kernel/page.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Kernel page allocation and management.
4
5use crate::{
6 alloc::{AllocError, Flags},
7 bindings,
8 error::code::*,
9 error::Result,
10 uaccess::UserSliceReader,
11};
12use core::{
13 marker::PhantomData,
14 mem::ManuallyDrop,
15 ops::Deref,
16 ptr::{self, NonNull},
17};
18
19/// A bitwise shift for the page size.
20pub const PAGE_SHIFT: usize = bindings::PAGE_SHIFT as usize;
21
22/// The number of bytes in a page.
23pub const PAGE_SIZE: usize = bindings::PAGE_SIZE;
24
25/// A bitmask that gives the page containing a given address.
26pub const PAGE_MASK: usize = !(PAGE_SIZE - 1);
27
28/// Rounds up to the next multiple of [`PAGE_SIZE`].
29///
30/// Returns [`None`] on integer overflow.
31///
32/// # Examples
33///
34/// ```
35/// use kernel::page::{
36/// page_align,
37/// PAGE_SIZE,
38/// };
39///
40/// // Requested address is already aligned.
41/// assert_eq!(page_align(0x0), Some(0x0));
42/// assert_eq!(page_align(PAGE_SIZE), Some(PAGE_SIZE));
43///
44/// // Requested address needs alignment up.
45/// assert_eq!(page_align(0x1), Some(PAGE_SIZE));
46/// assert_eq!(page_align(PAGE_SIZE + 1), Some(2 * PAGE_SIZE));
47///
48/// // Requested address causes overflow (returns `None`).
49/// let overflow_addr = usize::MAX - (PAGE_SIZE / 2);
50/// assert_eq!(page_align(overflow_addr), None);
51/// ```
52#[inline(always)]
53pub const fn page_align(addr: usize) -> Option<usize> {
54 let Some(sum) = addr.checked_add(PAGE_SIZE - 1) else {
55 return None;
56 };
57 Some(sum & PAGE_MASK)
58}
59
60/// Representation of a non-owning reference to a [`Page`].
61///
62/// This type provides a borrowed version of a [`Page`] that is owned by some other entity, e.g. a
63/// [`Vmalloc`] allocation such as [`VBox`].
64///
65/// # Example
66///
67/// ```
68/// # use kernel::{bindings, prelude::*};
69/// use kernel::page::{BorrowedPage, Page, PAGE_SIZE};
70/// # use core::{mem::MaybeUninit, ptr, ptr::NonNull };
71///
72/// fn borrow_page<'a>(vbox: &'a mut VBox<MaybeUninit<[u8; PAGE_SIZE]>>) -> BorrowedPage<'a> {
73/// let ptr = ptr::from_ref(&**vbox);
74///
75/// // SAFETY: `ptr` is a valid pointer to `Vmalloc` memory.
76/// let page = unsafe { bindings::vmalloc_to_page(ptr.cast()) };
77///
78/// // SAFETY: `vmalloc_to_page` returns a valid pointer to a `struct page` for a valid
79/// // pointer to `Vmalloc` memory.
80/// let page = unsafe { NonNull::new_unchecked(page) };
81///
82/// // SAFETY:
83/// // - `self.0` is a valid pointer to a `struct page`.
84/// // - `self.0` is valid for the entire lifetime of `self`.
85/// unsafe { BorrowedPage::from_raw(page) }
86/// }
87///
88/// let mut vbox = VBox::<[u8; PAGE_SIZE]>::new_uninit(GFP_KERNEL)?;
89/// let page = borrow_page(&mut vbox);
90///
91/// // SAFETY: There is no concurrent read or write to this page.
92/// unsafe { page.fill_zero_raw(0, PAGE_SIZE)? };
93/// # Ok::<(), Error>(())
94/// ```
95///
96/// # Invariants
97///
98/// The borrowed underlying pointer to a `struct page` is valid for the entire lifetime `'a`.
99///
100/// [`VBox`]: kernel::alloc::VBox
101/// [`Vmalloc`]: kernel::alloc::allocator::Vmalloc
102pub struct BorrowedPage<'a>(ManuallyDrop<Page>, PhantomData<&'a Page>);
103
104impl<'a> BorrowedPage<'a> {
105 /// Constructs a [`BorrowedPage`] from a raw pointer to a `struct page`.
106 ///
107 /// # Safety
108 ///
109 /// - `ptr` must point to a valid `bindings::page`.
110 /// - `ptr` must remain valid for the entire lifetime `'a`.
111 pub unsafe fn from_raw(ptr: NonNull<bindings::page>) -> Self {
112 let page = Page { page: ptr };
113
114 // INVARIANT: The safety requirements guarantee that `ptr` is valid for the entire lifetime
115 // `'a`.
116 Self(ManuallyDrop::new(page), PhantomData)
117 }
118}
119
120impl<'a> Deref for BorrowedPage<'a> {
121 type Target = Page;
122
123 fn deref(&self) -> &Self::Target {
124 &self.0
125 }
126}
127
128/// Trait to be implemented by types which provide an [`Iterator`] implementation of
129/// [`BorrowedPage`] items, such as [`VmallocPageIter`](kernel::alloc::allocator::VmallocPageIter).
130pub trait AsPageIter {
131 /// The [`Iterator`] type, e.g. [`VmallocPageIter`](kernel::alloc::allocator::VmallocPageIter).
132 type Iter<'a>: Iterator<Item = BorrowedPage<'a>>
133 where
134 Self: 'a;
135
136 /// Returns an [`Iterator`] of [`BorrowedPage`] items over all pages owned by `self`.
137 fn page_iter(&mut self) -> Self::Iter<'_>;
138}
139
140/// A pointer to a page that owns the page allocation.
141///
142/// # Invariants
143///
144/// The pointer is valid, and has ownership over the page.
145pub struct Page {
146 page: NonNull<bindings::page>,
147}
148
149// SAFETY: Pages have no logic that relies on them staying on a given thread, so moving them across
150// threads is safe.
151unsafe impl Send for Page {}
152
153// SAFETY: Pages have no logic that relies on them not being accessed concurrently, so accessing
154// them concurrently is safe.
155unsafe impl Sync for Page {}
156
157impl Page {
158 /// Allocates a new page.
159 ///
160 /// # Examples
161 ///
162 /// Allocate memory for a page.
163 ///
164 /// ```
165 /// use kernel::page::Page;
166 ///
167 /// let page = Page::alloc_page(GFP_KERNEL)?;
168 /// # Ok::<(), kernel::alloc::AllocError>(())
169 /// ```
170 ///
171 /// Allocate memory for a page and zero its contents.
172 ///
173 /// ```
174 /// use kernel::page::Page;
175 ///
176 /// let page = Page::alloc_page(GFP_KERNEL | __GFP_ZERO)?;
177 /// # Ok::<(), kernel::alloc::AllocError>(())
178 /// ```
179 #[inline]
180 pub fn alloc_page(flags: Flags) -> Result<Self, AllocError> {
181 // SAFETY: Depending on the value of `gfp_flags`, this call may sleep. Other than that, it
182 // is always safe to call this method.
183 let page = unsafe { bindings::alloc_pages(flags.as_raw(), 0) };
184 let page = NonNull::new(page).ok_or(AllocError)?;
185 // INVARIANT: We just successfully allocated a page, so we now have ownership of the newly
186 // allocated page. We transfer that ownership to the new `Page` object.
187 Ok(Self { page })
188 }
189
190 /// Returns a raw pointer to the page.
191 pub fn as_ptr(&self) -> *mut bindings::page {
192 self.page.as_ptr()
193 }
194
195 /// Get the node id containing this page.
196 pub fn nid(&self) -> i32 {
197 // SAFETY: Always safe to call with a valid page.
198 unsafe { bindings::page_to_nid(self.as_ptr()) }
199 }
200
201 /// Runs a piece of code with this page mapped to an address.
202 ///
203 /// The page is unmapped when this call returns.
204 ///
205 /// # Using the raw pointer
206 ///
207 /// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
208 /// `PAGE_SIZE` bytes and for the duration in which the closure is called. The pointer might
209 /// only be mapped on the current thread, and when that is the case, dereferencing it on other
210 /// threads is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't
211 /// cause data races, the memory may be uninitialized, and so on.
212 ///
213 /// If multiple threads map the same page at the same time, then they may reference with
214 /// different addresses. However, even if the addresses are different, the underlying memory is
215 /// still the same for these purposes (e.g., it's still a data race if they both write to the
216 /// same underlying byte at the same time).
217 fn with_page_mapped<T>(&self, f: impl FnOnce(*mut u8) -> T) -> T {
218 // SAFETY: `page` is valid due to the type invariants on `Page`.
219 let mapped_addr = unsafe { bindings::kmap_local_page(self.as_ptr()) };
220
221 let res = f(mapped_addr.cast());
222
223 // This unmaps the page mapped above.
224 //
225 // SAFETY: Since this API takes the user code as a closure, it can only be used in a manner
226 // where the pages are unmapped in reverse order. This is as required by `kunmap_local`.
227 //
228 // In other words, if this call to `kunmap_local` happens when a different page should be
229 // unmapped first, then there must necessarily be a call to `kmap_local_page` other than the
230 // call just above in `with_page_mapped` that made that possible. In this case, it is the
231 // unsafe block that wraps that other call that is incorrect.
232 unsafe { bindings::kunmap_local(mapped_addr) };
233
234 res
235 }
236
237 /// Runs a piece of code with a raw pointer to a slice of this page, with bounds checking.
238 ///
239 /// If `f` is called, then it will be called with a pointer that points at `off` bytes into the
240 /// page, and the pointer will be valid for at least `len` bytes. The pointer is only valid on
241 /// this task, as this method uses a local mapping.
242 ///
243 /// If `off` and `len` refers to a region outside of this page, then this method returns
244 /// [`EINVAL`] and does not call `f`.
245 ///
246 /// # Using the raw pointer
247 ///
248 /// It is up to the caller to use the provided raw pointer correctly. The pointer is valid for
249 /// `len` bytes and for the duration in which the closure is called. The pointer might only be
250 /// mapped on the current thread, and when that is the case, dereferencing it on other threads
251 /// is UB. Other than that, the usual rules for dereferencing a raw pointer apply: don't cause
252 /// data races, the memory may be uninitialized, and so on.
253 ///
254 /// If multiple threads map the same page at the same time, then they may reference with
255 /// different addresses. However, even if the addresses are different, the underlying memory is
256 /// still the same for these purposes (e.g., it's still a data race if they both write to the
257 /// same underlying byte at the same time).
258 fn with_pointer_into_page<T>(
259 &self,
260 off: usize,
261 len: usize,
262 f: impl FnOnce(*mut u8) -> Result<T>,
263 ) -> Result<T> {
264 let bounds_ok = off <= PAGE_SIZE && len <= PAGE_SIZE && (off + len) <= PAGE_SIZE;
265
266 if bounds_ok {
267 self.with_page_mapped(move |page_addr| {
268 // SAFETY: The `off` integer is at most `PAGE_SIZE`, so this pointer offset will
269 // result in a pointer that is in bounds or one off the end of the page.
270 f(unsafe { page_addr.add(off) })
271 })
272 } else {
273 Err(EINVAL)
274 }
275 }
276
277 /// Maps the page and reads from it into the given buffer.
278 ///
279 /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
280 /// outside of the page, then this call returns [`EINVAL`].
281 ///
282 /// # Safety
283 ///
284 /// * Callers must ensure that `dst` is valid for writing `len` bytes.
285 /// * Callers must ensure that this call does not race with a write to the same page that
286 /// overlaps with this read.
287 pub unsafe fn read_raw(&self, dst: *mut u8, offset: usize, len: usize) -> Result {
288 self.with_pointer_into_page(offset, len, move |src| {
289 // SAFETY: If `with_pointer_into_page` calls into this closure, then
290 // it has performed a bounds check and guarantees that `src` is
291 // valid for `len` bytes.
292 //
293 // There caller guarantees that there is no data race.
294 unsafe { ptr::copy_nonoverlapping(src, dst, len) };
295 Ok(())
296 })
297 }
298
299 /// Maps the page and writes into it from the given buffer.
300 ///
301 /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
302 /// outside of the page, then this call returns [`EINVAL`].
303 ///
304 /// # Safety
305 ///
306 /// * Callers must ensure that `src` is valid for reading `len` bytes.
307 /// * Callers must ensure that this call does not race with a read or write to the same page
308 /// that overlaps with this write.
309 pub unsafe fn write_raw(&self, src: *const u8, offset: usize, len: usize) -> Result {
310 self.with_pointer_into_page(offset, len, move |dst| {
311 // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
312 // bounds check and guarantees that `dst` is valid for `len` bytes.
313 //
314 // There caller guarantees that there is no data race.
315 unsafe { ptr::copy_nonoverlapping(src, dst, len) };
316 Ok(())
317 })
318 }
319
320 /// Maps the page and zeroes the given slice.
321 ///
322 /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
323 /// outside of the page, then this call returns [`EINVAL`].
324 ///
325 /// # Safety
326 ///
327 /// Callers must ensure that this call does not race with a read or write to the same page that
328 /// overlaps with this write.
329 pub unsafe fn fill_zero_raw(&self, offset: usize, len: usize) -> Result {
330 self.with_pointer_into_page(offset, len, move |dst| {
331 // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
332 // bounds check and guarantees that `dst` is valid for `len` bytes.
333 //
334 // There caller guarantees that there is no data race.
335 unsafe { ptr::write_bytes(dst, 0u8, len) };
336 Ok(())
337 })
338 }
339
340 /// Copies data from userspace into this page.
341 ///
342 /// This method will perform bounds checks on the page offset. If `offset .. offset+len` goes
343 /// outside of the page, then this call returns [`EINVAL`].
344 ///
345 /// Like the other `UserSliceReader` methods, data races are allowed on the userspace address.
346 /// However, they are not allowed on the page you are copying into.
347 ///
348 /// # Safety
349 ///
350 /// Callers must ensure that this call does not race with a read or write to the same page that
351 /// overlaps with this write.
352 pub unsafe fn copy_from_user_slice_raw(
353 &self,
354 reader: &mut UserSliceReader,
355 offset: usize,
356 len: usize,
357 ) -> Result {
358 self.with_pointer_into_page(offset, len, move |dst| {
359 // SAFETY: If `with_pointer_into_page` calls into this closure, then it has performed a
360 // bounds check and guarantees that `dst` is valid for `len` bytes. Furthermore, we have
361 // exclusive access to the slice since the caller guarantees that there are no races.
362 reader.read_raw(unsafe { core::slice::from_raw_parts_mut(dst.cast(), len) })
363 })
364 }
365}
366
367impl Drop for Page {
368 #[inline]
369 fn drop(&mut self) {
370 // SAFETY: By the type invariants, we have ownership of the page and can free it.
371 unsafe { bindings::__free_pages(self.page.as_ptr(), 0) };
372 }
373}