kernel/str.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! String representations.
4
5use crate::alloc::{flags::*, AllocError, KVec};
6use crate::fmt::{self, Write};
7use core::ops::{self, Deref, DerefMut, Index};
8
9use crate::prelude::*;
10
11/// Byte string without UTF-8 validity guarantee.
12#[repr(transparent)]
13pub struct BStr([u8]);
14
15impl BStr {
16 /// Returns the length of this string.
17 #[inline]
18 pub const fn len(&self) -> usize {
19 self.0.len()
20 }
21
22 /// Returns `true` if the string is empty.
23 #[inline]
24 pub const fn is_empty(&self) -> bool {
25 self.len() == 0
26 }
27
28 /// Creates a [`BStr`] from a `[u8]`.
29 #[inline]
30 pub const fn from_bytes(bytes: &[u8]) -> &Self {
31 // SAFETY: `BStr` is transparent to `[u8]`.
32 unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) }
33 }
34
35 /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
36 ///
37 /// # Examples
38 ///
39 /// ```
40 /// # use kernel::b_str;
41 /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
42 /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
43 /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
44 /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
45 /// ```
46 pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
47 self.deref()
48 .strip_prefix(pattern.as_ref().deref())
49 .map(Self::from_bytes)
50 }
51}
52
53impl fmt::Display for BStr {
54 /// Formats printable ASCII characters, escaping the rest.
55 ///
56 /// ```
57 /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
58 /// let ascii = b_str!("Hello, BStr!");
59 /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
60 /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes());
61 ///
62 /// let non_ascii = b_str!("🦀");
63 /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?;
64 /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
65 /// # Ok::<(), kernel::error::Error>(())
66 /// ```
67 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
68 for &b in &self.0 {
69 match b {
70 // Common escape codes.
71 b'\t' => f.write_str("\\t")?,
72 b'\n' => f.write_str("\\n")?,
73 b'\r' => f.write_str("\\r")?,
74 // Printable characters.
75 0x20..=0x7e => f.write_char(b as char)?,
76 _ => write!(f, "\\x{b:02x}")?,
77 }
78 }
79 Ok(())
80 }
81}
82
83impl fmt::Debug for BStr {
84 /// Formats printable ASCII characters with a double quote on either end,
85 /// escaping the rest.
86 ///
87 /// ```
88 /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
89 /// // Embedded double quotes are escaped.
90 /// let ascii = b_str!("Hello, \"BStr\"!");
91 /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
92 /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
93 ///
94 /// let non_ascii = b_str!("😺");
95 /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?;
96 /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
97 /// # Ok::<(), kernel::error::Error>(())
98 /// ```
99 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
100 f.write_char('"')?;
101 for &b in &self.0 {
102 match b {
103 // Common escape codes.
104 b'\t' => f.write_str("\\t")?,
105 b'\n' => f.write_str("\\n")?,
106 b'\r' => f.write_str("\\r")?,
107 // String escape characters.
108 b'\"' => f.write_str("\\\"")?,
109 b'\\' => f.write_str("\\\\")?,
110 // Printable characters.
111 0x20..=0x7e => f.write_char(b as char)?,
112 _ => write!(f, "\\x{b:02x}")?,
113 }
114 }
115 f.write_char('"')
116 }
117}
118
119impl Deref for BStr {
120 type Target = [u8];
121
122 #[inline]
123 fn deref(&self) -> &Self::Target {
124 &self.0
125 }
126}
127
128impl PartialEq for BStr {
129 fn eq(&self, other: &Self) -> bool {
130 self.deref().eq(other.deref())
131 }
132}
133
134impl<Idx> Index<Idx> for BStr
135where
136 [u8]: Index<Idx, Output = [u8]>,
137{
138 type Output = Self;
139
140 fn index(&self, index: Idx) -> &Self::Output {
141 BStr::from_bytes(&self.0[index])
142 }
143}
144
145impl AsRef<BStr> for [u8] {
146 fn as_ref(&self) -> &BStr {
147 BStr::from_bytes(self)
148 }
149}
150
151impl AsRef<BStr> for BStr {
152 fn as_ref(&self) -> &BStr {
153 self
154 }
155}
156
157/// Creates a new [`BStr`] from a string literal.
158///
159/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
160/// characters can be included.
161///
162/// # Examples
163///
164/// ```
165/// # use kernel::b_str;
166/// # use kernel::str::BStr;
167/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
168/// ```
169#[macro_export]
170macro_rules! b_str {
171 ($str:literal) => {{
172 const S: &'static str = $str;
173 const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
174 C
175 }};
176}
177
178/// Returns a C pointer to the string.
179// It is a free function rather than a method on an extension trait because:
180//
181// - error[E0379]: functions in trait impls cannot be declared const
182#[inline]
183pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char {
184 c_str.0.as_ptr()
185}
186
187/// Possible errors when using conversion functions in [`CStr`].
188#[derive(Debug, Clone, Copy)]
189pub enum CStrConvertError {
190 /// Supplied bytes contain an interior `NUL`.
191 InteriorNul,
192
193 /// Supplied bytes are not terminated by `NUL`.
194 NotNulTerminated,
195}
196
197impl From<CStrConvertError> for Error {
198 #[inline]
199 fn from(_: CStrConvertError) -> Error {
200 EINVAL
201 }
202}
203
204/// A string that is guaranteed to have exactly one `NUL` byte, which is at the
205/// end.
206///
207/// Used for interoperability with kernel APIs that take C strings.
208#[repr(transparent)]
209pub struct CStr([u8]);
210
211impl CStr {
212 /// Returns the length of this string excluding `NUL`.
213 #[inline]
214 pub const fn len(&self) -> usize {
215 self.len_with_nul() - 1
216 }
217
218 /// Returns the length of this string with `NUL`.
219 #[inline]
220 pub const fn len_with_nul(&self) -> usize {
221 if self.0.is_empty() {
222 // SAFETY: This is one of the invariant of `CStr`.
223 // We add a `unreachable_unchecked` here to hint the optimizer that
224 // the value returned from this function is non-zero.
225 unsafe { core::hint::unreachable_unchecked() };
226 }
227 self.0.len()
228 }
229
230 /// Returns `true` if the string only includes `NUL`.
231 #[inline]
232 pub const fn is_empty(&self) -> bool {
233 self.len() == 0
234 }
235
236 /// Wraps a raw C string pointer.
237 ///
238 /// # Safety
239 ///
240 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
241 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
242 /// must not be mutated.
243 #[inline]
244 pub unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self {
245 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
246 // to a `NUL`-terminated C string.
247 let len = unsafe { bindings::strlen(ptr) } + 1;
248 // SAFETY: Lifetime guaranteed by the safety precondition.
249 let bytes = unsafe { core::slice::from_raw_parts(ptr.cast(), len) };
250 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
251 // As we have added 1 to `len`, the last byte is known to be `NUL`.
252 unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
253 }
254
255 /// Creates a [`CStr`] from a `[u8]`.
256 ///
257 /// The provided slice must be `NUL`-terminated, does not contain any
258 /// interior `NUL` bytes.
259 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
260 if bytes.is_empty() {
261 return Err(CStrConvertError::NotNulTerminated);
262 }
263 if bytes[bytes.len() - 1] != 0 {
264 return Err(CStrConvertError::NotNulTerminated);
265 }
266 let mut i = 0;
267 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
268 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
269 while i + 1 < bytes.len() {
270 if bytes[i] == 0 {
271 return Err(CStrConvertError::InteriorNul);
272 }
273 i += 1;
274 }
275 // SAFETY: We just checked that all properties hold.
276 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
277 }
278
279 /// Creates a [`CStr`] from a `[u8]` without performing any additional
280 /// checks.
281 ///
282 /// # Safety
283 ///
284 /// `bytes` *must* end with a `NUL` byte, and should only have a single
285 /// `NUL` byte (or the string will be truncated).
286 #[inline]
287 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
288 // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
289 unsafe { core::mem::transmute(bytes) }
290 }
291
292 /// Creates a mutable [`CStr`] from a `[u8]` without performing any
293 /// additional checks.
294 ///
295 /// # Safety
296 ///
297 /// `bytes` *must* end with a `NUL` byte, and should only have a single
298 /// `NUL` byte (or the string will be truncated).
299 #[inline]
300 pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr {
301 // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
302 unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) }
303 }
304
305 /// Returns a C pointer to the string.
306 ///
307 /// Using this function in a const context is deprecated in favor of
308 /// [`as_char_ptr_in_const_context`] in preparation for replacing `CStr` with `core::ffi::CStr`
309 /// which does not have this method.
310 #[inline]
311 pub const fn as_char_ptr(&self) -> *const c_char {
312 as_char_ptr_in_const_context(self)
313 }
314
315 /// Convert the string to a byte slice without the trailing `NUL` byte.
316 #[inline]
317 pub fn to_bytes(&self) -> &[u8] {
318 &self.0[..self.len()]
319 }
320
321 /// Convert the string to a byte slice without the trailing `NUL` byte.
322 ///
323 /// This function is deprecated in favor of [`Self::to_bytes`] in preparation for replacing
324 /// `CStr` with `core::ffi::CStr` which does not have this method.
325 #[inline]
326 pub fn as_bytes(&self) -> &[u8] {
327 self.to_bytes()
328 }
329
330 /// Convert the string to a byte slice containing the trailing `NUL` byte.
331 #[inline]
332 pub const fn to_bytes_with_nul(&self) -> &[u8] {
333 &self.0
334 }
335
336 /// Convert the string to a byte slice containing the trailing `NUL` byte.
337 ///
338 /// This function is deprecated in favor of [`Self::to_bytes_with_nul`] in preparation for
339 /// replacing `CStr` with `core::ffi::CStr` which does not have this method.
340 #[inline]
341 pub const fn as_bytes_with_nul(&self) -> &[u8] {
342 self.to_bytes_with_nul()
343 }
344
345 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
346 ///
347 /// If the contents of the [`CStr`] are valid UTF-8 data, this
348 /// function will return the corresponding [`&str`] slice. Otherwise,
349 /// it will return an error with details of where UTF-8 validation failed.
350 ///
351 /// # Examples
352 ///
353 /// ```
354 /// # use kernel::str::CStr;
355 /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
356 /// assert_eq!(cstr.to_str(), Ok("foo"));
357 /// # Ok::<(), kernel::error::Error>(())
358 /// ```
359 #[inline]
360 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
361 core::str::from_utf8(self.as_bytes())
362 }
363
364 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
365 /// valid UTF-8.
366 ///
367 /// # Safety
368 ///
369 /// The contents must be valid UTF-8.
370 ///
371 /// # Examples
372 ///
373 /// ```
374 /// # use kernel::c_str;
375 /// # use kernel::str::CStr;
376 /// let bar = c_str!("ツ");
377 /// // SAFETY: String literals are guaranteed to be valid UTF-8
378 /// // by the Rust compiler.
379 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
380 /// ```
381 #[inline]
382 pub unsafe fn as_str_unchecked(&self) -> &str {
383 // SAFETY: TODO.
384 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
385 }
386
387 /// Convert this [`CStr`] into a [`CString`] by allocating memory and
388 /// copying over the string data.
389 pub fn to_cstring(&self) -> Result<CString, AllocError> {
390 CString::try_from(self)
391 }
392
393 /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
394 ///
395 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
396 /// but non-ASCII letters are unchanged.
397 ///
398 /// To return a new lowercased value without modifying the existing one, use
399 /// [`to_ascii_lowercase()`].
400 ///
401 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
402 pub fn make_ascii_lowercase(&mut self) {
403 // INVARIANT: This doesn't introduce or remove NUL bytes in the C
404 // string.
405 self.0.make_ascii_lowercase();
406 }
407
408 /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
409 ///
410 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
411 /// but non-ASCII letters are unchanged.
412 ///
413 /// To return a new uppercased value without modifying the existing one, use
414 /// [`to_ascii_uppercase()`].
415 ///
416 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
417 pub fn make_ascii_uppercase(&mut self) {
418 // INVARIANT: This doesn't introduce or remove NUL bytes in the C
419 // string.
420 self.0.make_ascii_uppercase();
421 }
422
423 /// Returns a copy of this [`CString`] where each character is mapped to its
424 /// ASCII lower case equivalent.
425 ///
426 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
427 /// but non-ASCII letters are unchanged.
428 ///
429 /// To lowercase the value in-place, use [`make_ascii_lowercase`].
430 ///
431 /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
432 pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
433 let mut s = self.to_cstring()?;
434
435 s.make_ascii_lowercase();
436
437 Ok(s)
438 }
439
440 /// Returns a copy of this [`CString`] where each character is mapped to its
441 /// ASCII upper case equivalent.
442 ///
443 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
444 /// but non-ASCII letters are unchanged.
445 ///
446 /// To uppercase the value in-place, use [`make_ascii_uppercase`].
447 ///
448 /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
449 pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
450 let mut s = self.to_cstring()?;
451
452 s.make_ascii_uppercase();
453
454 Ok(s)
455 }
456}
457
458impl fmt::Display for CStr {
459 /// Formats printable ASCII characters, escaping the rest.
460 ///
461 /// ```
462 /// # use kernel::c_str;
463 /// # use kernel::prelude::fmt;
464 /// # use kernel::str::CStr;
465 /// # use kernel::str::CString;
466 /// let penguin = c_str!("🐧");
467 /// let s = CString::try_from_fmt(fmt!("{penguin}"))?;
468 /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
469 ///
470 /// let ascii = c_str!("so \"cool\"");
471 /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
472 /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes());
473 /// # Ok::<(), kernel::error::Error>(())
474 /// ```
475 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
476 for &c in self.to_bytes() {
477 if (0x20..0x7f).contains(&c) {
478 // Printable character.
479 f.write_char(c as char)?;
480 } else {
481 write!(f, "\\x{c:02x}")?;
482 }
483 }
484 Ok(())
485 }
486}
487
488impl fmt::Debug for CStr {
489 /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
490 ///
491 /// ```
492 /// # use kernel::c_str;
493 /// # use kernel::prelude::fmt;
494 /// # use kernel::str::CStr;
495 /// # use kernel::str::CString;
496 /// let penguin = c_str!("🐧");
497 /// let s = CString::try_from_fmt(fmt!("{penguin:?}"))?;
498 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
499 ///
500 /// // Embedded double quotes are escaped.
501 /// let ascii = c_str!("so \"cool\"");
502 /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
503 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
504 /// # Ok::<(), kernel::error::Error>(())
505 /// ```
506 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
507 f.write_str("\"")?;
508 for &c in self.as_bytes() {
509 match c {
510 // Printable characters.
511 b'\"' => f.write_str("\\\"")?,
512 0x20..=0x7e => f.write_char(c as char)?,
513 _ => write!(f, "\\x{c:02x}")?,
514 }
515 }
516 f.write_str("\"")
517 }
518}
519
520impl AsRef<BStr> for CStr {
521 #[inline]
522 fn as_ref(&self) -> &BStr {
523 BStr::from_bytes(self.as_bytes())
524 }
525}
526
527impl Deref for CStr {
528 type Target = BStr;
529
530 #[inline]
531 fn deref(&self) -> &Self::Target {
532 self.as_ref()
533 }
534}
535
536impl Index<ops::RangeFrom<usize>> for CStr {
537 type Output = CStr;
538
539 #[inline]
540 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
541 // Delegate bounds checking to slice.
542 // Assign to _ to mute clippy's unnecessary operation warning.
543 let _ = &self.as_bytes()[index.start..];
544 // SAFETY: We just checked the bounds.
545 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
546 }
547}
548
549impl Index<ops::RangeFull> for CStr {
550 type Output = CStr;
551
552 #[inline]
553 fn index(&self, _index: ops::RangeFull) -> &Self::Output {
554 self
555 }
556}
557
558mod private {
559 use core::ops;
560
561 // Marker trait for index types that can be forward to `BStr`.
562 pub trait CStrIndex {}
563
564 impl CStrIndex for usize {}
565 impl CStrIndex for ops::Range<usize> {}
566 impl CStrIndex for ops::RangeInclusive<usize> {}
567 impl CStrIndex for ops::RangeToInclusive<usize> {}
568}
569
570impl<Idx> Index<Idx> for CStr
571where
572 Idx: private::CStrIndex,
573 BStr: Index<Idx>,
574{
575 type Output = <BStr as Index<Idx>>::Output;
576
577 #[inline]
578 fn index(&self, index: Idx) -> &Self::Output {
579 &self.as_ref()[index]
580 }
581}
582
583/// Creates a new [`CStr`] from a string literal.
584///
585/// The string literal should not contain any `NUL` bytes.
586///
587/// # Examples
588///
589/// ```
590/// # use kernel::c_str;
591/// # use kernel::str::CStr;
592/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
593/// ```
594#[macro_export]
595macro_rules! c_str {
596 ($str:expr) => {{
597 const S: &str = concat!($str, "\0");
598 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
599 Ok(v) => v,
600 Err(_) => panic!("string contains interior NUL"),
601 };
602 C
603 }};
604}
605
606#[kunit_tests(rust_kernel_str)]
607mod tests {
608 use super::*;
609
610 macro_rules! format {
611 ($($f:tt)*) => ({
612 CString::try_from_fmt(fmt!($($f)*))?.to_str()?
613 })
614 }
615
616 const ALL_ASCII_CHARS: &str =
617 "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
618 \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
619 !\"#$%&'()*+,-./0123456789:;<=>?@\
620 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
621 \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
622 \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
623 \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
624 \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
625 \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
626 \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
627 \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
628 \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
629
630 #[test]
631 fn test_cstr_to_str() -> Result {
632 let good_bytes = b"\xf0\x9f\xa6\x80\0";
633 let checked_cstr = CStr::from_bytes_with_nul(good_bytes)?;
634 let checked_str = checked_cstr.to_str()?;
635 assert_eq!(checked_str, "🦀");
636 Ok(())
637 }
638
639 #[test]
640 fn test_cstr_to_str_invalid_utf8() -> Result {
641 let bad_bytes = b"\xc3\x28\0";
642 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes)?;
643 assert!(checked_cstr.to_str().is_err());
644 Ok(())
645 }
646
647 #[test]
648 fn test_cstr_as_str_unchecked() -> Result {
649 let good_bytes = b"\xf0\x9f\x90\xA7\0";
650 let checked_cstr = CStr::from_bytes_with_nul(good_bytes)?;
651 // SAFETY: The contents come from a string literal which contains valid UTF-8.
652 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
653 assert_eq!(unchecked_str, "🐧");
654 Ok(())
655 }
656
657 #[test]
658 fn test_cstr_display() -> Result {
659 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0")?;
660 assert_eq!(format!("{hello_world}"), "hello, world!");
661 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0")?;
662 assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
663 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0")?;
664 assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
665 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0")?;
666 assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
667 Ok(())
668 }
669
670 #[test]
671 fn test_cstr_display_all_bytes() -> Result {
672 let mut bytes: [u8; 256] = [0; 256];
673 // fill `bytes` with [1..=255] + [0]
674 for i in u8::MIN..=u8::MAX {
675 bytes[i as usize] = i.wrapping_add(1);
676 }
677 let cstr = CStr::from_bytes_with_nul(&bytes)?;
678 assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
679 Ok(())
680 }
681
682 #[test]
683 fn test_cstr_debug() -> Result {
684 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0")?;
685 assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
686 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0")?;
687 assert_eq!(format!("{non_printables:?}"), "\"\\x01\\x09\\x0a\"");
688 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0")?;
689 assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
690 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0")?;
691 assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
692 Ok(())
693 }
694
695 #[test]
696 fn test_bstr_display() -> Result {
697 let hello_world = BStr::from_bytes(b"hello, world!");
698 assert_eq!(format!("{hello_world}"), "hello, world!");
699 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
700 assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
701 let others = BStr::from_bytes(b"\x01");
702 assert_eq!(format!("{others}"), "\\x01");
703 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
704 assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
705 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
706 assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
707 Ok(())
708 }
709
710 #[test]
711 fn test_bstr_debug() -> Result {
712 let hello_world = BStr::from_bytes(b"hello, world!");
713 assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
714 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
715 assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
716 let others = BStr::from_bytes(b"\x01");
717 assert_eq!(format!("{others:?}"), "\"\\x01\"");
718 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
719 assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
720 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
721 assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
722 Ok(())
723 }
724}
725
726/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
727///
728/// It does not fail if callers write past the end of the buffer so that they can calculate the
729/// size required to fit everything.
730///
731/// # Invariants
732///
733/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
734/// is less than `end`.
735pub(crate) struct RawFormatter {
736 // Use `usize` to use `saturating_*` functions.
737 beg: usize,
738 pos: usize,
739 end: usize,
740}
741
742impl RawFormatter {
743 /// Creates a new instance of [`RawFormatter`] with an empty buffer.
744 fn new() -> Self {
745 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
746 Self {
747 beg: 0,
748 pos: 0,
749 end: 0,
750 }
751 }
752
753 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
754 ///
755 /// # Safety
756 ///
757 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
758 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
759 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
760 // INVARIANT: The safety requirements guarantee the type invariants.
761 Self {
762 beg: pos as usize,
763 pos: pos as usize,
764 end: end as usize,
765 }
766 }
767
768 /// Creates a new instance of [`RawFormatter`] with the given buffer.
769 ///
770 /// # Safety
771 ///
772 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
773 /// for the lifetime of the returned [`RawFormatter`].
774 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
775 let pos = buf as usize;
776 // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
777 // guarantees that the memory region is valid for writes.
778 Self {
779 pos,
780 beg: pos,
781 end: pos.saturating_add(len),
782 }
783 }
784
785 /// Returns the current insert position.
786 ///
787 /// N.B. It may point to invalid memory.
788 pub(crate) fn pos(&self) -> *mut u8 {
789 self.pos as *mut u8
790 }
791
792 /// Returns the number of bytes written to the formatter.
793 pub(crate) fn bytes_written(&self) -> usize {
794 self.pos - self.beg
795 }
796}
797
798impl fmt::Write for RawFormatter {
799 fn write_str(&mut self, s: &str) -> fmt::Result {
800 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
801 // don't want it to wrap around to 0.
802 let pos_new = self.pos.saturating_add(s.len());
803
804 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
805 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
806
807 if len_to_copy > 0 {
808 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
809 // yet, so it is valid for write per the type invariants.
810 unsafe {
811 core::ptr::copy_nonoverlapping(
812 s.as_bytes().as_ptr(),
813 self.pos as *mut u8,
814 len_to_copy,
815 )
816 };
817 }
818
819 self.pos = pos_new;
820 Ok(())
821 }
822}
823
824/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
825///
826/// Fails if callers attempt to write more than will fit in the buffer.
827pub(crate) struct Formatter(RawFormatter);
828
829impl Formatter {
830 /// Creates a new instance of [`Formatter`] with the given buffer.
831 ///
832 /// # Safety
833 ///
834 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
835 /// for the lifetime of the returned [`Formatter`].
836 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
837 // SAFETY: The safety requirements of this function satisfy those of the callee.
838 Self(unsafe { RawFormatter::from_buffer(buf, len) })
839 }
840}
841
842impl Deref for Formatter {
843 type Target = RawFormatter;
844
845 fn deref(&self) -> &Self::Target {
846 &self.0
847 }
848}
849
850impl fmt::Write for Formatter {
851 fn write_str(&mut self, s: &str) -> fmt::Result {
852 self.0.write_str(s)?;
853
854 // Fail the request if we go past the end of the buffer.
855 if self.0.pos > self.0.end {
856 Err(fmt::Error)
857 } else {
858 Ok(())
859 }
860 }
861}
862
863/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
864///
865/// Used for interoperability with kernel APIs that take C strings.
866///
867/// # Invariants
868///
869/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
870///
871/// # Examples
872///
873/// ```
874/// use kernel::{str::CString, prelude::fmt};
875///
876/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
877/// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes());
878///
879/// let tmp = "testing";
880/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
881/// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes());
882///
883/// // This fails because it has an embedded `NUL` byte.
884/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
885/// assert_eq!(s.is_ok(), false);
886/// # Ok::<(), kernel::error::Error>(())
887/// ```
888pub struct CString {
889 buf: KVec<u8>,
890}
891
892impl CString {
893 /// Creates an instance of [`CString`] from the given formatted arguments.
894 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
895 // Calculate the size needed (formatted string plus `NUL` terminator).
896 let mut f = RawFormatter::new();
897 f.write_fmt(args)?;
898 f.write_str("\0")?;
899 let size = f.bytes_written();
900
901 // Allocate a vector with the required number of bytes, and write to it.
902 let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
903 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
904 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
905 f.write_fmt(args)?;
906 f.write_str("\0")?;
907
908 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
909 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
910 unsafe { buf.inc_len(f.bytes_written()) };
911
912 // Check that there are no `NUL` bytes before the end.
913 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
914 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
915 // so `f.bytes_written() - 1` doesn't underflow.
916 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
917 if !ptr.is_null() {
918 return Err(EINVAL);
919 }
920
921 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
922 // exist in the buffer.
923 Ok(Self { buf })
924 }
925}
926
927impl Deref for CString {
928 type Target = CStr;
929
930 fn deref(&self) -> &Self::Target {
931 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
932 // other `NUL` bytes exist.
933 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
934 }
935}
936
937impl DerefMut for CString {
938 fn deref_mut(&mut self) -> &mut Self::Target {
939 // SAFETY: A `CString` is always NUL-terminated and contains no other
940 // NUL bytes.
941 unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
942 }
943}
944
945impl<'a> TryFrom<&'a CStr> for CString {
946 type Error = AllocError;
947
948 fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
949 let mut buf = KVec::new();
950
951 buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?;
952
953 // INVARIANT: The `CStr` and `CString` types have the same invariants for
954 // the string data, and we copied it over without changes.
955 Ok(CString { buf })
956 }
957}
958
959impl fmt::Debug for CString {
960 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
961 fmt::Debug::fmt(&**self, f)
962 }
963}