kernel/str.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! String representations.
4
5use crate::{
6    alloc::{flags::*, AllocError, KVec},
7    error::{to_result, Result},
8    fmt::{self, Write},
9    prelude::*,
10};
11use core::{
12    marker::PhantomData,
13    ops::{Deref, DerefMut, Index},
14};
15
16pub use crate::prelude::CStr;
17
18/// Byte string without UTF-8 validity guarantee.
19#[repr(transparent)]
20pub struct BStr([u8]);
21
22impl BStr {
23    /// Returns the length of this string.
24    #[inline]
25    pub const fn len(&self) -> usize {
26        self.0.len()
27    }
28
29    /// Returns `true` if the string is empty.
30    #[inline]
31    pub const fn is_empty(&self) -> bool {
32        self.len() == 0
33    }
34
35    /// Creates a [`BStr`] from a `[u8]`.
36    #[inline]
37    pub const fn from_bytes(bytes: &[u8]) -> &Self {
38        // SAFETY: `BStr` is transparent to `[u8]`.
39        unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) }
40    }
41
42    /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
43    ///
44    /// # Examples
45    ///
46    /// ```
47    /// # use kernel::b_str;
48    /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
49    /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
50    /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
51    /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
52    /// ```
53    pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
54        self.deref()
55            .strip_prefix(pattern.as_ref().deref())
56            .map(Self::from_bytes)
57    }
58}
59
60impl fmt::Display for BStr {
61    /// Formats printable ASCII characters, escaping the rest.
62    ///
63    /// ```
64    /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
65    /// let ascii = b_str!("Hello, BStr!");
66    /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
67    /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes());
68    ///
69    /// let non_ascii = b_str!("🦀");
70    /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?;
71    /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
72    /// # Ok::<(), kernel::error::Error>(())
73    /// ```
74    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
75        for &b in &self.0 {
76            match b {
77                // Common escape codes.
78                b'\t' => f.write_str("\\t")?,
79                b'\n' => f.write_str("\\n")?,
80                b'\r' => f.write_str("\\r")?,
81                // Printable characters.
82                0x20..=0x7e => f.write_char(b as char)?,
83                _ => write!(f, "\\x{b:02x}")?,
84            }
85        }
86        Ok(())
87    }
88}
89
90impl fmt::Debug for BStr {
91    /// Formats printable ASCII characters with a double quote on either end,
92    /// escaping the rest.
93    ///
94    /// ```
95    /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
96    /// // Embedded double quotes are escaped.
97    /// let ascii = b_str!("Hello, \"BStr\"!");
98    /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
99    /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
100    ///
101    /// let non_ascii = b_str!("😺");
102    /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?;
103    /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
104    /// # Ok::<(), kernel::error::Error>(())
105    /// ```
106    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
107        f.write_char('"')?;
108        for &b in &self.0 {
109            match b {
110                // Common escape codes.
111                b'\t' => f.write_str("\\t")?,
112                b'\n' => f.write_str("\\n")?,
113                b'\r' => f.write_str("\\r")?,
114                // String escape characters.
115                b'\"' => f.write_str("\\\"")?,
116                b'\\' => f.write_str("\\\\")?,
117                // Printable characters.
118                0x20..=0x7e => f.write_char(b as char)?,
119                _ => write!(f, "\\x{b:02x}")?,
120            }
121        }
122        f.write_char('"')
123    }
124}
125
126impl Deref for BStr {
127    type Target = [u8];
128
129    #[inline]
130    fn deref(&self) -> &Self::Target {
131        &self.0
132    }
133}
134
135impl PartialEq for BStr {
136    fn eq(&self, other: &Self) -> bool {
137        self.deref().eq(other.deref())
138    }
139}
140
141impl<Idx> Index<Idx> for BStr
142where
143    [u8]: Index<Idx, Output = [u8]>,
144{
145    type Output = Self;
146
147    fn index(&self, index: Idx) -> &Self::Output {
148        BStr::from_bytes(&self.0[index])
149    }
150}
151
152impl AsRef<BStr> for [u8] {
153    fn as_ref(&self) -> &BStr {
154        BStr::from_bytes(self)
155    }
156}
157
158impl AsRef<BStr> for BStr {
159    fn as_ref(&self) -> &BStr {
160        self
161    }
162}
163
164/// Creates a new [`BStr`] from a string literal.
165///
166/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
167/// characters can be included.
168///
169/// # Examples
170///
171/// ```
172/// # use kernel::b_str;
173/// # use kernel::str::BStr;
174/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
175/// ```
176#[macro_export]
177macro_rules! b_str {
178    ($str:literal) => {{
179        const S: &'static str = $str;
180        const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
181        C
182    }};
183}
184
185/// Returns a C pointer to the string.
186// It is a free function rather than a method on an extension trait because:
187//
188// - error[E0379]: functions in trait impls cannot be declared const
189#[inline]
190pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char {
191    c_str.as_ptr().cast()
192}
193
194mod private {
195    pub trait Sealed {}
196
197    impl Sealed for super::CStr {}
198}
199
200/// Extensions to [`CStr`].
201pub trait CStrExt: private::Sealed {
202    /// Wraps a raw C string pointer.
203    ///
204    /// # Safety
205    ///
206    /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
207    /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
208    /// must not be mutated.
209    // This function exists to paper over the fact that `CStr::from_ptr` takes a `*const
210    // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
211    unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self;
212
213    /// Creates a mutable [`CStr`] from a `[u8]` without performing any
214    /// additional checks.
215    ///
216    /// # Safety
217    ///
218    /// `bytes` *must* end with a `NUL` byte, and should only have a single
219    /// `NUL` byte (or the string will be truncated).
220    unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self;
221
222    /// Returns a C pointer to the string.
223    // This function exists to paper over the fact that `CStr::as_ptr` returns a `*const
224    // core::ffi::c_char` rather than a `*const crate::ffi::c_char`.
225    fn as_char_ptr(&self) -> *const c_char;
226
227    /// Convert this [`CStr`] into a [`CString`] by allocating memory and
228    /// copying over the string data.
229    fn to_cstring(&self) -> Result<CString, AllocError>;
230
231    /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
232    ///
233    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
234    /// but non-ASCII letters are unchanged.
235    ///
236    /// To return a new lowercased value without modifying the existing one, use
237    /// [`to_ascii_lowercase()`].
238    ///
239    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
240    fn make_ascii_lowercase(&mut self);
241
242    /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
243    ///
244    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
245    /// but non-ASCII letters are unchanged.
246    ///
247    /// To return a new uppercased value without modifying the existing one, use
248    /// [`to_ascii_uppercase()`].
249    ///
250    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
251    fn make_ascii_uppercase(&mut self);
252
253    /// Returns a copy of this [`CString`] where each character is mapped to its
254    /// ASCII lower case equivalent.
255    ///
256    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
257    /// but non-ASCII letters are unchanged.
258    ///
259    /// To lowercase the value in-place, use [`make_ascii_lowercase`].
260    ///
261    /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
262    fn to_ascii_lowercase(&self) -> Result<CString, AllocError>;
263
264    /// Returns a copy of this [`CString`] where each character is mapped to its
265    /// ASCII upper case equivalent.
266    ///
267    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
268    /// but non-ASCII letters are unchanged.
269    ///
270    /// To uppercase the value in-place, use [`make_ascii_uppercase`].
271    ///
272    /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
273    fn to_ascii_uppercase(&self) -> Result<CString, AllocError>;
274}
275
276impl fmt::Display for CStr {
277    /// Formats printable ASCII characters, escaping the rest.
278    ///
279    /// ```
280    /// # use kernel::c_str;
281    /// # use kernel::prelude::fmt;
282    /// # use kernel::str::CStr;
283    /// # use kernel::str::CString;
284    /// let penguin = c_str!("🐧");
285    /// let s = CString::try_from_fmt(fmt!("{penguin}"))?;
286    /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
287    ///
288    /// let ascii = c_str!("so \"cool\"");
289    /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
290    /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes());
291    /// # Ok::<(), kernel::error::Error>(())
292    /// ```
293    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
294        for &c in self.to_bytes() {
295            if (0x20..0x7f).contains(&c) {
296                // Printable character.
297                f.write_char(c as char)?;
298            } else {
299                write!(f, "\\x{c:02x}")?;
300            }
301        }
302        Ok(())
303    }
304}
305
306/// Converts a mutable C string to a mutable byte slice.
307///
308/// # Safety
309///
310/// The caller must ensure that the slice ends in a NUL byte and contains no other NUL bytes before
311/// the borrow ends and the underlying [`CStr`] is used.
312unsafe fn to_bytes_mut(s: &mut CStr) -> &mut [u8] {
313    // SAFETY: the cast from `&CStr` to `&[u8]` is safe since `CStr` has the same layout as `&[u8]`
314    // (this is technically not guaranteed, but we rely on it here). The pointer dereference is
315    // safe since it comes from a mutable reference which is guaranteed to be valid for writes.
316    unsafe { &mut *(core::ptr::from_mut(s) as *mut [u8]) }
317}
318
319impl CStrExt for CStr {
320    #[inline]
321    unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self {
322        // SAFETY: The safety preconditions are the same as for `CStr::from_ptr`.
323        unsafe { CStr::from_ptr(ptr.cast()) }
324    }
325
326    #[inline]
327    unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self {
328        // SAFETY: the cast from `&[u8]` to `&CStr` is safe since the properties of `bytes` are
329        // guaranteed by the safety precondition and `CStr` has the same layout as `&[u8]` (this is
330        // technically not guaranteed, but we rely on it here). The pointer dereference is safe
331        // since it comes from a mutable reference which is guaranteed to be valid for writes.
332        unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) }
333    }
334
335    #[inline]
336    fn as_char_ptr(&self) -> *const c_char {
337        self.as_ptr().cast()
338    }
339
340    fn to_cstring(&self) -> Result<CString, AllocError> {
341        CString::try_from(self)
342    }
343
344    fn make_ascii_lowercase(&mut self) {
345        // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
346        unsafe { to_bytes_mut(self) }.make_ascii_lowercase();
347    }
348
349    fn make_ascii_uppercase(&mut self) {
350        // SAFETY: This doesn't introduce or remove NUL bytes in the C string.
351        unsafe { to_bytes_mut(self) }.make_ascii_uppercase();
352    }
353
354    fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
355        let mut s = self.to_cstring()?;
356
357        s.make_ascii_lowercase();
358
359        Ok(s)
360    }
361
362    fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
363        let mut s = self.to_cstring()?;
364
365        s.make_ascii_uppercase();
366
367        Ok(s)
368    }
369}
370
371impl AsRef<BStr> for CStr {
372    #[inline]
373    fn as_ref(&self) -> &BStr {
374        BStr::from_bytes(self.to_bytes())
375    }
376}
377
378/// Creates a new [`CStr`] from a string literal.
379///
380/// The string literal should not contain any `NUL` bytes.
381///
382/// # Examples
383///
384/// ```
385/// # use kernel::c_str;
386/// # use kernel::str::CStr;
387/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
388/// ```
389#[macro_export]
390macro_rules! c_str {
391    ($str:expr) => {{
392        const S: &str = concat!($str, "\0");
393        const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
394            Ok(v) => v,
395            Err(_) => panic!("string contains interior NUL"),
396        };
397        C
398    }};
399}
400
401#[kunit_tests(rust_kernel_str)]
402mod tests {
403    use super::*;
404
405    impl From<core::ffi::FromBytesWithNulError> for Error {
406        #[inline]
407        fn from(_: core::ffi::FromBytesWithNulError) -> Error {
408            EINVAL
409        }
410    }
411
412    macro_rules! format {
413        ($($f:tt)*) => ({
414            CString::try_from_fmt(fmt!($($f)*))?.to_str()?
415        })
416    }
417
418    const ALL_ASCII_CHARS: &str =
419        "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
420        \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
421        !\"#$%&'()*+,-./0123456789:;<=>?@\
422        ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
423        \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
424        \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
425        \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
426        \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
427        \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
428        \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
429        \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
430        \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
431
432    #[test]
433    fn test_cstr_to_str() -> Result {
434        let cstr = c"\xf0\x9f\xa6\x80";
435        let checked_str = cstr.to_str()?;
436        assert_eq!(checked_str, "🦀");
437        Ok(())
438    }
439
440    #[test]
441    fn test_cstr_to_str_invalid_utf8() -> Result {
442        let cstr = c"\xc3\x28";
443        assert!(cstr.to_str().is_err());
444        Ok(())
445    }
446
447    #[test]
448    fn test_cstr_display() -> Result {
449        let hello_world = c"hello, world!";
450        assert_eq!(format!("{hello_world}"), "hello, world!");
451        let non_printables = c"\x01\x09\x0a";
452        assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
453        let non_ascii = c"d\xe9j\xe0 vu";
454        assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
455        let good_bytes = c"\xf0\x9f\xa6\x80";
456        assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
457        Ok(())
458    }
459
460    #[test]
461    fn test_cstr_display_all_bytes() -> Result {
462        let mut bytes: [u8; 256] = [0; 256];
463        // fill `bytes` with [1..=255] + [0]
464        for i in u8::MIN..=u8::MAX {
465            bytes[i as usize] = i.wrapping_add(1);
466        }
467        let cstr = CStr::from_bytes_with_nul(&bytes)?;
468        assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
469        Ok(())
470    }
471
472    #[test]
473    fn test_cstr_debug() -> Result {
474        let hello_world = c"hello, world!";
475        assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
476        let non_printables = c"\x01\x09\x0a";
477        assert_eq!(format!("{non_printables:?}"), "\"\\x01\\t\\n\"");
478        let non_ascii = c"d\xe9j\xe0 vu";
479        assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
480        Ok(())
481    }
482
483    #[test]
484    fn test_bstr_display() -> Result {
485        let hello_world = BStr::from_bytes(b"hello, world!");
486        assert_eq!(format!("{hello_world}"), "hello, world!");
487        let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
488        assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
489        let others = BStr::from_bytes(b"\x01");
490        assert_eq!(format!("{others}"), "\\x01");
491        let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
492        assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
493        let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
494        assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
495        Ok(())
496    }
497
498    #[test]
499    fn test_bstr_debug() -> Result {
500        let hello_world = BStr::from_bytes(b"hello, world!");
501        assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
502        let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
503        assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
504        let others = BStr::from_bytes(b"\x01");
505        assert_eq!(format!("{others:?}"), "\"\\x01\"");
506        let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
507        assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
508        let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
509        assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
510        Ok(())
511    }
512}
513
514/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
515///
516/// It does not fail if callers write past the end of the buffer so that they can calculate the
517/// size required to fit everything.
518///
519/// # Invariants
520///
521/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
522/// is less than `end`.
523pub struct RawFormatter {
524    // Use `usize` to use `saturating_*` functions.
525    beg: usize,
526    pos: usize,
527    end: usize,
528}
529
530impl RawFormatter {
531    /// Creates a new instance of [`RawFormatter`] with an empty buffer.
532    fn new() -> Self {
533        // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
534        Self {
535            beg: 0,
536            pos: 0,
537            end: 0,
538        }
539    }
540
541    /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
542    ///
543    /// # Safety
544    ///
545    /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
546    /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
547    pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
548        // INVARIANT: The safety requirements guarantee the type invariants.
549        Self {
550            beg: pos as usize,
551            pos: pos as usize,
552            end: end as usize,
553        }
554    }
555
556    /// Creates a new instance of [`RawFormatter`] with the given buffer.
557    ///
558    /// # Safety
559    ///
560    /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
561    /// for the lifetime of the returned [`RawFormatter`].
562    pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
563        let pos = buf as usize;
564        // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
565        // guarantees that the memory region is valid for writes.
566        Self {
567            pos,
568            beg: pos,
569            end: pos.saturating_add(len),
570        }
571    }
572
573    /// Returns the current insert position.
574    ///
575    /// N.B. It may point to invalid memory.
576    pub(crate) fn pos(&self) -> *mut u8 {
577        self.pos as *mut u8
578    }
579
580    /// Returns the number of bytes written to the formatter.
581    pub fn bytes_written(&self) -> usize {
582        self.pos - self.beg
583    }
584}
585
586impl fmt::Write for RawFormatter {
587    fn write_str(&mut self, s: &str) -> fmt::Result {
588        // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
589        // don't want it to wrap around to 0.
590        let pos_new = self.pos.saturating_add(s.len());
591
592        // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
593        let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
594
595        if len_to_copy > 0 {
596            // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
597            // yet, so it is valid for write per the type invariants.
598            unsafe {
599                core::ptr::copy_nonoverlapping(
600                    s.as_bytes().as_ptr(),
601                    self.pos as *mut u8,
602                    len_to_copy,
603                )
604            };
605        }
606
607        self.pos = pos_new;
608        Ok(())
609    }
610}
611
612/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
613///
614/// Fails if callers attempt to write more than will fit in the buffer.
615pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>);
616
617impl Formatter<'_> {
618    /// Creates a new instance of [`Formatter`] with the given buffer.
619    ///
620    /// # Safety
621    ///
622    /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
623    /// for the lifetime of the returned [`Formatter`].
624    pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
625        // SAFETY: The safety requirements of this function satisfy those of the callee.
626        Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData)
627    }
628
629    /// Create a new [`Self`] instance.
630    pub fn new(buffer: &mut [u8]) -> Self {
631        // SAFETY: `buffer` is valid for writes for the entire length for
632        // the lifetime of `Self`.
633        unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) }
634    }
635}
636
637impl Deref for Formatter<'_> {
638    type Target = RawFormatter;
639
640    fn deref(&self) -> &Self::Target {
641        &self.0
642    }
643}
644
645impl fmt::Write for Formatter<'_> {
646    fn write_str(&mut self, s: &str) -> fmt::Result {
647        self.0.write_str(s)?;
648
649        // Fail the request if we go past the end of the buffer.
650        if self.0.pos > self.0.end {
651            Err(fmt::Error)
652        } else {
653            Ok(())
654        }
655    }
656}
657
658/// A mutable reference to a byte buffer where a string can be written into.
659///
660/// The buffer will be automatically null terminated after the last written character.
661///
662/// # Invariants
663///
664/// * The first byte of `buffer` is always zero.
665/// * The length of `buffer` is at least 1.
666pub(crate) struct NullTerminatedFormatter<'a> {
667    buffer: &'a mut [u8],
668}
669
670impl<'a> NullTerminatedFormatter<'a> {
671    /// Create a new [`Self`] instance.
672    pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> {
673        *(buffer.first_mut()?) = 0;
674
675        // INVARIANT:
676        //  - We wrote zero to the first byte above.
677        //  - If buffer was not at least length 1, `buffer.first_mut()` would return None.
678        Some(Self { buffer })
679    }
680}
681
682impl Write for NullTerminatedFormatter<'_> {
683    fn write_str(&mut self, s: &str) -> fmt::Result {
684        let bytes = s.as_bytes();
685        let len = bytes.len();
686
687        // We want space for a zero. By type invariant, buffer length is always at least 1, so no
688        // underflow.
689        if len > self.buffer.len() - 1 {
690            return Err(fmt::Error);
691        }
692
693        let buffer = core::mem::take(&mut self.buffer);
694        // We break the zero start invariant for a short while.
695        buffer[..len].copy_from_slice(bytes);
696        // INVARIANT: We checked above that buffer will have size at least 1 after this assignment.
697        self.buffer = &mut buffer[len..];
698
699        // INVARIANT: We write zero to the first byte of the buffer.
700        self.buffer[0] = 0;
701
702        Ok(())
703    }
704}
705
706/// # Safety
707///
708/// - `string` must point to a null terminated string that is valid for read.
709unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> {
710    let mut result: bool = false;
711
712    // SAFETY:
713    // - By function safety requirement, `string` is a valid null-terminated string.
714    // - `result` is a valid `bool` that we own.
715    to_result(unsafe { bindings::kstrtobool(string, &mut result) })?;
716    Ok(result)
717}
718
719/// Convert common user inputs into boolean values using the kernel's `kstrtobool` function.
720///
721/// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or
722/// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`.
723///
724/// # Examples
725///
726/// ```
727/// # use kernel::{c_str, str::kstrtobool};
728///
729/// // Lowercase
730/// assert_eq!(kstrtobool(c_str!("true")), Ok(true));
731/// assert_eq!(kstrtobool(c_str!("tr")), Ok(true));
732/// assert_eq!(kstrtobool(c_str!("t")), Ok(true));
733/// assert_eq!(kstrtobool(c_str!("twrong")), Ok(true));
734/// assert_eq!(kstrtobool(c_str!("false")), Ok(false));
735/// assert_eq!(kstrtobool(c_str!("f")), Ok(false));
736/// assert_eq!(kstrtobool(c_str!("yes")), Ok(true));
737/// assert_eq!(kstrtobool(c_str!("no")), Ok(false));
738/// assert_eq!(kstrtobool(c_str!("on")), Ok(true));
739/// assert_eq!(kstrtobool(c_str!("off")), Ok(false));
740///
741/// // Camel case
742/// assert_eq!(kstrtobool(c_str!("True")), Ok(true));
743/// assert_eq!(kstrtobool(c_str!("False")), Ok(false));
744/// assert_eq!(kstrtobool(c_str!("Yes")), Ok(true));
745/// assert_eq!(kstrtobool(c_str!("No")), Ok(false));
746/// assert_eq!(kstrtobool(c_str!("On")), Ok(true));
747/// assert_eq!(kstrtobool(c_str!("Off")), Ok(false));
748///
749/// // All caps
750/// assert_eq!(kstrtobool(c_str!("TRUE")), Ok(true));
751/// assert_eq!(kstrtobool(c_str!("FALSE")), Ok(false));
752/// assert_eq!(kstrtobool(c_str!("YES")), Ok(true));
753/// assert_eq!(kstrtobool(c_str!("NO")), Ok(false));
754/// assert_eq!(kstrtobool(c_str!("ON")), Ok(true));
755/// assert_eq!(kstrtobool(c_str!("OFF")), Ok(false));
756///
757/// // Numeric
758/// assert_eq!(kstrtobool(c_str!("1")), Ok(true));
759/// assert_eq!(kstrtobool(c_str!("0")), Ok(false));
760///
761/// // Invalid input
762/// assert_eq!(kstrtobool(c_str!("invalid")), Err(EINVAL));
763/// assert_eq!(kstrtobool(c_str!("2")), Err(EINVAL));
764/// ```
765pub fn kstrtobool(string: &CStr) -> Result<bool> {
766    // SAFETY:
767    // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be
768    //   null terminated.
769    // - `string` is live and thus the string is valid for read.
770    unsafe { kstrtobool_raw(string.as_char_ptr()) }
771}
772
773/// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`].
774///
775/// Only considers at most the first two bytes of `bytes`.
776pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> {
777    // `ktostrbool` only considers the first two bytes of the input.
778    let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0];
779    // SAFETY: `stack_string` is null terminated and it is live on the stack so
780    // it is valid for read.
781    unsafe { kstrtobool_raw(stack_string.as_ptr()) }
782}
783
784/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
785///
786/// Used for interoperability with kernel APIs that take C strings.
787///
788/// # Invariants
789///
790/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
791///
792/// # Examples
793///
794/// ```
795/// use kernel::{str::CString, prelude::fmt};
796///
797/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
798/// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes());
799///
800/// let tmp = "testing";
801/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
802/// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes());
803///
804/// // This fails because it has an embedded `NUL` byte.
805/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
806/// assert_eq!(s.is_ok(), false);
807/// # Ok::<(), kernel::error::Error>(())
808/// ```
809pub struct CString {
810    buf: KVec<u8>,
811}
812
813impl CString {
814    /// Creates an instance of [`CString`] from the given formatted arguments.
815    pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
816        // Calculate the size needed (formatted string plus `NUL` terminator).
817        let mut f = RawFormatter::new();
818        f.write_fmt(args)?;
819        f.write_str("\0")?;
820        let size = f.bytes_written();
821
822        // Allocate a vector with the required number of bytes, and write to it.
823        let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
824        // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
825        let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
826        f.write_fmt(args)?;
827        f.write_str("\0")?;
828
829        // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
830        // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
831        unsafe { buf.inc_len(f.bytes_written()) };
832
833        // Check that there are no `NUL` bytes before the end.
834        // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
835        // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
836        // so `f.bytes_written() - 1` doesn't underflow.
837        let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
838        if !ptr.is_null() {
839            return Err(EINVAL);
840        }
841
842        // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
843        // exist in the buffer.
844        Ok(Self { buf })
845    }
846}
847
848impl Deref for CString {
849    type Target = CStr;
850
851    fn deref(&self) -> &Self::Target {
852        // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
853        // other `NUL` bytes exist.
854        unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
855    }
856}
857
858impl DerefMut for CString {
859    fn deref_mut(&mut self) -> &mut Self::Target {
860        // SAFETY: A `CString` is always NUL-terminated and contains no other
861        // NUL bytes.
862        unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
863    }
864}
865
866impl<'a> TryFrom<&'a CStr> for CString {
867    type Error = AllocError;
868
869    fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
870        let mut buf = KVec::new();
871
872        buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?;
873
874        // INVARIANT: The `CStr` and `CString` types have the same invariants for
875        // the string data, and we copied it over without changes.
876        Ok(CString { buf })
877    }
878}
879
880impl fmt::Debug for CString {
881    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
882        fmt::Debug::fmt(&**self, f)
883    }
884}