kernel/alloc/
kvec.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Implementation of [`Vec`].
4
5use super::{
6    allocator::{KVmalloc, Kmalloc, Vmalloc},
7    layout::ArrayLayout,
8    AllocError, Allocator, Box, Flags,
9};
10use core::{
11    fmt,
12    marker::PhantomData,
13    mem::{ManuallyDrop, MaybeUninit},
14    ops::Deref,
15    ops::DerefMut,
16    ops::Index,
17    ops::IndexMut,
18    ptr,
19    ptr::NonNull,
20    slice,
21    slice::SliceIndex,
22};
23
24mod errors;
25pub use self::errors::{InsertError, PushError, RemoveError};
26
27/// Create a [`KVec`] containing the arguments.
28///
29/// New memory is allocated with `GFP_KERNEL`.
30///
31/// # Examples
32///
33/// ```
34/// let mut v = kernel::kvec![];
35/// v.push(1, GFP_KERNEL)?;
36/// assert_eq!(v, [1]);
37///
38/// let mut v = kernel::kvec![1; 3]?;
39/// v.push(4, GFP_KERNEL)?;
40/// assert_eq!(v, [1, 1, 1, 4]);
41///
42/// let mut v = kernel::kvec![1, 2, 3]?;
43/// v.push(4, GFP_KERNEL)?;
44/// assert_eq!(v, [1, 2, 3, 4]);
45///
46/// # Ok::<(), Error>(())
47/// ```
48#[macro_export]
49macro_rules! kvec {
50    () => (
51        $crate::alloc::KVec::new()
52    );
53    ($elem:expr; $n:expr) => (
54        $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
55    );
56    ($($x:expr),+ $(,)?) => (
57        match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
58            Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
59            Err(e) => Err(e),
60        }
61    );
62}
63
64/// The kernel's [`Vec`] type.
65///
66/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
67/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
68///
69/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
70/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
71///
72/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
73///
74/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
75/// capacity of the vector (the number of elements that currently fit into the vector), its length
76/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
77/// to allocate (and free) the backing buffer.
78///
79/// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
80/// and manually modified.
81///
82/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
83/// are added to the vector.
84///
85/// # Invariants
86///
87/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
88///   zero-sized types, is a dangling, well aligned pointer.
89///
90/// - `self.len` always represents the exact number of elements stored in the vector.
91///
92/// - `self.layout` represents the absolute number of elements that can be stored within the vector
93///   without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
94///   backing buffer to be larger than `layout`.
95///
96/// - `self.len()` is always less than or equal to `self.capacity()`.
97///
98/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
99///   was allocated with (and must be freed with).
100pub struct Vec<T, A: Allocator> {
101    ptr: NonNull<T>,
102    /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
103    ///
104    /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
105    /// elements we can still store without reallocating.
106    layout: ArrayLayout<T>,
107    len: usize,
108    _p: PhantomData<A>,
109}
110
111/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
112///
113/// # Examples
114///
115/// ```
116/// let mut v = KVec::new();
117/// v.push(1, GFP_KERNEL)?;
118/// assert_eq!(&v, &[1]);
119///
120/// # Ok::<(), Error>(())
121/// ```
122pub type KVec<T> = Vec<T, Kmalloc>;
123
124/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
125///
126/// # Examples
127///
128/// ```
129/// let mut v = VVec::new();
130/// v.push(1, GFP_KERNEL)?;
131/// assert_eq!(&v, &[1]);
132///
133/// # Ok::<(), Error>(())
134/// ```
135pub type VVec<T> = Vec<T, Vmalloc>;
136
137/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
138///
139/// # Examples
140///
141/// ```
142/// let mut v = KVVec::new();
143/// v.push(1, GFP_KERNEL)?;
144/// assert_eq!(&v, &[1]);
145///
146/// # Ok::<(), Error>(())
147/// ```
148pub type KVVec<T> = Vec<T, KVmalloc>;
149
150// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
151unsafe impl<T, A> Send for Vec<T, A>
152where
153    T: Send,
154    A: Allocator,
155{
156}
157
158// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
159unsafe impl<T, A> Sync for Vec<T, A>
160where
161    T: Sync,
162    A: Allocator,
163{
164}
165
166impl<T, A> Vec<T, A>
167where
168    A: Allocator,
169{
170    #[inline]
171    const fn is_zst() -> bool {
172        core::mem::size_of::<T>() == 0
173    }
174
175    /// Returns the number of elements that can be stored within the vector without allocating
176    /// additional memory.
177    pub fn capacity(&self) -> usize {
178        if const { Self::is_zst() } {
179            usize::MAX
180        } else {
181            self.layout.len()
182        }
183    }
184
185    /// Returns the number of elements stored within the vector.
186    #[inline]
187    pub fn len(&self) -> usize {
188        self.len
189    }
190
191    /// Increments `self.len` by `additional`.
192    ///
193    /// # Safety
194    ///
195    /// - `additional` must be less than or equal to `self.capacity - self.len`.
196    /// - All elements within the interval [`self.len`,`self.len + additional`) must be initialized.
197    #[inline]
198    pub unsafe fn inc_len(&mut self, additional: usize) {
199        // Guaranteed by the type invariant to never underflow.
200        debug_assert!(additional <= self.capacity() - self.len());
201        // INVARIANT: By the safety requirements of this method this represents the exact number of
202        // elements stored within `self`.
203        self.len += additional;
204    }
205
206    /// Decreases `self.len` by `count`.
207    ///
208    /// Returns a mutable slice to the elements forgotten by the vector. It is the caller's
209    /// responsibility to drop these elements if necessary.
210    ///
211    /// # Safety
212    ///
213    /// - `count` must be less than or equal to `self.len`.
214    unsafe fn dec_len(&mut self, count: usize) -> &mut [T] {
215        debug_assert!(count <= self.len());
216        // INVARIANT: We relinquish ownership of the elements within the range `[self.len - count,
217        // self.len)`, hence the updated value of `set.len` represents the exact number of elements
218        // stored within `self`.
219        self.len -= count;
220        // SAFETY: The memory after `self.len()` is guaranteed to contain `count` initialized
221        // elements of type `T`.
222        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr().add(self.len), count) }
223    }
224
225    /// Returns a slice of the entire vector.
226    #[inline]
227    pub fn as_slice(&self) -> &[T] {
228        self
229    }
230
231    /// Returns a mutable slice of the entire vector.
232    #[inline]
233    pub fn as_mut_slice(&mut self) -> &mut [T] {
234        self
235    }
236
237    /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
238    /// dangling raw pointer.
239    #[inline]
240    pub fn as_mut_ptr(&mut self) -> *mut T {
241        self.ptr.as_ptr()
242    }
243
244    /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
245    /// pointer.
246    #[inline]
247    pub fn as_ptr(&self) -> *const T {
248        self.ptr.as_ptr()
249    }
250
251    /// Returns `true` if the vector contains no elements, `false` otherwise.
252    ///
253    /// # Examples
254    ///
255    /// ```
256    /// let mut v = KVec::new();
257    /// assert!(v.is_empty());
258    ///
259    /// v.push(1, GFP_KERNEL);
260    /// assert!(!v.is_empty());
261    /// ```
262    #[inline]
263    pub fn is_empty(&self) -> bool {
264        self.len() == 0
265    }
266
267    /// Creates a new, empty `Vec<T, A>`.
268    ///
269    /// This method does not allocate by itself.
270    #[inline]
271    pub const fn new() -> Self {
272        // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
273        // - `ptr` is a properly aligned dangling pointer for type `T`,
274        // - `layout` is an empty `ArrayLayout` (zero capacity)
275        // - `len` is zero, since no elements can be or have been stored,
276        // - `A` is always valid.
277        Self {
278            ptr: NonNull::dangling(),
279            layout: ArrayLayout::empty(),
280            len: 0,
281            _p: PhantomData::<A>,
282        }
283    }
284
285    /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
286    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
287        // SAFETY:
288        // - `self.len` is smaller than `self.capacity` by the type invariant and hence, the
289        //   resulting pointer is guaranteed to be part of the same allocated object.
290        // - `self.len` can not overflow `isize`.
291        let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;
292
293        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
294        // and valid, but uninitialized.
295        unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
296    }
297
298    /// Appends an element to the back of the [`Vec`] instance.
299    ///
300    /// # Examples
301    ///
302    /// ```
303    /// let mut v = KVec::new();
304    /// v.push(1, GFP_KERNEL)?;
305    /// assert_eq!(&v, &[1]);
306    ///
307    /// v.push(2, GFP_KERNEL)?;
308    /// assert_eq!(&v, &[1, 2]);
309    /// # Ok::<(), Error>(())
310    /// ```
311    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
312        self.reserve(1, flags)?;
313        // SAFETY: The call to `reserve` was successful, so the capacity is at least one greater
314        // than the length.
315        unsafe { self.push_within_capacity_unchecked(v) };
316        Ok(())
317    }
318
319    /// Appends an element to the back of the [`Vec`] instance without reallocating.
320    ///
321    /// Fails if the vector does not have capacity for the new element.
322    ///
323    /// # Examples
324    ///
325    /// ```
326    /// let mut v = KVec::with_capacity(10, GFP_KERNEL)?;
327    /// for i in 0..10 {
328    ///     v.push_within_capacity(i)?;
329    /// }
330    ///
331    /// assert!(v.push_within_capacity(10).is_err());
332    /// # Ok::<(), Error>(())
333    /// ```
334    pub fn push_within_capacity(&mut self, v: T) -> Result<(), PushError<T>> {
335        if self.len() < self.capacity() {
336            // SAFETY: The length is less than the capacity.
337            unsafe { self.push_within_capacity_unchecked(v) };
338            Ok(())
339        } else {
340            Err(PushError(v))
341        }
342    }
343
344    /// Appends an element to the back of the [`Vec`] instance without reallocating.
345    ///
346    /// # Safety
347    ///
348    /// The length must be less than the capacity.
349    unsafe fn push_within_capacity_unchecked(&mut self, v: T) {
350        let spare = self.spare_capacity_mut();
351
352        // SAFETY: By the safety requirements, `spare` is non-empty.
353        unsafe { spare.get_unchecked_mut(0) }.write(v);
354
355        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
356        // by 1. We also know that the new length is <= capacity because the caller guarantees that
357        // the length is less than the capacity at the beginning of this function.
358        unsafe { self.inc_len(1) };
359    }
360
361    /// Inserts an element at the given index in the [`Vec`] instance.
362    ///
363    /// Fails if the vector does not have capacity for the new element. Panics if the index is out
364    /// of bounds.
365    ///
366    /// # Examples
367    ///
368    /// ```
369    /// use kernel::alloc::kvec::InsertError;
370    ///
371    /// let mut v = KVec::with_capacity(5, GFP_KERNEL)?;
372    /// for i in 0..5 {
373    ///     v.insert_within_capacity(0, i)?;
374    /// }
375    ///
376    /// assert!(matches!(v.insert_within_capacity(0, 5), Err(InsertError::OutOfCapacity(_))));
377    /// assert!(matches!(v.insert_within_capacity(1000, 5), Err(InsertError::IndexOutOfBounds(_))));
378    /// assert_eq!(v, [4, 3, 2, 1, 0]);
379    /// # Ok::<(), Error>(())
380    /// ```
381    pub fn insert_within_capacity(
382        &mut self,
383        index: usize,
384        element: T,
385    ) -> Result<(), InsertError<T>> {
386        let len = self.len();
387        if index > len {
388            return Err(InsertError::IndexOutOfBounds(element));
389        }
390
391        if len >= self.capacity() {
392            return Err(InsertError::OutOfCapacity(element));
393        }
394
395        // SAFETY: This is in bounds since `index <= len < capacity`.
396        let p = unsafe { self.as_mut_ptr().add(index) };
397        // INVARIANT: This breaks the Vec invariants by making `index` contain an invalid element,
398        // but we restore the invariants below.
399        // SAFETY: Both the src and dst ranges end no later than one element after the length.
400        // Since the length is less than the capacity, both ranges are in bounds of the allocation.
401        unsafe { ptr::copy(p, p.add(1), len - index) };
402        // INVARIANT: This restores the Vec invariants.
403        // SAFETY: The pointer is in-bounds of the allocation.
404        unsafe { ptr::write(p, element) };
405        // SAFETY: Index `len` contains a valid element due to the above copy and write.
406        unsafe { self.inc_len(1) };
407        Ok(())
408    }
409
410    /// Removes the last element from a vector and returns it, or `None` if it is empty.
411    ///
412    /// # Examples
413    ///
414    /// ```
415    /// let mut v = KVec::new();
416    /// v.push(1, GFP_KERNEL)?;
417    /// v.push(2, GFP_KERNEL)?;
418    /// assert_eq!(&v, &[1, 2]);
419    ///
420    /// assert_eq!(v.pop(), Some(2));
421    /// assert_eq!(v.pop(), Some(1));
422    /// assert_eq!(v.pop(), None);
423    /// # Ok::<(), Error>(())
424    /// ```
425    pub fn pop(&mut self) -> Option<T> {
426        if self.is_empty() {
427            return None;
428        }
429
430        let removed: *mut T = {
431            // SAFETY: We just checked that the length is at least one.
432            let slice = unsafe { self.dec_len(1) };
433            // SAFETY: The argument to `dec_len` was 1 so this returns a slice of length 1.
434            unsafe { slice.get_unchecked_mut(0) }
435        };
436
437        // SAFETY: The guarantees of `dec_len` allow us to take ownership of this value.
438        Some(unsafe { removed.read() })
439    }
440
441    /// Removes the element at the given index.
442    ///
443    /// # Examples
444    ///
445    /// ```
446    /// let mut v = kernel::kvec![1, 2, 3]?;
447    /// assert_eq!(v.remove(1)?, 2);
448    /// assert_eq!(v, [1, 3]);
449    /// # Ok::<(), Error>(())
450    /// ```
451    pub fn remove(&mut self, i: usize) -> Result<T, RemoveError> {
452        let value = {
453            let value_ref = self.get(i).ok_or(RemoveError)?;
454            // INVARIANT: This breaks the invariants by invalidating the value at index `i`, but we
455            // restore the invariants below.
456            // SAFETY: The value at index `i` is valid, because otherwise we would have already
457            // failed with `RemoveError`.
458            unsafe { ptr::read(value_ref) }
459        };
460
461        // SAFETY: We checked that `i` is in-bounds.
462        let p = unsafe { self.as_mut_ptr().add(i) };
463
464        // INVARIANT: After this call, the invalid value is at the last slot, so the Vec invariants
465        // are restored after the below call to `dec_len(1)`.
466        // SAFETY: `p.add(1).add(self.len - i - 1)` is `i+1+len-i-1 == len` elements after the
467        // beginning of the vector, so this is in-bounds of the vector's allocation.
468        unsafe { ptr::copy(p.add(1), p, self.len - i - 1) };
469
470        // SAFETY: Since the check at the beginning of this call did not fail with `RemoveError`,
471        // the length is at least one.
472        unsafe { self.dec_len(1) };
473
474        Ok(value)
475    }
476
477    /// Creates a new [`Vec`] instance with at least the given capacity.
478    ///
479    /// # Examples
480    ///
481    /// ```
482    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
483    ///
484    /// assert!(v.capacity() >= 20);
485    /// # Ok::<(), Error>(())
486    /// ```
487    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
488        let mut v = Vec::new();
489
490        v.reserve(capacity, flags)?;
491
492        Ok(v)
493    }
494
495    /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
496    ///
497    /// # Examples
498    ///
499    /// ```
500    /// let mut v = kernel::kvec![1, 2, 3]?;
501    /// v.reserve(1, GFP_KERNEL)?;
502    ///
503    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
504    ///
505    /// // SAFETY: We've just reserved memory for another element.
506    /// unsafe { ptr.add(len).write(4) };
507    /// len += 1;
508    ///
509    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
510    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
511    /// // from the exact same raw parts.
512    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
513    ///
514    /// assert_eq!(v, [1, 2, 3, 4]);
515    ///
516    /// # Ok::<(), Error>(())
517    /// ```
518    ///
519    /// # Safety
520    ///
521    /// If `T` is a ZST:
522    ///
523    /// - `ptr` must be a dangling, well aligned pointer.
524    ///
525    /// Otherwise:
526    ///
527    /// - `ptr` must have been allocated with the allocator `A`.
528    /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
529    /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
530    /// - The allocated size in bytes must not be larger than `isize::MAX`.
531    /// - `length` must be less than or equal to `capacity`.
532    /// - The first `length` elements must be initialized values of type `T`.
533    ///
534    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
535    /// `cap` and `len`.
536    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
537        let layout = if Self::is_zst() {
538            ArrayLayout::empty()
539        } else {
540            // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
541            // smaller than `isize::MAX`.
542            unsafe { ArrayLayout::new_unchecked(capacity) }
543        };
544
545        // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
546        // covered by the safety requirements of this function.
547        Self {
548            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
549            // memory allocation, allocated with `A`.
550            ptr: unsafe { NonNull::new_unchecked(ptr) },
551            layout,
552            len: length,
553            _p: PhantomData::<A>,
554        }
555    }
556
557    /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
558    ///
559    /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
560    /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
561    /// elements and free the allocation, if any.
562    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
563        let mut me = ManuallyDrop::new(self);
564        let len = me.len();
565        let capacity = me.capacity();
566        let ptr = me.as_mut_ptr();
567        (ptr, len, capacity)
568    }
569
570    /// Clears the vector, removing all values.
571    ///
572    /// Note that this method has no effect on the allocated capacity
573    /// of the vector.
574    ///
575    /// # Examples
576    ///
577    /// ```
578    /// let mut v = kernel::kvec![1, 2, 3]?;
579    ///
580    /// v.clear();
581    ///
582    /// assert!(v.is_empty());
583    /// # Ok::<(), Error>(())
584    /// ```
585    #[inline]
586    pub fn clear(&mut self) {
587        self.truncate(0);
588    }
589
590    /// Ensures that the capacity exceeds the length by at least `additional` elements.
591    ///
592    /// # Examples
593    ///
594    /// ```
595    /// let mut v = KVec::new();
596    /// v.push(1, GFP_KERNEL)?;
597    ///
598    /// v.reserve(10, GFP_KERNEL)?;
599    /// let cap = v.capacity();
600    /// assert!(cap >= 10);
601    ///
602    /// v.reserve(10, GFP_KERNEL)?;
603    /// let new_cap = v.capacity();
604    /// assert_eq!(new_cap, cap);
605    ///
606    /// # Ok::<(), Error>(())
607    /// ```
608    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
609        let len = self.len();
610        let cap = self.capacity();
611
612        if cap - len >= additional {
613            return Ok(());
614        }
615
616        if Self::is_zst() {
617            // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
618            return Err(AllocError);
619        }
620
621        // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
622        // multiplication by two won't overflow.
623        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
624        let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
625
626        // SAFETY:
627        // - `ptr` is valid because it's either `None` or comes from a previous call to
628        //   `A::realloc`.
629        // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
630        let ptr = unsafe {
631            A::realloc(
632                Some(self.ptr.cast()),
633                layout.into(),
634                self.layout.into(),
635                flags,
636            )?
637        };
638
639        // INVARIANT:
640        // - `layout` is some `ArrayLayout::<T>`,
641        // - `ptr` has been created by `A::realloc` from `layout`.
642        self.ptr = ptr.cast();
643        self.layout = layout;
644
645        Ok(())
646    }
647
648    /// Shortens the vector, setting the length to `len` and drops the removed values.
649    /// If `len` is greater than or equal to the current length, this does nothing.
650    ///
651    /// This has no effect on the capacity and will not allocate.
652    ///
653    /// # Examples
654    ///
655    /// ```
656    /// let mut v = kernel::kvec![1, 2, 3]?;
657    /// v.truncate(1);
658    /// assert_eq!(v.len(), 1);
659    /// assert_eq!(&v, &[1]);
660    ///
661    /// # Ok::<(), Error>(())
662    /// ```
663    pub fn truncate(&mut self, len: usize) {
664        if let Some(count) = self.len().checked_sub(len) {
665            // SAFETY: `count` is `self.len() - len` so it is guaranteed to be less than or
666            // equal to `self.len()`.
667            let ptr: *mut [T] = unsafe { self.dec_len(count) };
668
669            // SAFETY: the contract of `dec_len` guarantees that the elements in `ptr` are
670            // valid elements whose ownership has been transferred to the caller.
671            unsafe { ptr::drop_in_place(ptr) };
672        }
673    }
674
675    /// Takes ownership of all items in this vector without consuming the allocation.
676    ///
677    /// # Examples
678    ///
679    /// ```
680    /// let mut v = kernel::kvec![0, 1, 2, 3]?;
681    ///
682    /// for (i, j) in v.drain_all().enumerate() {
683    ///     assert_eq!(i, j);
684    /// }
685    ///
686    /// assert!(v.capacity() >= 4);
687    /// # Ok::<(), Error>(())
688    /// ```
689    pub fn drain_all(&mut self) -> DrainAll<'_, T> {
690        // SAFETY: This does not underflow the length.
691        let elems = unsafe { self.dec_len(self.len()) };
692        // INVARIANT: The first `len` elements of the spare capacity are valid values, and as we
693        // just set the length to zero, we may transfer ownership to the `DrainAll` object.
694        DrainAll {
695            elements: elems.iter_mut(),
696        }
697    }
698
699    /// Removes all elements that don't match the provided closure.
700    ///
701    /// # Examples
702    ///
703    /// ```
704    /// let mut v = kernel::kvec![1, 2, 3, 4]?;
705    /// v.retain(|i| *i % 2 == 0);
706    /// assert_eq!(v, [2, 4]);
707    /// # Ok::<(), Error>(())
708    /// ```
709    pub fn retain(&mut self, mut f: impl FnMut(&mut T) -> bool) {
710        let mut num_kept = 0;
711        let mut next_to_check = 0;
712        while let Some(to_check) = self.get_mut(next_to_check) {
713            if f(to_check) {
714                self.swap(num_kept, next_to_check);
715                num_kept += 1;
716            }
717            next_to_check += 1;
718        }
719        self.truncate(num_kept);
720    }
721}
722
723impl<T: Clone, A: Allocator> Vec<T, A> {
724    /// Extend the vector by `n` clones of `value`.
725    pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
726        if n == 0 {
727            return Ok(());
728        }
729
730        self.reserve(n, flags)?;
731
732        let spare = self.spare_capacity_mut();
733
734        for item in spare.iter_mut().take(n - 1) {
735            item.write(value.clone());
736        }
737
738        // We can write the last element directly without cloning needlessly.
739        spare[n - 1].write(value);
740
741        // SAFETY:
742        // - `self.len() + n < self.capacity()` due to the call to reserve above,
743        // - the loop and the line above initialized the next `n` elements.
744        unsafe { self.inc_len(n) };
745
746        Ok(())
747    }
748
749    /// Pushes clones of the elements of slice into the [`Vec`] instance.
750    ///
751    /// # Examples
752    ///
753    /// ```
754    /// let mut v = KVec::new();
755    /// v.push(1, GFP_KERNEL)?;
756    ///
757    /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
758    /// assert_eq!(&v, &[1, 20, 30, 40]);
759    ///
760    /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
761    /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
762    /// # Ok::<(), Error>(())
763    /// ```
764    pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
765        self.reserve(other.len(), flags)?;
766        for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
767            slot.write(item.clone());
768        }
769
770        // SAFETY:
771        // - `other.len()` spare entries have just been initialized, so it is safe to increase
772        //   the length by the same number.
773        // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
774        //   call.
775        unsafe { self.inc_len(other.len()) };
776        Ok(())
777    }
778
779    /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
780    pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
781        let mut v = Self::with_capacity(n, flags)?;
782
783        v.extend_with(n, value, flags)?;
784
785        Ok(v)
786    }
787
788    /// Resizes the [`Vec`] so that `len` is equal to `new_len`.
789    ///
790    /// If `new_len` is smaller than `len`, the `Vec` is [`Vec::truncate`]d.
791    /// If `new_len` is larger, each new slot is filled with clones of `value`.
792    ///
793    /// # Examples
794    ///
795    /// ```
796    /// let mut v = kernel::kvec![1, 2, 3]?;
797    /// v.resize(1, 42, GFP_KERNEL)?;
798    /// assert_eq!(&v, &[1]);
799    ///
800    /// v.resize(3, 42, GFP_KERNEL)?;
801    /// assert_eq!(&v, &[1, 42, 42]);
802    ///
803    /// # Ok::<(), Error>(())
804    /// ```
805    pub fn resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError> {
806        match new_len.checked_sub(self.len()) {
807            Some(n) => self.extend_with(n, value, flags),
808            None => {
809                self.truncate(new_len);
810                Ok(())
811            }
812        }
813    }
814}
815
816impl<T, A> Drop for Vec<T, A>
817where
818    A: Allocator,
819{
820    fn drop(&mut self) {
821        // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
822        unsafe {
823            ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
824                self.as_mut_ptr(),
825                self.len,
826            ))
827        };
828
829        // SAFETY:
830        // - `self.ptr` was previously allocated with `A`.
831        // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
832        unsafe { A::free(self.ptr.cast(), self.layout.into()) };
833    }
834}
835
836impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
837where
838    A: Allocator,
839{
840    fn from(b: Box<[T; N], A>) -> Vec<T, A> {
841        let len = b.len();
842        let ptr = Box::into_raw(b);
843
844        // SAFETY:
845        // - `b` has been allocated with `A`,
846        // - `ptr` fulfills the alignment requirements for `T`,
847        // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
848        // - all elements within `b` are initialized values of `T`,
849        // - `len` does not exceed `isize::MAX`.
850        unsafe { Vec::from_raw_parts(ptr as _, len, len) }
851    }
852}
853
854impl<T> Default for KVec<T> {
855    #[inline]
856    fn default() -> Self {
857        Self::new()
858    }
859}
860
861impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
862    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
863        fmt::Debug::fmt(&**self, f)
864    }
865}
866
867impl<T, A> Deref for Vec<T, A>
868where
869    A: Allocator,
870{
871    type Target = [T];
872
873    #[inline]
874    fn deref(&self) -> &[T] {
875        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
876        // initialized elements of type `T`.
877        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
878    }
879}
880
881impl<T, A> DerefMut for Vec<T, A>
882where
883    A: Allocator,
884{
885    #[inline]
886    fn deref_mut(&mut self) -> &mut [T] {
887        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
888        // initialized elements of type `T`.
889        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
890    }
891}
892
893impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
894
895impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
896where
897    A: Allocator,
898{
899    type Output = I::Output;
900
901    #[inline]
902    fn index(&self, index: I) -> &Self::Output {
903        Index::index(&**self, index)
904    }
905}
906
907impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
908where
909    A: Allocator,
910{
911    #[inline]
912    fn index_mut(&mut self, index: I) -> &mut Self::Output {
913        IndexMut::index_mut(&mut **self, index)
914    }
915}
916
917macro_rules! impl_slice_eq {
918    ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
919        $(
920            impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
921            where
922                T: PartialEq<U>,
923            {
924                #[inline]
925                fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
926            }
927        )*
928    }
929}
930
931impl_slice_eq! {
932    [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
933    [A: Allocator] Vec<T, A>, &[U],
934    [A: Allocator] Vec<T, A>, &mut [U],
935    [A: Allocator] &[T], Vec<U, A>,
936    [A: Allocator] &mut [T], Vec<U, A>,
937    [A: Allocator] Vec<T, A>, [U],
938    [A: Allocator] [T], Vec<U, A>,
939    [A: Allocator, const N: usize] Vec<T, A>, [U; N],
940    [A: Allocator, const N: usize] Vec<T, A>, &[U; N],
941}
942
943impl<'a, T, A> IntoIterator for &'a Vec<T, A>
944where
945    A: Allocator,
946{
947    type Item = &'a T;
948    type IntoIter = slice::Iter<'a, T>;
949
950    fn into_iter(self) -> Self::IntoIter {
951        self.iter()
952    }
953}
954
955impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
956where
957    A: Allocator,
958{
959    type Item = &'a mut T;
960    type IntoIter = slice::IterMut<'a, T>;
961
962    fn into_iter(self) -> Self::IntoIter {
963        self.iter_mut()
964    }
965}
966
967/// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
968///
969/// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
970/// [`IntoIterator`] trait).
971///
972/// # Examples
973///
974/// ```
975/// let v = kernel::kvec![0, 1, 2]?;
976/// let iter = v.into_iter();
977///
978/// # Ok::<(), Error>(())
979/// ```
980pub struct IntoIter<T, A: Allocator> {
981    ptr: *mut T,
982    buf: NonNull<T>,
983    len: usize,
984    layout: ArrayLayout<T>,
985    _p: PhantomData<A>,
986}
987
988impl<T, A> IntoIter<T, A>
989where
990    A: Allocator,
991{
992    fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
993        let me = ManuallyDrop::new(self);
994        let ptr = me.ptr;
995        let buf = me.buf;
996        let len = me.len;
997        let cap = me.layout.len();
998        (ptr, buf, len, cap)
999    }
1000
1001    /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
1002    ///
1003    /// # Examples
1004    ///
1005    /// ```
1006    /// let v = kernel::kvec![1, 2, 3]?;
1007    /// let mut it = v.into_iter();
1008    ///
1009    /// assert_eq!(it.next(), Some(1));
1010    ///
1011    /// let v = it.collect(GFP_KERNEL);
1012    /// assert_eq!(v, [2, 3]);
1013    ///
1014    /// # Ok::<(), Error>(())
1015    /// ```
1016    ///
1017    /// # Implementation details
1018    ///
1019    /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
1020    /// in the kernel, namely:
1021    ///
1022    /// - Rust's specialization feature is unstable. This prevents us to optimize for the special
1023    ///   case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
1024    /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
1025    ///   doesn't require this type to be `'static`.
1026    /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
1027    ///   we can't properly handle allocation failures.
1028    /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
1029    ///   flags.
1030    ///
1031    /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
1032    /// `Vec` again.
1033    ///
1034    /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
1035    /// buffer. However, this backing buffer may be shrunk to the actual count of elements.
1036    pub fn collect(self, flags: Flags) -> Vec<T, A> {
1037        let old_layout = self.layout;
1038        let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
1039        let has_advanced = ptr != buf.as_ptr();
1040
1041        if has_advanced {
1042            // Copy the contents we have advanced to at the beginning of the buffer.
1043            //
1044            // SAFETY:
1045            // - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
1046            // - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
1047            // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
1048            //   each other,
1049            // - both `ptr` and `buf.ptr()` are properly aligned.
1050            unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
1051            ptr = buf.as_ptr();
1052
1053            // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()` by the type
1054            // invariant.
1055            let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
1056
1057            // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed by
1058            // the type invariant to be smaller than `cap`. Depending on `realloc` this operation
1059            // may shrink the buffer or leave it as it is.
1060            ptr = match unsafe {
1061                A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags)
1062            } {
1063                // If we fail to shrink, which likely can't even happen, continue with the existing
1064                // buffer.
1065                Err(_) => ptr,
1066                Ok(ptr) => {
1067                    cap = len;
1068                    ptr.as_ptr().cast()
1069                }
1070            };
1071        }
1072
1073        // SAFETY: If the iterator has been advanced, the advanced elements have been copied to
1074        // the beginning of the buffer and `len` has been adjusted accordingly.
1075        //
1076        // - `ptr` is guaranteed to point to the start of the backing buffer.
1077        // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
1078        // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
1079        //   `Vec`.
1080        unsafe { Vec::from_raw_parts(ptr, len, cap) }
1081    }
1082}
1083
1084impl<T, A> Iterator for IntoIter<T, A>
1085where
1086    A: Allocator,
1087{
1088    type Item = T;
1089
1090    /// # Examples
1091    ///
1092    /// ```
1093    /// let v = kernel::kvec![1, 2, 3]?;
1094    /// let mut it = v.into_iter();
1095    ///
1096    /// assert_eq!(it.next(), Some(1));
1097    /// assert_eq!(it.next(), Some(2));
1098    /// assert_eq!(it.next(), Some(3));
1099    /// assert_eq!(it.next(), None);
1100    ///
1101    /// # Ok::<(), Error>(())
1102    /// ```
1103    fn next(&mut self) -> Option<T> {
1104        if self.len == 0 {
1105            return None;
1106        }
1107
1108        let current = self.ptr;
1109
1110        // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
1111        // by one guarantees that.
1112        unsafe { self.ptr = self.ptr.add(1) };
1113
1114        self.len -= 1;
1115
1116        // SAFETY: `current` is guaranteed to point at a valid element within the buffer.
1117        Some(unsafe { current.read() })
1118    }
1119
1120    /// # Examples
1121    ///
1122    /// ```
1123    /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
1124    /// let mut iter = v.into_iter();
1125    /// let size = iter.size_hint().0;
1126    ///
1127    /// iter.next();
1128    /// assert_eq!(iter.size_hint().0, size - 1);
1129    ///
1130    /// iter.next();
1131    /// assert_eq!(iter.size_hint().0, size - 2);
1132    ///
1133    /// iter.next();
1134    /// assert_eq!(iter.size_hint().0, size - 3);
1135    ///
1136    /// # Ok::<(), Error>(())
1137    /// ```
1138    fn size_hint(&self) -> (usize, Option<usize>) {
1139        (self.len, Some(self.len))
1140    }
1141}
1142
1143impl<T, A> Drop for IntoIter<T, A>
1144where
1145    A: Allocator,
1146{
1147    fn drop(&mut self) {
1148        // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
1149        unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
1150
1151        // SAFETY:
1152        // - `self.buf` was previously allocated with `A`.
1153        // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
1154        unsafe { A::free(self.buf.cast(), self.layout.into()) };
1155    }
1156}
1157
1158impl<T, A> IntoIterator for Vec<T, A>
1159where
1160    A: Allocator,
1161{
1162    type Item = T;
1163    type IntoIter = IntoIter<T, A>;
1164
1165    /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
1166    /// vector (from start to end).
1167    ///
1168    /// # Examples
1169    ///
1170    /// ```
1171    /// let v = kernel::kvec![1, 2]?;
1172    /// let mut v_iter = v.into_iter();
1173    ///
1174    /// let first_element: Option<u32> = v_iter.next();
1175    ///
1176    /// assert_eq!(first_element, Some(1));
1177    /// assert_eq!(v_iter.next(), Some(2));
1178    /// assert_eq!(v_iter.next(), None);
1179    ///
1180    /// # Ok::<(), Error>(())
1181    /// ```
1182    ///
1183    /// ```
1184    /// let v = kernel::kvec![];
1185    /// let mut v_iter = v.into_iter();
1186    ///
1187    /// let first_element: Option<u32> = v_iter.next();
1188    ///
1189    /// assert_eq!(first_element, None);
1190    ///
1191    /// # Ok::<(), Error>(())
1192    /// ```
1193    #[inline]
1194    fn into_iter(self) -> Self::IntoIter {
1195        let buf = self.ptr;
1196        let layout = self.layout;
1197        let (ptr, len, _) = self.into_raw_parts();
1198
1199        IntoIter {
1200            ptr,
1201            buf,
1202            len,
1203            layout,
1204            _p: PhantomData::<A>,
1205        }
1206    }
1207}
1208
1209/// An iterator that owns all items in a vector, but does not own its allocation.
1210///
1211/// # Invariants
1212///
1213/// Every `&mut T` returned by the iterator references a `T` that the iterator may take ownership
1214/// of.
1215pub struct DrainAll<'vec, T> {
1216    elements: slice::IterMut<'vec, T>,
1217}
1218
1219impl<'vec, T> Iterator for DrainAll<'vec, T> {
1220    type Item = T;
1221
1222    fn next(&mut self) -> Option<T> {
1223        let elem: *mut T = self.elements.next()?;
1224        // SAFETY: By the type invariants, we may take ownership of this value.
1225        Some(unsafe { elem.read() })
1226    }
1227
1228    fn size_hint(&self) -> (usize, Option<usize>) {
1229        self.elements.size_hint()
1230    }
1231}
1232
1233impl<'vec, T> Drop for DrainAll<'vec, T> {
1234    fn drop(&mut self) {
1235        if core::mem::needs_drop::<T>() {
1236            let iter = core::mem::take(&mut self.elements);
1237            let ptr: *mut [T] = iter.into_slice();
1238            // SAFETY: By the type invariants, we own these values so we may destroy them.
1239            unsafe { ptr::drop_in_place(ptr) };
1240        }
1241    }
1242}
1243
1244#[macros::kunit_tests(rust_kvec_kunit)]
1245mod tests {
1246    use super::*;
1247    use crate::prelude::*;
1248
1249    #[test]
1250    fn test_kvec_retain() {
1251        /// Verify correctness for one specific function.
1252        #[expect(clippy::needless_range_loop)]
1253        fn verify(c: &[bool]) {
1254            let mut vec1: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
1255            let mut vec2: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
1256
1257            for i in 0..c.len() {
1258                vec1.push_within_capacity(i).unwrap();
1259                if c[i] {
1260                    vec2.push_within_capacity(i).unwrap();
1261                }
1262            }
1263
1264            vec1.retain(|i| c[*i]);
1265
1266            assert_eq!(vec1, vec2);
1267        }
1268
1269        /// Add one to a binary integer represented as a boolean array.
1270        fn add(value: &mut [bool]) {
1271            let mut carry = true;
1272            for v in value {
1273                let new_v = carry != *v;
1274                carry = carry && *v;
1275                *v = new_v;
1276            }
1277        }
1278
1279        // This boolean array represents a function from index to boolean. We check that `retain`
1280        // behaves correctly for all possible boolean arrays of every possible length less than
1281        // ten.
1282        let mut func = KVec::with_capacity(10, GFP_KERNEL).unwrap();
1283        for len in 0..10 {
1284            for _ in 0u32..1u32 << len {
1285                verify(&func);
1286                add(&mut func);
1287            }
1288            func.push_within_capacity(false).unwrap();
1289        }
1290    }
1291}