info!("OPP frequency is: {:?}\n", opp.freq(None));
272/// pr_info!("OPP voltage is: {:?}\n", opp.voltage());
273/// pr_info!("OPP level is: {}\n", opp.level());
274/// pr_info!("OPP power is: {:?}\n", opp.power());
275///
276/// Ok(opp)
277/// }
278/// ```
279#[derive(Copy, Clone, Debug, Eq, PartialEq)]
280pub enum SearchType {
281 /// Match the exact frequency.
282 Exact,
283 /// Find the highest frequency less than or equal to the given value.
284 Floor,
285 /// Find the lowest frequency greater than or equal to the given value.
286 Ceil,
287}
288
289/// OPP configuration callbacks.
290///
291/// Implement this trait to customize OPP clock and regulator setup for your device.
292#[vtable]
293pub trait ConfigOps {
294 /// This is typically used to scale clocks when transitioning between OPPs.
295 #[inline]
296 fn config_clks(_dev: &Device, _table: &Table, _opp: &OPP, _scaling_down: bool) -> Result {
297 build_error!(VTABLE_DEFAULT_ERROR)
298 }
299
300 /// This provides access to the old and new OPPs, allowing for safe regulator adjustments.
301 #[inline]
302 fn config_regulators(
303 _dev: &Device,
304 _opp_old: &OPP,
305 _opp_new: &OPP,
306 _data: *mut *mut bindings::regulator,
307 _count: u32,
308 ) -> Result {
309 build_error!(VTABLE_DEFAULT_ERROR)
310 }
311}
312
313/// OPP configuration token.
314///
315/// Returned by the OPP core when configuration is applied to a [`Device`]. The associated
316/// configuration is automatically cleared when the token is dropped.
317pub struct ConfigToken(i32);
318
319impl Drop for ConfigToken {
320 fn drop(&mut self) {
321 // SAFETY: This is the same token value returned by the C code via `dev_pm_opp_set_config`.
322 unsafe { bindings::dev_pm_opp_clear_config(self.0) };
323 }
324}
325
326/// OPP configurations.
327///
328/// Rust abstraction for the C `struct dev_pm_opp_config`.
329///
330/// # Examples
331///
332/// The following example demonstrates how to set OPP property-name configuration for a [`Device`].
333///
334/// ```
335/// use kernel::device::Device;
336/// use kernel::error::Result;
337/// use kernel::opp::{Config, ConfigOps, ConfigToken};
338/// use kernel::str::CString;
339/// use kernel::sync::aref::ARef;
340/// use kernel::macros::vtable;
341///
342/// #[derive(Default)]
343/// struct Driver;
344///
345/// #[vtable]
346/// impl ConfigOps for Driver {}
347///
348/// fn configure(dev: &ARef<Device>) -> Result<ConfigToken> {
349/// let name = CString::try_from_fmt(fmt!("slow"))?;
350///
351/// // The OPP configuration is cleared once the [`ConfigToken`] goes out of scope.
352/// Config::<Driver>::new()
353/// .set_prop_name(name)?
354/// .set(dev)
355/// }
356/// ```
357#[derive(Default)]
358pub struct Config<T: ConfigOps>
359where
360 T: Default,
361{
362 clk_names: Option<KVec<CString>>,
363 prop_name: Option<CString>,
364 regulator_names: Option<KVec<CString>>,
365 supported_hw: Option<KVec<u32>>,
366
367 // Tuple containing (required device, index)
368 required_dev: Option<(ARef<Device>, u32)>,
369 _data: PhantomData<T>,
370}
371
372impl<T: ConfigOps + Default> Config<T> {
373 /// Creates a new instance of [`Config`].
374 #[inline]
375 pub fn new() -> Self {
376 Self::default()
377 }
378
379 /// Initializes clock names.
380 pub fn set_clk_names(mut self, names: KVec<CString>) -> Result<Self> {
381 if self.clk_names.is_some() {
382 return Err(EBUSY);
383 }
384
385 if names.is_empty() {
386 return Err(EINVAL);
387 }
388
389 self.clk_names = Some(names);
390 Ok(self)
391 }
392
393 /// Initializes property name.
394 pub fn set_prop_name(mut self, name: CString) -> Result<Self> {
395 if self.prop_name.is_some() {
396 return Err(EBUSY);
397 }
398
399 self.prop_name = Some(name);
400 Ok(self)
401 }
402
403 /// Initializes regulator names.
404 pub fn set_regulator_names(mut self, names: KVec<CString>) -> Result<Self> {
405 if self.regulator_names.is_some() {
406 return Err(EBUSY);
407 }
408
409 if names.is_empty() {
410 return Err(EINVAL);
411 }
412
413 self.regulator_names = Some(names);
414
415 Ok(self)
416 }
417
418 /// Initializes required devices.
419 pub fn set_required_dev(mut self, dev: ARef<Device>, index: u32) -> Result<Self> {
420 if self.required_dev.is_some() {
421 return Err(EBUSY);
422 }
423
424 self.required_dev = Some((dev, index));
425 Ok(self)
426 }
427
428 /// Initializes supported hardware.
429 pub fn set_supported_hw(mut self, hw: KVec<u32>) -> Result<Self> {
430 if self.supported_hw.is_some() {
431 return Err(EBUSY);
432 }
433
434 if hw.is_empty() {
435 return Err(EINVAL);
436 }
437
438 self.supported_hw = Some(hw);
439 Ok(self)
440 }
441
442 /// Sets the configuration with the OPP core.
443 ///
444 /// The returned [`ConfigToken`] will remove the configuration when dropped.
445 pub fn set(self, dev: &Device) -> Result<ConfigToken> {
446 let (_clk_list, clk_names) = match &self.clk_names {
447 Some(x) => {
448 let list = to_c_str_array(x)?;
449 let ptr = list.as_ptr();
450 (Some(list), ptr)
451 }
452 None => (None, ptr::null()),
453 };
454
455 let (_regulator_list, regulator_names) = match &self.regulator_names {
456 Some(x) => {
457 let list = to_c_str_array(x)?;
458 let ptr = list.as_ptr();
459 (Some(list), ptr)
460 }
461 None => (None, ptr::null()),
462 };
463
464 let prop_name = self
465 .prop_name
466 .as_ref()
467 .map_or(ptr::null(), |p| p.as_char_ptr());
468
469 let (supported_hw, supported_hw_count) = self
470 .supported_hw
471 .as_ref()
472 .map_or((ptr::null(), 0), |hw| (hw.as_ptr(), hw.len() as u32));
473
474 let (required_dev, required_dev_index) = self
475 .required_dev
476 .as_ref()
477 .map_or((ptr::null_mut(), 0), |(dev, idx)| (dev.as_raw(), *idx));
478
479 let mut config = bindings::dev_pm_opp_config {
480 clk_names,
481 config_clks: if T::HAS_CONFIG_CLKS {
482 Some(Self::config_clks)
483 } else {
484 None
485 },
486 prop_name,
487 regulator_names,
488 config_regulators: if T::HAS_CONFIG_REGULATORS {
489 Some(Self::config_regulators)
490 } else {
491 None
492 },
493 supported_hw,
494 supported_hw_count,
495
496 required_dev,
497 required_dev_index,
498 };
499
500 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
501 // requirements. The OPP core guarantees not to access fields of [`Config`] after this call
502 // and so we don't need to save a copy of them for future use.
503 let ret = unsafe { bindings::dev_pm_opp_set_config(dev.as_raw(), &mut config) };
504 if ret < 0 {
505 Err(Error::from_errno(ret))
506 } else {
507 Ok(ConfigToken(ret))
508 }
509 }
510
511 /// Config's clk callback.
512 ///
513 /// SAFETY: Called from C. Inputs must be valid pointers.
514 extern "C" fn config_clks(
515 dev: *mut bindings::device,
516 opp_table: *mut bindings::opp_table,
517 opp: *mut bindings::dev_pm_opp,
518 _data: *mut c_void,
519 scaling_down: bool,
520 ) -> c_int {
521 from_result(|| {
522 // SAFETY: 'dev' is guaranteed by the C code to be valid.
523 let dev = unsafe { Device::get_device(dev) };
524 T::config_clks(
525 &dev,
526 // SAFETY: 'opp_table' is guaranteed by the C code to be valid.
527 &unsafe { Table::from_raw_table(opp_table, &dev) },
528 // SAFETY: 'opp' is guaranteed by the C code to be valid.
529 unsafe { OPP::from_raw_opp(opp)? },
530 scaling_down,
531 )
532 .map(|()| 0)
533 })
534 }
535
536 /// Config's regulator callback.
537 ///
538 /// SAFETY: Called from C. Inputs must be valid pointers.
539 extern "C" fn config_regulators(
540 dev: *mut bindings::device,
541 old_opp: *mut bindings::dev_pm_opp,
542 new_opp: *mut bindings::dev_pm_opp,
543 regulators: *mut *mut bindings::regulator,
544 count: c_uint,
545 ) -> c_int {
546 from_result(|| {
547 // SAFETY: 'dev' is guaranteed by the C code to be valid.
548 let dev = unsafe { Device::get_device(dev) };
549 T::config_regulators(
550 &dev,
551 // SAFETY: 'old_opp' is guaranteed by the C code to be valid.
552 unsafe { OPP::from_raw_opp(old_opp)? },
553 // SAFETY: 'new_opp' is guaranteed by the C code to be valid.
554 unsafe { OPP::from_raw_opp(new_opp)? },
555 regulators,
556 count,
557 )
558 .map(|()| 0)
559 })
560 }
561}
562
563/// A reference-counted OPP table.
564///
565/// Rust abstraction for the C `struct opp_table`.
566///
567/// # Invariants
568///
569/// The pointer stored in `Self` is non-null and valid for the lifetime of the [`Table`].
570///
571/// Instances of this type are reference-counted.
572///
573/// # Examples
574///
575/// The following example demonstrates how to get OPP [`Table`] for a [`Cpumask`] and set its
576/// frequency.
577///
578/// ```
579/// # #![cfg(CONFIG_OF)]
580/// use kernel::clk::Hertz;
581/// use kernel::cpumask::Cpumask;
582/// use kernel::device::Device;
583/// use kernel::error::Result;
584/// use kernel::opp::Table;
585/// use kernel::sync::aref::ARef;
586///
587/// fn get_table(dev: &ARef<Device>, mask: &mut Cpumask, freq: Hertz) -> Result<Table> {
588/// let mut opp_table = Table::from_of_cpumask(dev, mask)?;
589///
590/// if opp_table.opp_count()? == 0 {
591/// return Err(EINVAL);
592/// }
593///
594/// pr_info!("Max transition latency is: {} ns\n", opp_table.max_transition_latency_ns());
595/// pr_info!("Suspend frequency is: {:?}\n", opp_table.suspend_freq());
596///
597/// opp_table.set_rate(freq)?;
598/// Ok(opp_table)
599/// }
600/// ```
601pub struct Table {
602 ptr: *mut bindings::opp_table,
603 dev: ARef<Device>,
604 #[allow(dead_code)]
605 em: bool,
606 #[allow(dead_code)]
607 of: bool,
608 cpus: Option<CpumaskVar>,
609}
610
611/// SAFETY: It is okay to send ownership of [`Table`] across thread boundaries.
612unsafe impl Send for Table {}
613
614/// SAFETY: It is okay to access [`Table`] through shared references from other threads because
615/// we're either accessing properties that don't change or that are properly synchronised by C code.
616unsafe impl Sync for Table {}
617
618impl Table {
619 /// Creates a new reference-counted [`Table`] from a raw pointer.
620 ///
621 /// # Safety
622 ///
623 /// Callers must ensure that `ptr` is valid and non-null.
624 unsafe fn from_raw_table(ptr: *mut bindings::opp_table, dev: &ARef<Device>) -> Self {
625 // SAFETY: By the safety requirements, ptr is valid and its refcount will be incremented.
626 //
627 // INVARIANT: The reference-count is decremented when [`Table`] goes out of scope.
628 unsafe { bindings::dev_pm_opp_get_opp_table_ref(ptr) };
629
630 Self {
631 ptr,
632 dev: dev.clone(),
633 em: false,
634 of: false,
635 cpus: None,
636 }
637 }
638
639 /// Creates a new reference-counted [`Table`] instance for a [`Device`].
640 pub fn from_dev(dev: &Device) -> Result<Self> {
641 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
642 // requirements.
643 //
644 // INVARIANT: The reference-count is incremented by the C code and is decremented when
645 // [`Table`] goes out of scope.
646 let ptr = from_err_ptr(unsafe { bindings::dev_pm_opp_get_opp_table(dev.as_raw()) })?;
647
648 Ok(Self {
649 ptr,
650 dev: dev.into(),
651 em: false,
652 of: false,
653 cpus: None,
654 })
655 }
656
657 /// Creates a new reference-counted [`Table`] instance for a [`Device`] based on device tree
658 /// entries.
659 #[cfg(CONFIG_OF)]
660 pub fn from_of(dev: &ARef<Device>, index: i32) -> Result<Self> {
661 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
662 // requirements.
663 //
664 // INVARIANT: The reference-count is incremented by the C code and is decremented when
665 // [`Table`] goes out of scope.
666 to_result(unsafe { bindings::dev_pm_opp_of_add_table_indexed(dev.as_raw(), index) })?;
667
668 // Get the newly created [`Table`].
669 let mut table = Self::from_dev(dev)?;
670 table.of = true;
671
672 Ok(table)
673 }
674
675 /// Remove device tree based [`Table`].
676 #[cfg(CONFIG_OF)]
677 #[inline]
678 fn remove_of(&self) {
679 // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
680 // requirements. We took the reference from [`from_of`] earlier, it is safe to drop the
681 // same now.
682 unsafe { bindings::dev_pm_opp_of_remove_table(self.dev.as_raw()) };
683 }
684
685 /// Creates a new reference-counted [`Table`] instance for a [`Cpumask`] based on device tree
686 /// entries.
687 #[cfg(CONFIG_OF)]
688 pub fn from_of_cpumask(dev: &Device, cpumask: &mut Cpumask) -> Result<Self> {
689 // SAFETY: The cpumask is valid and the returned pointer will be owned by the [`Table`]
690 // instance.
691 //
692 // INVARIANT: The reference-count is incremented by the C code and is decremented when
693 // [`Table`] goes out of scope.
694 to_result(unsafe { bindings::dev_pm_opp_of_cpumask_add_table(cpumask.as_raw()) })?;
695
696 // Fetch the newly created table.
697 let mut table = Self::from_dev(dev)?;
698 table.cpus = Some(CpumaskVar::try_clone(cpumask)?);
699
700 Ok(table)
701 }
702
703 /// Remove device tree based [`Table`] for a [`Cpumask`].
704 #[cfg(CONFIG_OF)]
705 #[inline]
706 fn remove_of_cpumask(&self, cpumask: &Cpumask) {
707 // SAFETY: The cpumask is valid and we took the reference from [`from_of_cpumask`] earlier,
708 // it is safe to drop the same now.
709 unsafe { bindings::dev_pm_opp_of_cpumask_remove_table(cpumask.as_raw()) };
710 }
711
712 /// Returns the number of [`OPP`]s in the [`Table`].
713 pub fn opp_count(&self) -> Result<u32> {
714 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
715 // requirements.
716 let ret = unsafe { bindings::dev_pm_opp_get_opp_count(self.dev.as_raw()) };
717 if ret < 0 {
718 Err(Error::from_errno(ret))
719 } else {
720 Ok(ret as u32)
721 }
722 }
723
724 /// Returns max clock latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
725 #[inline]
726 pub fn max_clock_latency_ns(&self) -> usize {
727 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
728 // requirements.
729 unsafe { bindings::dev_pm_opp_get_max_clock_latency(self.dev.as_raw()) }
730 }
731
732 /// Returns max volt latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
733 #[inline]
734 pub fn max_volt_latency_ns(&self) -> usize {
735 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
736 // requirements.
737 unsafe { bindings::dev_pm_opp_get_max_volt_latency(self.dev.as_raw()) }
738 }
739
740 /// Returns max transition latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
741 #[inline]
742 pub fn max_transition_latency_ns(&self) -> usize {
743 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
744 // requirements.
745 unsafe { bindings::dev_pm_opp_get_max_transition_latency(self.dev.as_raw()) }
746 }
747
748 /// Returns the suspend [`OPP`]'s frequency.
749 #[inline]
750 pub fn suspend_freq(&self) -> Hertz {
751 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
752 // requirements.
753 Hertz(unsafe { bindings::dev_pm_opp_get_suspend_opp_freq(self.dev.as_raw()) })
754 }
755
756 /// Synchronizes regulators used by the [`Table`].
757 #[inline]
758 pub fn sync_regulators(&self) -> Result {
759 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
760 // requirements.
761 to_result(unsafe { bindings::dev_pm_opp_sync_regulators(self.dev.as_raw()) })
762 }
763
764 /// Gets sharing CPUs.
765 #[inline]
766 pub fn sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
767 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
768 // requirements.
769 to_result(unsafe { bindings::dev_pm_opp_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) })
770 }
771
772 /// Sets sharing CPUs.
773 pub fn set_sharing_cpus(&mut self, cpumask: &mut Cpumask) -> Result {
774 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
775 // requirements.
776 to_result(unsafe {
777 bindings::dev_pm_opp_set_sharing_cpus(self.dev.as_raw(), cpumask.as_raw())
778 })?;
779
780 if let Some(mask) = self.cpus.as_mut() {
781 // Update the cpumask as this will be used while removing the table.
782 cpumask.copy(mask);
783 }
784
785 Ok(())
786 }
787
788 /// Gets sharing CPUs from device tree.
789 #[cfg(CONFIG_OF)]
790 #[inline]
791 pub fn of_sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
792 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
793 // requirements.
794 to_result(unsafe {
795 bindings::dev_pm_opp_of_get_sharing_cpus(dev.as_raw(), cpumask.as_raw())
796 })
797 }
798
799 /// Updates the voltage value for an [`OPP`].
800 #[inline]
801 pub fn adjust_voltage(
802 &self,
803 freq: Hertz,
804 volt: MicroVolt,
805 volt_min: MicroVolt,
806 volt_max: MicroVolt,
807 ) -> Result {
808 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
809 // requirements.
810 to_result(unsafe {
811 bindings::dev_pm_opp_adjust_voltage(
812 self.dev.as_raw(),
813 freq.into(),
814 volt.into(),
815 volt_min.into(),
816 volt_max.into(),
817 )
818 })
819 }
820
821 /// Creates [`FreqTable`] from [`Table`].
822 #[cfg(CONFIG_CPU_FREQ)]
823 #[inline]
824 pub fn cpufreq_table(&mut self) -> Result<FreqTable> {
825 FreqTable::new(self)
826 }
827
828 /// Configures device with [`OPP`] matching the frequency value.
829 #[inline]
830 pub fn set_rate(&self, freq: Hertz) -> Result {
831 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
832 // requirements.
833 to_result(unsafe { bindings::dev_pm_opp_set_rate(self.dev.as_raw(), freq.into()) })
834 }
835
836 /// Configures device with [`OPP`].
837 #[inline]
838 pub fn set_opp(&self, opp: &OPP) -> Result {
839 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
840 // requirements.
841 to_result(unsafe { bindings::dev_pm_opp_set_opp(self.dev.as_raw(), opp.as_raw()) })
842 }
843
844 /// Finds [`OPP`] based on frequency.
845 pub fn opp_from_freq(
846 &self,
847 freq: Hertz,
848 available: Option<bool>,
849 index: Option<u32>,
850 stype: SearchType,
851 ) -> Result<ARef<OPP>> {
852 let raw_dev = self.dev.as_raw();
853 let index = index.unwrap_or(0);
854 let mut rate = freq.into();
855
856 let ptr = from_err_ptr(match stype {
857 SearchType::Exact => {
858 if let Some(available) = available {
859 // SAFETY: The requirements are satisfied by the existence of [`Device`] and
860 // its safety requirements. The returned pointer will be owned by the new
861 // [`OPP`] instance.
862 unsafe {
863 bindings::dev_pm_opp_find_freq_exact_indexed(
864 raw_dev, rate, index, available,
865 )
866 }
867 } else {
868 return Err(EINVAL);
869 }
870 }
871
872 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
873 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
874 SearchType::Ceil => unsafe {
875 bindings::dev_pm_opp_find_freq_ceil_indexed(raw_dev, &mut rate, index)
876 },
877
878 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
879 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
880 SearchType::Floor => unsafe {
881 bindings::dev_pm_opp_find_freq_floor_indexed(raw_dev, &mut rate, index)
882 },
883 })?;
884
885 // SAFETY: The `ptr` is guaranteed by the C code to be valid.
886 unsafe { OPP::from_raw_opp_owned(ptr) }
887 }
888
889 /// Finds [`OPP`] based on level.
890 pub fn opp_from_level(&self, mut level: u32, stype: SearchType) -> Result<ARef<OPP>> {
891 let raw_dev = self.dev.as_raw();
892
893 let ptr = from_err_ptr(match stype {
894 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
895 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
896 SearchType::Exact => unsafe { bindings::dev_pm_opp_find_level_exact(raw_dev, level) },
897
898 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
899 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
900 SearchType::Ceil => unsafe {
901 bindings::dev_pm_opp_find_level_ceil(raw_dev, &mut level)
902 },
903
904 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
905 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
906 SearchType::Floor => unsafe {
907 bindings::dev_pm_opp_find_level_floor(raw_dev, &mut level)
908 },
909 })?;
910
911 // SAFETY: The `ptr` is guaranteed by the C code to be valid.
912 unsafe { OPP::from_raw_opp_owned(ptr) }
913 }
914
915 /// Finds [`OPP`] based on bandwidth.
916 pub fn opp_from_bw(&self, mut bw: u32, index: i32, stype: SearchType) -> Result<ARef<OPP>> {
917 let raw_dev = self.dev.as_raw();
918
919 let ptr = from_err_ptr(match stype {
920 // The OPP core doesn't support this yet.
921 SearchType::Exact => return Err(EINVAL),
922
923 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
924 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
925 SearchType::Ceil => unsafe {
926 bindings::dev_pm_opp_find_bw_ceil(raw_dev, &mut bw, index)
927 },
928
929 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
930 // requirements. The returned pointer will be owned by the new [`OPP`] instance.
931 SearchType::Floor => unsafe {
932 bindings::dev_pm_opp_find_bw_floor(raw_dev, &mut bw, index)
933 },
934 })?;
935
936 // SAFETY: The `ptr` is guaranteed by the C code to be valid.
937 unsafe { OPP::from_raw_opp_owned(ptr) }
938 }
939
940 /// Enables the [`OPP`].
941 #[inline]
942 pub fn enable_opp(&self, freq: Hertz) -> Result {
943 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
944 // requirements.
945 to_result(unsafe { bindings::dev_pm_opp_enable(self.dev.as_raw(), freq.into()) })
946 }
947
948 /// Disables the [`OPP`].
949 #[inline]
950 pub fn disable_opp(&self, freq: Hertz) -> Result {
951 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
952 // requirements.
953 to_result(unsafe { bindings::dev_pm_opp_disable(self.dev.as_raw(), freq.into()) })
954 }
955
956 /// Registers with the Energy model.
957 #[cfg(CONFIG_OF)]
958 pub fn of_register_em(&mut self, cpumask: &mut Cpumask) -> Result {
959 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
960 // requirements.
961 to_result(unsafe {
962 bindings::dev_pm_opp_of_register_em(self.dev.as_raw(), cpumask.as_raw())
963 })?;
964
965 self.em = true;
966 Ok(())
967 }
968
969 /// Unregisters with the Energy model.
970 #[cfg(all(CONFIG_OF, CONFIG_ENERGY_MODEL))]
971 #[inline]
972 fn of_unregister_em(&self) {
973 // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
974 // requirements. We registered with the EM framework earlier, it is safe to unregister now.
975 unsafe { bindings::em_dev_unregister_perf_domain(self.dev.as_raw()) };
976 }
977}
978
979impl Drop for Table {
980 fn drop(&mut self) {
981 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe
982 // to relinquish it now.
983 unsafe { bindings::dev_pm_opp_put_opp_table(self.ptr) };
984
985 #[cfg(CONFIG_OF)]
986 {
987 #[cfg(CONFIG_ENERGY_MODEL)]
988 if self.em {
989 self.of_unregister_em();
990 }
991
992 if self.of {
993 self.remove_of();
994 } else if let Some(cpumask) = self.cpus.take() {
995 self.remove_of_cpumask(&cpumask);
996 }
997 }
998 }
999}
1000
1001/// A reference-counted Operating performance point (OPP).
1002///
1003/// Rust abstraction for the C `struct dev_pm_opp`.
1004///
1005/// # Invariants
1006///
1007/// The pointer stored in `Self` is non-null and valid for the lifetime of the [`OPP`].
1008///
1009/// Instances of this type are reference-counted. The reference count is incremented by the
1010/// `dev_pm_opp_get` function and decremented by `dev_pm_opp_put`. The Rust type `ARef<OPP>`
1011/// represents a pointer that owns a reference count on the [`OPP`].
1012///
1013/// A reference to the [`OPP`], &[`OPP`], isn't refcounted by the Rust code.
1014///
1015/// # Examples
1016///
1017/// The following example demonstrates how to get [`OPP`] corresponding to a frequency value and
1018/// configure the device with it.
1019///
1020/// ```
1021/// use kernel::clk::Hertz;
1022/// use kernel::error::Result;
1023/// use kernel::opp::{SearchType, Table};
1024///
1025/// fn configure_opp(table: &Table, freq: Hertz) -> Result {
1026/// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
1027///
1028/// if opp.freq(None) != freq {
1029/// return Err(EINVAL);
1030/// }
1031///
1032/// table.set_opp(&opp)
1033/// }
1034/// ```
1035#[repr(transparent)]
1036pub struct OPP(Opaque<bindings::dev_pm_opp>);
1037
1038/// SAFETY: It is okay to send the ownership of [`OPP`] across thread boundaries.
1039unsafe impl Send for OPP {}
1040
1041/// SAFETY: It is okay to access [`OPP`] through shared references from other threads because we're
1042/// either accessing properties that don't change or that are properly synchronised by C code.
1043unsafe impl Sync for OPP {}
1044
1045/// SAFETY: The type invariants guarantee that [`OPP`] is always refcounted.
1046unsafe impl AlwaysRefCounted for OPP {
1047 fn inc_ref(&self) {
1048 // SAFETY: The existence of a shared reference means that the refcount is nonzero.
1049 unsafe { bindings::dev_pm_opp_get(self.0.get()) };
1050 }
1051
1052 unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
1053 // SAFETY: The safety requirements guarantee that the refcount is nonzero.
1054 unsafe { bindings::dev_pm_opp_put(obj.cast().as_ptr()) }
1055 }
1056}
1057
1058impl OPP {
1059 /// Creates an owned reference to a [`OPP`] from a valid pointer.
1060 ///
1061 /// The refcount is incremented by the C code and will be decremented by `dec_ref` when the
1062 /// [`ARef`] object is dropped.
1063 ///
1064 /// # Safety
1065 ///
1066 /// The caller must ensure that `ptr` is valid and the refcount of the [`OPP`] is incremented.
1067 /// The caller must also ensure that it doesn't explicitly drop the refcount of the [`OPP`], as
1068 /// the returned [`ARef`] object takes over the refcount increment on the underlying object and
1069 /// the same will be dropped along with it.
1070 pub unsafe fn from_raw_opp_owned(ptr: *mut bindings::dev_pm_opp) -> Result<ARef<Self>> {
1071 let ptr = ptr::NonNull::new(ptr).ok_or(ENODEV)?;
1072
1073 // SAFETY: The safety requirements guarantee the validity of the pointer.
1074 //
1075 // INVARIANT: The reference-count is decremented when [`OPP`] goes out of scope.
1076 Ok(unsafe { ARef::from_raw(ptr.cast()) })
1077 }
1078
1079 /// Creates a reference to a [`OPP`] from a valid pointer.
1080 ///
1081 /// The refcount is not updated by the Rust API unless the returned reference is converted to
1082 /// an [`ARef`] object.
1083 ///
1084 /// # Safety
1085 ///
1086 /// The caller must ensure that `ptr` is valid and remains valid for the duration of `'a`.
1087 #[inline]
1088 pub unsafe fn from_raw_opp<'a>(ptr: *mut bindings::dev_pm_opp) -> Result<&'a Self> {
1089 // SAFETY: The caller guarantees that the pointer is not dangling and stays valid for the
1090 // duration of 'a. The cast is okay because [`OPP`] is `repr(transparent)`.
1091 Ok(unsafe { &*ptr.cast() })
1092 }
1093
1094 #[inline]
1095 fn as_raw(&self) -> *mut bindings::dev_pm_opp {
1096 self.0.get()
1097 }
1098
1099 /// Returns the frequency of an [`OPP`].
1100 pub fn freq(&self, index: Option<u32>) -> Hertz {
1101 let index = index.unwrap_or(0);
1102
1103 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1104 // use it.
1105 Hertz(unsafe { bindings::dev_pm_opp_get_freq_indexed(self.as_raw(), index) })
1106 }
1107
1108 /// Returns the voltage of an [`OPP`].
1109 #[inline]
1110 pub fn voltage(&self) -> MicroVolt {
1111 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1112 // use it.
1113 MicroVolt(unsafe { bindings::dev_pm_opp_get_voltage(self.as_raw()) })
1114 }
1115
1116 /// Returns the level of an [`OPP`].
1117 #[inline]
1118 pub fn level(&self) -> u32 {
1119 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1120 // use it.
1121 unsafe { bindings::dev_pm_opp_get_level(self.as_raw()) }
1122 }
1123
1124 /// Returns the power of an [`OPP`].
1125 #[inline]
1126 pub fn power(&self) -> MicroWatt {
1127 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1128 // use it.
1129 MicroWatt(unsafe { bindings::dev_pm_opp_get_power(self.as_raw()) })
1130 }
1131
1132 /// Returns the required pstate of an [`OPP`].
1133 #[inline]
1134 pub fn required_pstate(&self, index: u32) -> u32 {
1135 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1136 // use it.
1137 unsafe { bindings::dev_pm_opp_get_required_pstate(self.as_raw(), index) }
1138 }
1139
1140 /// Returns true if the [`OPP`] is turbo.
1141 #[inline]
1142 pub fn is_turbo(&self) -> bool {
1143 // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
1144 // use it.
1145 unsafe { bindings::dev_pm_opp_is_turbo(self.as_raw()) }
1146 }
1147}