kernel/str.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! String representations.
4
5use crate::{
6 alloc::{flags::*, AllocError, KVec},
7 error::{to_result, Result},
8 fmt::{self, Write},
9 prelude::*,
10};
11use core::{
12 marker::PhantomData,
13 ops::{self, Deref, DerefMut, Index},
14};
15
16/// Byte string without UTF-8 validity guarantee.
17#[repr(transparent)]
18pub struct BStr([u8]);
19
20impl BStr {
21 /// Returns the length of this string.
22 #[inline]
23 pub const fn len(&self) -> usize {
24 self.0.len()
25 }
26
27 /// Returns `true` if the string is empty.
28 #[inline]
29 pub const fn is_empty(&self) -> bool {
30 self.len() == 0
31 }
32
33 /// Creates a [`BStr`] from a `[u8]`.
34 #[inline]
35 pub const fn from_bytes(bytes: &[u8]) -> &Self {
36 // SAFETY: `BStr` is transparent to `[u8]`.
37 unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) }
38 }
39
40 /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
41 ///
42 /// # Examples
43 ///
44 /// ```
45 /// # use kernel::b_str;
46 /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
47 /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
48 /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
49 /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
50 /// ```
51 pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
52 self.deref()
53 .strip_prefix(pattern.as_ref().deref())
54 .map(Self::from_bytes)
55 }
56}
57
58impl fmt::Display for BStr {
59 /// Formats printable ASCII characters, escaping the rest.
60 ///
61 /// ```
62 /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
63 /// let ascii = b_str!("Hello, BStr!");
64 /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
65 /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes());
66 ///
67 /// let non_ascii = b_str!("🦀");
68 /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?;
69 /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
70 /// # Ok::<(), kernel::error::Error>(())
71 /// ```
72 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
73 for &b in &self.0 {
74 match b {
75 // Common escape codes.
76 b'\t' => f.write_str("\\t")?,
77 b'\n' => f.write_str("\\n")?,
78 b'\r' => f.write_str("\\r")?,
79 // Printable characters.
80 0x20..=0x7e => f.write_char(b as char)?,
81 _ => write!(f, "\\x{b:02x}")?,
82 }
83 }
84 Ok(())
85 }
86}
87
88impl fmt::Debug for BStr {
89 /// Formats printable ASCII characters with a double quote on either end,
90 /// escaping the rest.
91 ///
92 /// ```
93 /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}};
94 /// // Embedded double quotes are escaped.
95 /// let ascii = b_str!("Hello, \"BStr\"!");
96 /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
97 /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
98 ///
99 /// let non_ascii = b_str!("😺");
100 /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?;
101 /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
102 /// # Ok::<(), kernel::error::Error>(())
103 /// ```
104 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
105 f.write_char('"')?;
106 for &b in &self.0 {
107 match b {
108 // Common escape codes.
109 b'\t' => f.write_str("\\t")?,
110 b'\n' => f.write_str("\\n")?,
111 b'\r' => f.write_str("\\r")?,
112 // String escape characters.
113 b'\"' => f.write_str("\\\"")?,
114 b'\\' => f.write_str("\\\\")?,
115 // Printable characters.
116 0x20..=0x7e => f.write_char(b as char)?,
117 _ => write!(f, "\\x{b:02x}")?,
118 }
119 }
120 f.write_char('"')
121 }
122}
123
124impl Deref for BStr {
125 type Target = [u8];
126
127 #[inline]
128 fn deref(&self) -> &Self::Target {
129 &self.0
130 }
131}
132
133impl PartialEq for BStr {
134 fn eq(&self, other: &Self) -> bool {
135 self.deref().eq(other.deref())
136 }
137}
138
139impl<Idx> Index<Idx> for BStr
140where
141 [u8]: Index<Idx, Output = [u8]>,
142{
143 type Output = Self;
144
145 fn index(&self, index: Idx) -> &Self::Output {
146 BStr::from_bytes(&self.0[index])
147 }
148}
149
150impl AsRef<BStr> for [u8] {
151 fn as_ref(&self) -> &BStr {
152 BStr::from_bytes(self)
153 }
154}
155
156impl AsRef<BStr> for BStr {
157 fn as_ref(&self) -> &BStr {
158 self
159 }
160}
161
162/// Creates a new [`BStr`] from a string literal.
163///
164/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
165/// characters can be included.
166///
167/// # Examples
168///
169/// ```
170/// # use kernel::b_str;
171/// # use kernel::str::BStr;
172/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
173/// ```
174#[macro_export]
175macro_rules! b_str {
176 ($str:literal) => {{
177 const S: &'static str = $str;
178 const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
179 C
180 }};
181}
182
183/// Returns a C pointer to the string.
184// It is a free function rather than a method on an extension trait because:
185//
186// - error[E0379]: functions in trait impls cannot be declared const
187#[inline]
188pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char {
189 c_str.0.as_ptr()
190}
191
192/// Possible errors when using conversion functions in [`CStr`].
193#[derive(Debug, Clone, Copy)]
194pub enum CStrConvertError {
195 /// Supplied bytes contain an interior `NUL`.
196 InteriorNul,
197
198 /// Supplied bytes are not terminated by `NUL`.
199 NotNulTerminated,
200}
201
202impl From<CStrConvertError> for Error {
203 #[inline]
204 fn from(_: CStrConvertError) -> Error {
205 EINVAL
206 }
207}
208
209/// A string that is guaranteed to have exactly one `NUL` byte, which is at the
210/// end.
211///
212/// Used for interoperability with kernel APIs that take C strings.
213#[repr(transparent)]
214pub struct CStr([u8]);
215
216impl CStr {
217 /// Returns the length of this string excluding `NUL`.
218 #[inline]
219 pub const fn len(&self) -> usize {
220 self.len_with_nul() - 1
221 }
222
223 /// Returns the length of this string with `NUL`.
224 #[inline]
225 pub const fn len_with_nul(&self) -> usize {
226 if self.0.is_empty() {
227 // SAFETY: This is one of the invariant of `CStr`.
228 // We add a `unreachable_unchecked` here to hint the optimizer that
229 // the value returned from this function is non-zero.
230 unsafe { core::hint::unreachable_unchecked() };
231 }
232 self.0.len()
233 }
234
235 /// Returns `true` if the string only includes `NUL`.
236 #[inline]
237 pub const fn is_empty(&self) -> bool {
238 self.len() == 0
239 }
240
241 /// Wraps a raw C string pointer.
242 ///
243 /// # Safety
244 ///
245 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
246 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
247 /// must not be mutated.
248 #[inline]
249 pub unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self {
250 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
251 // to a `NUL`-terminated C string.
252 let len = unsafe { bindings::strlen(ptr) } + 1;
253 // SAFETY: Lifetime guaranteed by the safety precondition.
254 let bytes = unsafe { core::slice::from_raw_parts(ptr.cast(), len) };
255 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
256 // As we have added 1 to `len`, the last byte is known to be `NUL`.
257 unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
258 }
259
260 /// Creates a [`CStr`] from a `[u8]`.
261 ///
262 /// The provided slice must be `NUL`-terminated, does not contain any
263 /// interior `NUL` bytes.
264 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
265 if bytes.is_empty() {
266 return Err(CStrConvertError::NotNulTerminated);
267 }
268 if bytes[bytes.len() - 1] != 0 {
269 return Err(CStrConvertError::NotNulTerminated);
270 }
271 let mut i = 0;
272 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
273 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
274 while i + 1 < bytes.len() {
275 if bytes[i] == 0 {
276 return Err(CStrConvertError::InteriorNul);
277 }
278 i += 1;
279 }
280 // SAFETY: We just checked that all properties hold.
281 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
282 }
283
284 /// Creates a [`CStr`] from a `[u8]` without performing any additional
285 /// checks.
286 ///
287 /// # Safety
288 ///
289 /// `bytes` *must* end with a `NUL` byte, and should only have a single
290 /// `NUL` byte (or the string will be truncated).
291 #[inline]
292 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
293 // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
294 unsafe { core::mem::transmute(bytes) }
295 }
296
297 /// Creates a mutable [`CStr`] from a `[u8]` without performing any
298 /// additional checks.
299 ///
300 /// # Safety
301 ///
302 /// `bytes` *must* end with a `NUL` byte, and should only have a single
303 /// `NUL` byte (or the string will be truncated).
304 #[inline]
305 pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr {
306 // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
307 unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) }
308 }
309
310 /// Returns a C pointer to the string.
311 ///
312 /// Using this function in a const context is deprecated in favor of
313 /// [`as_char_ptr_in_const_context`] in preparation for replacing `CStr` with `core::ffi::CStr`
314 /// which does not have this method.
315 #[inline]
316 pub const fn as_char_ptr(&self) -> *const c_char {
317 as_char_ptr_in_const_context(self)
318 }
319
320 /// Convert the string to a byte slice without the trailing `NUL` byte.
321 #[inline]
322 pub fn to_bytes(&self) -> &[u8] {
323 &self.0[..self.len()]
324 }
325
326 /// Convert the string to a byte slice without the trailing `NUL` byte.
327 ///
328 /// This function is deprecated in favor of [`Self::to_bytes`] in preparation for replacing
329 /// `CStr` with `core::ffi::CStr` which does not have this method.
330 #[inline]
331 pub fn as_bytes(&self) -> &[u8] {
332 self.to_bytes()
333 }
334
335 /// Convert the string to a byte slice containing the trailing `NUL` byte.
336 #[inline]
337 pub const fn to_bytes_with_nul(&self) -> &[u8] {
338 &self.0
339 }
340
341 /// Convert the string to a byte slice containing the trailing `NUL` byte.
342 ///
343 /// This function is deprecated in favor of [`Self::to_bytes_with_nul`] in preparation for
344 /// replacing `CStr` with `core::ffi::CStr` which does not have this method.
345 #[inline]
346 pub const fn as_bytes_with_nul(&self) -> &[u8] {
347 self.to_bytes_with_nul()
348 }
349
350 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
351 ///
352 /// If the contents of the [`CStr`] are valid UTF-8 data, this
353 /// function will return the corresponding [`&str`] slice. Otherwise,
354 /// it will return an error with details of where UTF-8 validation failed.
355 ///
356 /// # Examples
357 ///
358 /// ```
359 /// # use kernel::str::CStr;
360 /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
361 /// assert_eq!(cstr.to_str(), Ok("foo"));
362 /// # Ok::<(), kernel::error::Error>(())
363 /// ```
364 #[inline]
365 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
366 core::str::from_utf8(self.as_bytes())
367 }
368
369 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
370 /// valid UTF-8.
371 ///
372 /// # Safety
373 ///
374 /// The contents must be valid UTF-8.
375 ///
376 /// # Examples
377 ///
378 /// ```
379 /// # use kernel::c_str;
380 /// # use kernel::str::CStr;
381 /// let bar = c_str!("ツ");
382 /// // SAFETY: String literals are guaranteed to be valid UTF-8
383 /// // by the Rust compiler.
384 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
385 /// ```
386 #[inline]
387 pub unsafe fn as_str_unchecked(&self) -> &str {
388 // SAFETY: TODO.
389 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
390 }
391
392 /// Convert this [`CStr`] into a [`CString`] by allocating memory and
393 /// copying over the string data.
394 pub fn to_cstring(&self) -> Result<CString, AllocError> {
395 CString::try_from(self)
396 }
397
398 /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
399 ///
400 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
401 /// but non-ASCII letters are unchanged.
402 ///
403 /// To return a new lowercased value without modifying the existing one, use
404 /// [`to_ascii_lowercase()`].
405 ///
406 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
407 pub fn make_ascii_lowercase(&mut self) {
408 // INVARIANT: This doesn't introduce or remove NUL bytes in the C
409 // string.
410 self.0.make_ascii_lowercase();
411 }
412
413 /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
414 ///
415 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
416 /// but non-ASCII letters are unchanged.
417 ///
418 /// To return a new uppercased value without modifying the existing one, use
419 /// [`to_ascii_uppercase()`].
420 ///
421 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
422 pub fn make_ascii_uppercase(&mut self) {
423 // INVARIANT: This doesn't introduce or remove NUL bytes in the C
424 // string.
425 self.0.make_ascii_uppercase();
426 }
427
428 /// Returns a copy of this [`CString`] where each character is mapped to its
429 /// ASCII lower case equivalent.
430 ///
431 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
432 /// but non-ASCII letters are unchanged.
433 ///
434 /// To lowercase the value in-place, use [`make_ascii_lowercase`].
435 ///
436 /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
437 pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
438 let mut s = self.to_cstring()?;
439
440 s.make_ascii_lowercase();
441
442 Ok(s)
443 }
444
445 /// Returns a copy of this [`CString`] where each character is mapped to its
446 /// ASCII upper case equivalent.
447 ///
448 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
449 /// but non-ASCII letters are unchanged.
450 ///
451 /// To uppercase the value in-place, use [`make_ascii_uppercase`].
452 ///
453 /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
454 pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
455 let mut s = self.to_cstring()?;
456
457 s.make_ascii_uppercase();
458
459 Ok(s)
460 }
461}
462
463impl fmt::Display for CStr {
464 /// Formats printable ASCII characters, escaping the rest.
465 ///
466 /// ```
467 /// # use kernel::c_str;
468 /// # use kernel::prelude::fmt;
469 /// # use kernel::str::CStr;
470 /// # use kernel::str::CString;
471 /// let penguin = c_str!("🐧");
472 /// let s = CString::try_from_fmt(fmt!("{penguin}"))?;
473 /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
474 ///
475 /// let ascii = c_str!("so \"cool\"");
476 /// let s = CString::try_from_fmt(fmt!("{ascii}"))?;
477 /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes());
478 /// # Ok::<(), kernel::error::Error>(())
479 /// ```
480 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
481 for &c in self.to_bytes() {
482 if (0x20..0x7f).contains(&c) {
483 // Printable character.
484 f.write_char(c as char)?;
485 } else {
486 write!(f, "\\x{c:02x}")?;
487 }
488 }
489 Ok(())
490 }
491}
492
493impl fmt::Debug for CStr {
494 /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
495 ///
496 /// ```
497 /// # use kernel::c_str;
498 /// # use kernel::prelude::fmt;
499 /// # use kernel::str::CStr;
500 /// # use kernel::str::CString;
501 /// let penguin = c_str!("🐧");
502 /// let s = CString::try_from_fmt(fmt!("{penguin:?}"))?;
503 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
504 ///
505 /// // Embedded double quotes are escaped.
506 /// let ascii = c_str!("so \"cool\"");
507 /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?;
508 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
509 /// # Ok::<(), kernel::error::Error>(())
510 /// ```
511 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
512 f.write_str("\"")?;
513 for &c in self.as_bytes() {
514 match c {
515 // Printable characters.
516 b'\"' => f.write_str("\\\"")?,
517 0x20..=0x7e => f.write_char(c as char)?,
518 _ => write!(f, "\\x{c:02x}")?,
519 }
520 }
521 f.write_str("\"")
522 }
523}
524
525impl AsRef<BStr> for CStr {
526 #[inline]
527 fn as_ref(&self) -> &BStr {
528 BStr::from_bytes(self.as_bytes())
529 }
530}
531
532impl Deref for CStr {
533 type Target = BStr;
534
535 #[inline]
536 fn deref(&self) -> &Self::Target {
537 self.as_ref()
538 }
539}
540
541impl Index<ops::RangeFrom<usize>> for CStr {
542 type Output = CStr;
543
544 #[inline]
545 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
546 // Delegate bounds checking to slice.
547 // Assign to _ to mute clippy's unnecessary operation warning.
548 let _ = &self.as_bytes()[index.start..];
549 // SAFETY: We just checked the bounds.
550 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
551 }
552}
553
554impl Index<ops::RangeFull> for CStr {
555 type Output = CStr;
556
557 #[inline]
558 fn index(&self, _index: ops::RangeFull) -> &Self::Output {
559 self
560 }
561}
562
563mod private {
564 use core::ops;
565
566 // Marker trait for index types that can be forward to `BStr`.
567 pub trait CStrIndex {}
568
569 impl CStrIndex for usize {}
570 impl CStrIndex for ops::Range<usize> {}
571 impl CStrIndex for ops::RangeInclusive<usize> {}
572 impl CStrIndex for ops::RangeToInclusive<usize> {}
573}
574
575impl<Idx> Index<Idx> for CStr
576where
577 Idx: private::CStrIndex,
578 BStr: Index<Idx>,
579{
580 type Output = <BStr as Index<Idx>>::Output;
581
582 #[inline]
583 fn index(&self, index: Idx) -> &Self::Output {
584 &self.as_ref()[index]
585 }
586}
587
588/// Creates a new [`CStr`] from a string literal.
589///
590/// The string literal should not contain any `NUL` bytes.
591///
592/// # Examples
593///
594/// ```
595/// # use kernel::c_str;
596/// # use kernel::str::CStr;
597/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
598/// ```
599#[macro_export]
600macro_rules! c_str {
601 ($str:expr) => {{
602 const S: &str = concat!($str, "\0");
603 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
604 Ok(v) => v,
605 Err(_) => panic!("string contains interior NUL"),
606 };
607 C
608 }};
609}
610
611#[kunit_tests(rust_kernel_str)]
612mod tests {
613 use super::*;
614
615 macro_rules! format {
616 ($($f:tt)*) => ({
617 CString::try_from_fmt(fmt!($($f)*))?.to_str()?
618 })
619 }
620
621 const ALL_ASCII_CHARS: &str =
622 "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
623 \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
624 !\"#$%&'()*+,-./0123456789:;<=>?@\
625 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
626 \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
627 \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
628 \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
629 \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
630 \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
631 \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
632 \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
633 \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
634
635 #[test]
636 fn test_cstr_to_str() -> Result {
637 let good_bytes = b"\xf0\x9f\xa6\x80\0";
638 let checked_cstr = CStr::from_bytes_with_nul(good_bytes)?;
639 let checked_str = checked_cstr.to_str()?;
640 assert_eq!(checked_str, "🦀");
641 Ok(())
642 }
643
644 #[test]
645 fn test_cstr_to_str_invalid_utf8() -> Result {
646 let bad_bytes = b"\xc3\x28\0";
647 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes)?;
648 assert!(checked_cstr.to_str().is_err());
649 Ok(())
650 }
651
652 #[test]
653 fn test_cstr_as_str_unchecked() -> Result {
654 let good_bytes = b"\xf0\x9f\x90\xA7\0";
655 let checked_cstr = CStr::from_bytes_with_nul(good_bytes)?;
656 // SAFETY: The contents come from a string literal which contains valid UTF-8.
657 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
658 assert_eq!(unchecked_str, "🐧");
659 Ok(())
660 }
661
662 #[test]
663 fn test_cstr_display() -> Result {
664 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0")?;
665 assert_eq!(format!("{hello_world}"), "hello, world!");
666 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0")?;
667 assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
668 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0")?;
669 assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
670 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0")?;
671 assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
672 Ok(())
673 }
674
675 #[test]
676 fn test_cstr_display_all_bytes() -> Result {
677 let mut bytes: [u8; 256] = [0; 256];
678 // fill `bytes` with [1..=255] + [0]
679 for i in u8::MIN..=u8::MAX {
680 bytes[i as usize] = i.wrapping_add(1);
681 }
682 let cstr = CStr::from_bytes_with_nul(&bytes)?;
683 assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
684 Ok(())
685 }
686
687 #[test]
688 fn test_cstr_debug() -> Result {
689 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0")?;
690 assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
691 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0")?;
692 assert_eq!(format!("{non_printables:?}"), "\"\\x01\\x09\\x0a\"");
693 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0")?;
694 assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
695 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0")?;
696 assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
697 Ok(())
698 }
699
700 #[test]
701 fn test_bstr_display() -> Result {
702 let hello_world = BStr::from_bytes(b"hello, world!");
703 assert_eq!(format!("{hello_world}"), "hello, world!");
704 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
705 assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
706 let others = BStr::from_bytes(b"\x01");
707 assert_eq!(format!("{others}"), "\\x01");
708 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
709 assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
710 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
711 assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
712 Ok(())
713 }
714
715 #[test]
716 fn test_bstr_debug() -> Result {
717 let hello_world = BStr::from_bytes(b"hello, world!");
718 assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
719 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
720 assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
721 let others = BStr::from_bytes(b"\x01");
722 assert_eq!(format!("{others:?}"), "\"\\x01\"");
723 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
724 assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
725 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
726 assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
727 Ok(())
728 }
729}
730
731/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
732///
733/// It does not fail if callers write past the end of the buffer so that they can calculate the
734/// size required to fit everything.
735///
736/// # Invariants
737///
738/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
739/// is less than `end`.
740pub struct RawFormatter {
741 // Use `usize` to use `saturating_*` functions.
742 beg: usize,
743 pos: usize,
744 end: usize,
745}
746
747impl RawFormatter {
748 /// Creates a new instance of [`RawFormatter`] with an empty buffer.
749 fn new() -> Self {
750 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
751 Self {
752 beg: 0,
753 pos: 0,
754 end: 0,
755 }
756 }
757
758 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
759 ///
760 /// # Safety
761 ///
762 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
763 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
764 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
765 // INVARIANT: The safety requirements guarantee the type invariants.
766 Self {
767 beg: pos as usize,
768 pos: pos as usize,
769 end: end as usize,
770 }
771 }
772
773 /// Creates a new instance of [`RawFormatter`] with the given buffer.
774 ///
775 /// # Safety
776 ///
777 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
778 /// for the lifetime of the returned [`RawFormatter`].
779 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
780 let pos = buf as usize;
781 // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
782 // guarantees that the memory region is valid for writes.
783 Self {
784 pos,
785 beg: pos,
786 end: pos.saturating_add(len),
787 }
788 }
789
790 /// Returns the current insert position.
791 ///
792 /// N.B. It may point to invalid memory.
793 pub(crate) fn pos(&self) -> *mut u8 {
794 self.pos as *mut u8
795 }
796
797 /// Returns the number of bytes written to the formatter.
798 pub fn bytes_written(&self) -> usize {
799 self.pos - self.beg
800 }
801}
802
803impl fmt::Write for RawFormatter {
804 fn write_str(&mut self, s: &str) -> fmt::Result {
805 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
806 // don't want it to wrap around to 0.
807 let pos_new = self.pos.saturating_add(s.len());
808
809 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
810 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
811
812 if len_to_copy > 0 {
813 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
814 // yet, so it is valid for write per the type invariants.
815 unsafe {
816 core::ptr::copy_nonoverlapping(
817 s.as_bytes().as_ptr(),
818 self.pos as *mut u8,
819 len_to_copy,
820 )
821 };
822 }
823
824 self.pos = pos_new;
825 Ok(())
826 }
827}
828
829/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
830///
831/// Fails if callers attempt to write more than will fit in the buffer.
832pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>);
833
834impl Formatter<'_> {
835 /// Creates a new instance of [`Formatter`] with the given buffer.
836 ///
837 /// # Safety
838 ///
839 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
840 /// for the lifetime of the returned [`Formatter`].
841 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
842 // SAFETY: The safety requirements of this function satisfy those of the callee.
843 Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData)
844 }
845
846 /// Create a new [`Self`] instance.
847 pub fn new(buffer: &mut [u8]) -> Self {
848 // SAFETY: `buffer` is valid for writes for the entire length for
849 // the lifetime of `Self`.
850 unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) }
851 }
852}
853
854impl Deref for Formatter<'_> {
855 type Target = RawFormatter;
856
857 fn deref(&self) -> &Self::Target {
858 &self.0
859 }
860}
861
862impl fmt::Write for Formatter<'_> {
863 fn write_str(&mut self, s: &str) -> fmt::Result {
864 self.0.write_str(s)?;
865
866 // Fail the request if we go past the end of the buffer.
867 if self.0.pos > self.0.end {
868 Err(fmt::Error)
869 } else {
870 Ok(())
871 }
872 }
873}
874
875/// A mutable reference to a byte buffer where a string can be written into.
876///
877/// The buffer will be automatically null terminated after the last written character.
878///
879/// # Invariants
880///
881/// * The first byte of `buffer` is always zero.
882/// * The length of `buffer` is at least 1.
883pub(crate) struct NullTerminatedFormatter<'a> {
884 buffer: &'a mut [u8],
885}
886
887impl<'a> NullTerminatedFormatter<'a> {
888 /// Create a new [`Self`] instance.
889 pub(crate) fn new(buffer: &'a mut [u8]) -> Option<NullTerminatedFormatter<'a>> {
890 *(buffer.first_mut()?) = 0;
891
892 // INVARIANT:
893 // - We wrote zero to the first byte above.
894 // - If buffer was not at least length 1, `buffer.first_mut()` would return None.
895 Some(Self { buffer })
896 }
897}
898
899impl Write for NullTerminatedFormatter<'_> {
900 fn write_str(&mut self, s: &str) -> fmt::Result {
901 let bytes = s.as_bytes();
902 let len = bytes.len();
903
904 // We want space for a zero. By type invariant, buffer length is always at least 1, so no
905 // underflow.
906 if len > self.buffer.len() - 1 {
907 return Err(fmt::Error);
908 }
909
910 let buffer = core::mem::take(&mut self.buffer);
911 // We break the zero start invariant for a short while.
912 buffer[..len].copy_from_slice(bytes);
913 // INVARIANT: We checked above that buffer will have size at least 1 after this assignment.
914 self.buffer = &mut buffer[len..];
915
916 // INVARIANT: We write zero to the first byte of the buffer.
917 self.buffer[0] = 0;
918
919 Ok(())
920 }
921}
922
923/// # Safety
924///
925/// - `string` must point to a null terminated string that is valid for read.
926unsafe fn kstrtobool_raw(string: *const u8) -> Result<bool> {
927 let mut result: bool = false;
928
929 // SAFETY:
930 // - By function safety requirement, `string` is a valid null-terminated string.
931 // - `result` is a valid `bool` that we own.
932 to_result(unsafe { bindings::kstrtobool(string, &mut result) })?;
933 Ok(result)
934}
935
936/// Convert common user inputs into boolean values using the kernel's `kstrtobool` function.
937///
938/// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or
939/// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`.
940///
941/// # Examples
942///
943/// ```
944/// # use kernel::{c_str, str::kstrtobool};
945///
946/// // Lowercase
947/// assert_eq!(kstrtobool(c_str!("true")), Ok(true));
948/// assert_eq!(kstrtobool(c_str!("tr")), Ok(true));
949/// assert_eq!(kstrtobool(c_str!("t")), Ok(true));
950/// assert_eq!(kstrtobool(c_str!("twrong")), Ok(true));
951/// assert_eq!(kstrtobool(c_str!("false")), Ok(false));
952/// assert_eq!(kstrtobool(c_str!("f")), Ok(false));
953/// assert_eq!(kstrtobool(c_str!("yes")), Ok(true));
954/// assert_eq!(kstrtobool(c_str!("no")), Ok(false));
955/// assert_eq!(kstrtobool(c_str!("on")), Ok(true));
956/// assert_eq!(kstrtobool(c_str!("off")), Ok(false));
957///
958/// // Camel case
959/// assert_eq!(kstrtobool(c_str!("True")), Ok(true));
960/// assert_eq!(kstrtobool(c_str!("False")), Ok(false));
961/// assert_eq!(kstrtobool(c_str!("Yes")), Ok(true));
962/// assert_eq!(kstrtobool(c_str!("No")), Ok(false));
963/// assert_eq!(kstrtobool(c_str!("On")), Ok(true));
964/// assert_eq!(kstrtobool(c_str!("Off")), Ok(false));
965///
966/// // All caps
967/// assert_eq!(kstrtobool(c_str!("TRUE")), Ok(true));
968/// assert_eq!(kstrtobool(c_str!("FALSE")), Ok(false));
969/// assert_eq!(kstrtobool(c_str!("YES")), Ok(true));
970/// assert_eq!(kstrtobool(c_str!("NO")), Ok(false));
971/// assert_eq!(kstrtobool(c_str!("ON")), Ok(true));
972/// assert_eq!(kstrtobool(c_str!("OFF")), Ok(false));
973///
974/// // Numeric
975/// assert_eq!(kstrtobool(c_str!("1")), Ok(true));
976/// assert_eq!(kstrtobool(c_str!("0")), Ok(false));
977///
978/// // Invalid input
979/// assert_eq!(kstrtobool(c_str!("invalid")), Err(EINVAL));
980/// assert_eq!(kstrtobool(c_str!("2")), Err(EINVAL));
981/// ```
982pub fn kstrtobool(string: &CStr) -> Result<bool> {
983 // SAFETY:
984 // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be
985 // null terminated.
986 // - `string` is live and thus the string is valid for read.
987 unsafe { kstrtobool_raw(string.as_char_ptr()) }
988}
989
990/// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`].
991///
992/// Only considers at most the first two bytes of `bytes`.
993pub fn kstrtobool_bytes(bytes: &[u8]) -> Result<bool> {
994 // `ktostrbool` only considers the first two bytes of the input.
995 let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0];
996 // SAFETY: `stack_string` is null terminated and it is live on the stack so
997 // it is valid for read.
998 unsafe { kstrtobool_raw(stack_string.as_ptr()) }
999}
1000
1001/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
1002///
1003/// Used for interoperability with kernel APIs that take C strings.
1004///
1005/// # Invariants
1006///
1007/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
1008///
1009/// # Examples
1010///
1011/// ```
1012/// use kernel::{str::CString, prelude::fmt};
1013///
1014/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
1015/// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes());
1016///
1017/// let tmp = "testing";
1018/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
1019/// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes());
1020///
1021/// // This fails because it has an embedded `NUL` byte.
1022/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
1023/// assert_eq!(s.is_ok(), false);
1024/// # Ok::<(), kernel::error::Error>(())
1025/// ```
1026pub struct CString {
1027 buf: KVec<u8>,
1028}
1029
1030impl CString {
1031 /// Creates an instance of [`CString`] from the given formatted arguments.
1032 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
1033 // Calculate the size needed (formatted string plus `NUL` terminator).
1034 let mut f = RawFormatter::new();
1035 f.write_fmt(args)?;
1036 f.write_str("\0")?;
1037 let size = f.bytes_written();
1038
1039 // Allocate a vector with the required number of bytes, and write to it.
1040 let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
1041 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
1042 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
1043 f.write_fmt(args)?;
1044 f.write_str("\0")?;
1045
1046 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
1047 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
1048 unsafe { buf.inc_len(f.bytes_written()) };
1049
1050 // Check that there are no `NUL` bytes before the end.
1051 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
1052 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
1053 // so `f.bytes_written() - 1` doesn't underflow.
1054 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
1055 if !ptr.is_null() {
1056 return Err(EINVAL);
1057 }
1058
1059 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
1060 // exist in the buffer.
1061 Ok(Self { buf })
1062 }
1063}
1064
1065impl Deref for CString {
1066 type Target = CStr;
1067
1068 fn deref(&self) -> &Self::Target {
1069 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
1070 // other `NUL` bytes exist.
1071 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
1072 }
1073}
1074
1075impl DerefMut for CString {
1076 fn deref_mut(&mut self) -> &mut Self::Target {
1077 // SAFETY: A `CString` is always NUL-terminated and contains no other
1078 // NUL bytes.
1079 unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
1080 }
1081}
1082
1083impl<'a> TryFrom<&'a CStr> for CString {
1084 type Error = AllocError;
1085
1086 fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
1087 let mut buf = KVec::new();
1088
1089 buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?;
1090
1091 // INVARIANT: The `CStr` and `CString` types have the same invariants for
1092 // the string data, and we copied it over without changes.
1093 Ok(CString { buf })
1094 }
1095}
1096
1097impl fmt::Debug for CString {
1098 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1099 fmt::Debug::fmt(&**self, f)
1100 }
1101}