kernel/alloc/kbox.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Implementation of [`Box`].
4
5#[allow(unused_imports)] // Used in doc comments.
6use super::allocator::{KVmalloc, Kmalloc, Vmalloc};
7use super::{AllocError, Allocator, Flags, NumaNode};
8use core::alloc::Layout;
9use core::borrow::{Borrow, BorrowMut};
10use core::fmt;
11use core::marker::PhantomData;
12use core::mem::ManuallyDrop;
13use core::mem::MaybeUninit;
14use core::ops::{Deref, DerefMut};
15use core::pin::Pin;
16use core::ptr::NonNull;
17use core::result::Result;
18
19use crate::ffi::c_void;
20use crate::init::InPlaceInit;
21use crate::types::ForeignOwnable;
22use pin_init::{InPlaceWrite, Init, PinInit, ZeroableOption};
23
24/// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`.
25///
26/// This is the kernel's version of the Rust stdlib's `Box`. There are several differences,
27/// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not
28/// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`]
29/// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions
30/// that may allocate memory are fallible.
31///
32/// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`].
33/// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]).
34///
35/// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed.
36///
37/// # Examples
38///
39/// ```
40/// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?;
41///
42/// assert_eq!(*b, 24_u64);
43/// # Ok::<(), Error>(())
44/// ```
45///
46/// ```
47/// # use kernel::bindings;
48/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
49/// struct Huge([u8; SIZE]);
50///
51/// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err());
52/// ```
53///
54/// ```
55/// # use kernel::bindings;
56/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
57/// struct Huge([u8; SIZE]);
58///
59/// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok());
60/// ```
61///
62/// [`Box`]es can also be used to store trait objects by coercing their type:
63///
64/// ```
65/// trait FooTrait {}
66///
67/// struct FooStruct;
68/// impl FooTrait for FooStruct {}
69///
70/// let _ = KBox::new(FooStruct, GFP_KERNEL)? as KBox<dyn FooTrait>;
71/// # Ok::<(), Error>(())
72/// ```
73///
74/// # Invariants
75///
76/// `self.0` is always properly aligned and either points to memory allocated with `A` or, for
77/// zero-sized types, is a dangling, well aligned pointer.
78#[repr(transparent)]
79#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
80pub struct Box<#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, pointee)] T: ?Sized, A: Allocator>(
81 NonNull<T>,
82 PhantomData<A>,
83);
84
85// This is to allow coercion from `Box<T, A>` to `Box<U, A>` if `T` can be converted to the
86// dynamically-sized type (DST) `U`.
87#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
88impl<T, U, A> core::ops::CoerceUnsized<Box<U, A>> for Box<T, A>
89where
90 T: ?Sized + core::marker::Unsize<U>,
91 U: ?Sized,
92 A: Allocator,
93{
94}
95
96// This is to allow `Box<U, A>` to be dispatched on when `Box<T, A>` can be coerced into `Box<U,
97// A>`.
98#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
99impl<T, U, A> core::ops::DispatchFromDyn<Box<U, A>> for Box<T, A>
100where
101 T: ?Sized + core::marker::Unsize<U>,
102 U: ?Sized,
103 A: Allocator,
104{
105}
106
107/// Type alias for [`Box`] with a [`Kmalloc`] allocator.
108///
109/// # Examples
110///
111/// ```
112/// let b = KBox::new(24_u64, GFP_KERNEL)?;
113///
114/// assert_eq!(*b, 24_u64);
115/// # Ok::<(), Error>(())
116/// ```
117pub type KBox<T> = Box<T, super::allocator::Kmalloc>;
118
119/// Type alias for [`Box`] with a [`Vmalloc`] allocator.
120///
121/// # Examples
122///
123/// ```
124/// let b = VBox::new(24_u64, GFP_KERNEL)?;
125///
126/// assert_eq!(*b, 24_u64);
127/// # Ok::<(), Error>(())
128/// ```
129pub type VBox<T> = Box<T, super::allocator::Vmalloc>;
130
131/// Type alias for [`Box`] with a [`KVmalloc`] allocator.
132///
133/// # Examples
134///
135/// ```
136/// let b = KVBox::new(24_u64, GFP_KERNEL)?;
137///
138/// assert_eq!(*b, 24_u64);
139/// # Ok::<(), Error>(())
140/// ```
141pub type KVBox<T> = Box<T, super::allocator::KVmalloc>;
142
143// SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee:
144// <https://doc.rust-lang.org/stable/std/option/index.html#representation>).
145unsafe impl<T, A: Allocator> ZeroableOption for Box<T, A> {}
146
147// SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`.
148unsafe impl<T, A> Send for Box<T, A>
149where
150 T: Send + ?Sized,
151 A: Allocator,
152{
153}
154
155// SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`.
156unsafe impl<T, A> Sync for Box<T, A>
157where
158 T: Sync + ?Sized,
159 A: Allocator,
160{
161}
162
163impl<T, A> Box<T, A>
164where
165 T: ?Sized,
166 A: Allocator,
167{
168 /// Creates a new `Box<T, A>` from a raw pointer.
169 ///
170 /// # Safety
171 ///
172 /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently
173 /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the
174 /// `Box`.
175 ///
176 /// For ZSTs, `raw` must be a dangling, well aligned pointer.
177 #[inline]
178 pub const unsafe fn from_raw(raw: *mut T) -> Self {
179 // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function.
180 // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer.
181 Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData)
182 }
183
184 /// Consumes the `Box<T, A>` and returns a raw pointer.
185 ///
186 /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive
187 /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the
188 /// allocation, if any.
189 ///
190 /// # Examples
191 ///
192 /// ```
193 /// let x = KBox::new(24, GFP_KERNEL)?;
194 /// let ptr = KBox::into_raw(x);
195 /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`.
196 /// let x = unsafe { KBox::from_raw(ptr) };
197 ///
198 /// assert_eq!(*x, 24);
199 /// # Ok::<(), Error>(())
200 /// ```
201 #[inline]
202 pub fn into_raw(b: Self) -> *mut T {
203 ManuallyDrop::new(b).0.as_ptr()
204 }
205
206 /// Consumes and leaks the `Box<T, A>` and returns a mutable reference.
207 ///
208 /// See [`Box::into_raw`] for more details.
209 #[inline]
210 pub fn leak<'a>(b: Self) -> &'a mut T {
211 // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer
212 // which points to an initialized instance of `T`.
213 unsafe { &mut *Box::into_raw(b) }
214 }
215}
216
217impl<T, A> Box<MaybeUninit<T>, A>
218where
219 A: Allocator,
220{
221 /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`.
222 ///
223 /// It is undefined behavior to call this function while the value inside of `b` is not yet
224 /// fully initialized.
225 ///
226 /// # Safety
227 ///
228 /// Callers must ensure that the value inside of `b` is in an initialized state.
229 pub unsafe fn assume_init(self) -> Box<T, A> {
230 let raw = Self::into_raw(self);
231
232 // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements
233 // of this function, the value inside the `Box` is in an initialized state. Hence, it is
234 // safe to reconstruct the `Box` as `Box<T, A>`.
235 unsafe { Box::from_raw(raw.cast()) }
236 }
237
238 /// Writes the value and converts to `Box<T, A>`.
239 pub fn write(mut self, value: T) -> Box<T, A> {
240 (*self).write(value);
241
242 // SAFETY: We've just initialized `b`'s value.
243 unsafe { self.assume_init() }
244 }
245}
246
247impl<T, A> Box<T, A>
248where
249 A: Allocator,
250{
251 /// Creates a new `Box<T, A>` and initializes its contents with `x`.
252 ///
253 /// New memory is allocated with `A`. The allocation may fail, in which case an error is
254 /// returned. For ZSTs no memory is allocated.
255 pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> {
256 let b = Self::new_uninit(flags)?;
257 Ok(Box::write(b, x))
258 }
259
260 /// Creates a new `Box<T, A>` with uninitialized contents.
261 ///
262 /// New memory is allocated with `A`. The allocation may fail, in which case an error is
263 /// returned. For ZSTs no memory is allocated.
264 ///
265 /// # Examples
266 ///
267 /// ```
268 /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?;
269 /// let b = KBox::write(b, 24);
270 ///
271 /// assert_eq!(*b, 24_u64);
272 /// # Ok::<(), Error>(())
273 /// ```
274 pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> {
275 let layout = Layout::new::<MaybeUninit<T>>();
276 let ptr = A::alloc(layout, flags, NumaNode::NO_NODE)?;
277
278 // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`,
279 // which is sufficient in size and alignment for storing a `T`.
280 Ok(Box(ptr.cast(), PhantomData))
281 }
282
283 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be
284 /// pinned in memory and can't be moved.
285 #[inline]
286 pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError>
287 where
288 A: 'static,
289 {
290 Ok(Self::new(x, flags)?.into())
291 }
292
293 /// Construct a pinned slice of elements `Pin<Box<[T], A>>`.
294 ///
295 /// This is a convenient means for creation of e.g. slices of structrures containing spinlocks
296 /// or mutexes.
297 ///
298 /// # Examples
299 ///
300 /// ```
301 /// use kernel::sync::{new_spinlock, SpinLock};
302 ///
303 /// struct Inner {
304 /// a: u32,
305 /// b: u32,
306 /// }
307 ///
308 /// #[pin_data]
309 /// struct Example {
310 /// c: u32,
311 /// #[pin]
312 /// d: SpinLock<Inner>,
313 /// }
314 ///
315 /// impl Example {
316 /// fn new() -> impl PinInit<Self, Error> {
317 /// try_pin_init!(Self {
318 /// c: 10,
319 /// d <- new_spinlock!(Inner { a: 20, b: 30 }),
320 /// })
321 /// }
322 /// }
323 ///
324 /// // Allocate a boxed slice of 10 `Example`s.
325 /// let s = KBox::pin_slice(
326 /// | _i | Example::new(),
327 /// 10,
328 /// GFP_KERNEL
329 /// )?;
330 ///
331 /// assert_eq!(s[5].c, 10);
332 /// assert_eq!(s[3].d.lock().a, 20);
333 /// # Ok::<(), Error>(())
334 /// ```
335 pub fn pin_slice<Func, Item, E>(
336 mut init: Func,
337 len: usize,
338 flags: Flags,
339 ) -> Result<Pin<Box<[T], A>>, E>
340 where
341 Func: FnMut(usize) -> Item,
342 Item: PinInit<T, E>,
343 E: From<AllocError>,
344 {
345 let mut buffer = super::Vec::<T, A>::with_capacity(len, flags)?;
346 for i in 0..len {
347 let ptr = buffer.spare_capacity_mut().as_mut_ptr().cast();
348 // SAFETY:
349 // - `ptr` is a valid pointer to uninitialized memory.
350 // - `ptr` is not used if an error is returned.
351 // - `ptr` won't be moved until it is dropped, i.e. it is pinned.
352 unsafe { init(i).__pinned_init(ptr)? };
353
354 // SAFETY:
355 // - `i + 1 <= len`, hence we don't exceed the capacity, due to the call to
356 // `with_capacity()` above.
357 // - The new value at index buffer.len() + 1 is the only element being added here, and
358 // it has been initialized above by `init(i).__pinned_init(ptr)`.
359 unsafe { buffer.inc_len(1) };
360 }
361
362 let (ptr, _, _) = buffer.into_raw_parts();
363 let slice = core::ptr::slice_from_raw_parts_mut(ptr, len);
364
365 // SAFETY: `slice` points to an allocation allocated with `A` (`buffer`) and holds a valid
366 // `[T]`.
367 Ok(Pin::from(unsafe { Box::from_raw(slice) }))
368 }
369
370 /// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement
371 /// [`Unpin`], then `x` will be pinned in memory and can't be moved.
372 pub fn into_pin(this: Self) -> Pin<Self> {
373 this.into()
374 }
375
376 /// Forgets the contents (does not run the destructor), but keeps the allocation.
377 fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> {
378 let ptr = Self::into_raw(this);
379
380 // SAFETY: `ptr` is valid, because it came from `Box::into_raw`.
381 unsafe { Box::from_raw(ptr.cast()) }
382 }
383
384 /// Drops the contents, but keeps the allocation.
385 ///
386 /// # Examples
387 ///
388 /// ```
389 /// let value = KBox::new([0; 32], GFP_KERNEL)?;
390 /// assert_eq!(*value, [0; 32]);
391 /// let value = KBox::drop_contents(value);
392 /// // Now we can re-use `value`:
393 /// let value = KBox::write(value, [1; 32]);
394 /// assert_eq!(*value, [1; 32]);
395 /// # Ok::<(), Error>(())
396 /// ```
397 pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> {
398 let ptr = this.0.as_ptr();
399
400 // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the
401 // value stored in `this` again.
402 unsafe { core::ptr::drop_in_place(ptr) };
403
404 Self::forget_contents(this)
405 }
406
407 /// Moves the `Box`'s value out of the `Box` and consumes the `Box`.
408 pub fn into_inner(b: Self) -> T {
409 // SAFETY: By the type invariant `&*b` is valid for `read`.
410 let value = unsafe { core::ptr::read(&*b) };
411 let _ = Self::forget_contents(b);
412 value
413 }
414}
415
416impl<T, A> From<Box<T, A>> for Pin<Box<T, A>>
417where
418 T: ?Sized,
419 A: Allocator,
420{
421 /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
422 /// `*b` will be pinned in memory and can't be moved.
423 ///
424 /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory.
425 fn from(b: Box<T, A>) -> Self {
426 // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long
427 // as `T` does not implement `Unpin`.
428 unsafe { Pin::new_unchecked(b) }
429 }
430}
431
432impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A>
433where
434 A: Allocator + 'static,
435{
436 type Initialized = Box<T, A>;
437
438 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
439 let slot = self.as_mut_ptr();
440 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
441 // slot is valid.
442 unsafe { init.__init(slot)? };
443 // SAFETY: All fields have been initialized.
444 Ok(unsafe { Box::assume_init(self) })
445 }
446
447 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
448 let slot = self.as_mut_ptr();
449 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
450 // slot is valid and will not be moved, because we pin it later.
451 unsafe { init.__pinned_init(slot)? };
452 // SAFETY: All fields have been initialized.
453 Ok(unsafe { Box::assume_init(self) }.into())
454 }
455}
456
457impl<T, A> InPlaceInit<T> for Box<T, A>
458where
459 A: Allocator + 'static,
460{
461 type PinnedSelf = Pin<Self>;
462
463 #[inline]
464 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
465 where
466 E: From<AllocError>,
467 {
468 Box::<_, A>::new_uninit(flags)?.write_pin_init(init)
469 }
470
471 #[inline]
472 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
473 where
474 E: From<AllocError>,
475 {
476 Box::<_, A>::new_uninit(flags)?.write_init(init)
477 }
478}
479
480// SAFETY: The pointer returned by `into_foreign` comes from a well aligned
481// pointer to `T` allocated by `A`.
482unsafe impl<T: 'static, A> ForeignOwnable for Box<T, A>
483where
484 A: Allocator,
485{
486 const FOREIGN_ALIGN: usize = if core::mem::align_of::<T>() < A::MIN_ALIGN {
487 A::MIN_ALIGN
488 } else {
489 core::mem::align_of::<T>()
490 };
491
492 type Borrowed<'a> = &'a T;
493 type BorrowedMut<'a> = &'a mut T;
494
495 fn into_foreign(self) -> *mut c_void {
496 Box::into_raw(self).cast()
497 }
498
499 unsafe fn from_foreign(ptr: *mut c_void) -> Self {
500 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
501 // call to `Self::into_foreign`.
502 unsafe { Box::from_raw(ptr.cast()) }
503 }
504
505 unsafe fn borrow<'a>(ptr: *mut c_void) -> &'a T {
506 // SAFETY: The safety requirements of this method ensure that the object remains alive and
507 // immutable for the duration of 'a.
508 unsafe { &*ptr.cast() }
509 }
510
511 unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> &'a mut T {
512 let ptr = ptr.cast();
513 // SAFETY: The safety requirements of this method ensure that the pointer is valid and that
514 // nothing else will access the value for the duration of 'a.
515 unsafe { &mut *ptr }
516 }
517}
518
519// SAFETY: The pointer returned by `into_foreign` comes from a well aligned
520// pointer to `T` allocated by `A`.
521unsafe impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>>
522where
523 A: Allocator,
524{
525 const FOREIGN_ALIGN: usize = <Box<T, A> as ForeignOwnable>::FOREIGN_ALIGN;
526 type Borrowed<'a> = Pin<&'a T>;
527 type BorrowedMut<'a> = Pin<&'a mut T>;
528
529 fn into_foreign(self) -> *mut c_void {
530 // SAFETY: We are still treating the box as pinned.
531 Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }).cast()
532 }
533
534 unsafe fn from_foreign(ptr: *mut c_void) -> Self {
535 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
536 // call to `Self::into_foreign`.
537 unsafe { Pin::new_unchecked(Box::from_raw(ptr.cast())) }
538 }
539
540 unsafe fn borrow<'a>(ptr: *mut c_void) -> Pin<&'a T> {
541 // SAFETY: The safety requirements for this function ensure that the object is still alive,
542 // so it is safe to dereference the raw pointer.
543 // The safety requirements of `from_foreign` also ensure that the object remains alive for
544 // the lifetime of the returned value.
545 let r = unsafe { &*ptr.cast() };
546
547 // SAFETY: This pointer originates from a `Pin<Box<T>>`.
548 unsafe { Pin::new_unchecked(r) }
549 }
550
551 unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> Pin<&'a mut T> {
552 let ptr = ptr.cast();
553 // SAFETY: The safety requirements for this function ensure that the object is still alive,
554 // so it is safe to dereference the raw pointer.
555 // The safety requirements of `from_foreign` also ensure that the object remains alive for
556 // the lifetime of the returned value.
557 let r = unsafe { &mut *ptr };
558
559 // SAFETY: This pointer originates from a `Pin<Box<T>>`.
560 unsafe { Pin::new_unchecked(r) }
561 }
562}
563
564impl<T, A> Deref for Box<T, A>
565where
566 T: ?Sized,
567 A: Allocator,
568{
569 type Target = T;
570
571 fn deref(&self) -> &T {
572 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
573 // instance of `T`.
574 unsafe { self.0.as_ref() }
575 }
576}
577
578impl<T, A> DerefMut for Box<T, A>
579where
580 T: ?Sized,
581 A: Allocator,
582{
583 fn deref_mut(&mut self) -> &mut T {
584 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
585 // instance of `T`.
586 unsafe { self.0.as_mut() }
587 }
588}
589
590/// # Examples
591///
592/// ```
593/// # use core::borrow::Borrow;
594/// # use kernel::alloc::KBox;
595/// struct Foo<B: Borrow<u32>>(B);
596///
597/// // Owned instance.
598/// let owned = Foo(1);
599///
600/// // Owned instance using `KBox`.
601/// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?);
602///
603/// let i = 1;
604/// // Borrowed from `i`.
605/// let borrowed = Foo(&i);
606/// # Ok::<(), Error>(())
607/// ```
608impl<T, A> Borrow<T> for Box<T, A>
609where
610 T: ?Sized,
611 A: Allocator,
612{
613 fn borrow(&self) -> &T {
614 self.deref()
615 }
616}
617
618/// # Examples
619///
620/// ```
621/// # use core::borrow::BorrowMut;
622/// # use kernel::alloc::KBox;
623/// struct Foo<B: BorrowMut<u32>>(B);
624///
625/// // Owned instance.
626/// let owned = Foo(1);
627///
628/// // Owned instance using `KBox`.
629/// let owned_kbox = Foo(KBox::new(1, GFP_KERNEL)?);
630///
631/// let mut i = 1;
632/// // Borrowed from `i`.
633/// let borrowed = Foo(&mut i);
634/// # Ok::<(), Error>(())
635/// ```
636impl<T, A> BorrowMut<T> for Box<T, A>
637where
638 T: ?Sized,
639 A: Allocator,
640{
641 fn borrow_mut(&mut self) -> &mut T {
642 self.deref_mut()
643 }
644}
645
646impl<T, A> fmt::Display for Box<T, A>
647where
648 T: ?Sized + fmt::Display,
649 A: Allocator,
650{
651 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
652 <T as fmt::Display>::fmt(&**self, f)
653 }
654}
655
656impl<T, A> fmt::Debug for Box<T, A>
657where
658 T: ?Sized + fmt::Debug,
659 A: Allocator,
660{
661 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
662 <T as fmt::Debug>::fmt(&**self, f)
663 }
664}
665
666impl<T, A> Drop for Box<T, A>
667where
668 T: ?Sized,
669 A: Allocator,
670{
671 fn drop(&mut self) {
672 let layout = Layout::for_value::<T>(self);
673
674 // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant.
675 unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) };
676
677 // SAFETY:
678 // - `self.0` was previously allocated with `A`.
679 // - `layout` is equal to the `Layout´ `self.0` was allocated with.
680 unsafe { A::free(self.0.cast(), layout) };
681 }
682}