kernel/error.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Kernel errors.
4//!
5//! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h)\
6//! C header: [`include/uapi/asm-generic/errno.h`](srctree/include/uapi/asm-generic/errno.h)\
7//! C header: [`include/linux/errno.h`](srctree/include/linux/errno.h)
8
9use crate::{
10 alloc::{layout::LayoutError, AllocError},
11 fmt,
12 str::CStr,
13};
14
15use core::num::NonZeroI32;
16use core::num::TryFromIntError;
17use core::str::Utf8Error;
18
19/// Contains the C-compatible error codes.
20#[rustfmt::skip]
21pub mod code {
22 macro_rules! declare_err {
23 ($err:tt $(,)? $($doc:expr),+) => {
24 $(
25 #[doc = $doc]
26 )*
27 pub const $err: super::Error =
28 match super::Error::try_from_errno(-(crate::bindings::$err as i32)) {
29 Some(err) => err,
30 None => panic!("Invalid errno in `declare_err!`"),
31 };
32 };
33 }
34
35 declare_err!(EPERM, "Operation not permitted.");
36 declare_err!(ENOENT, "No such file or directory.");
37 declare_err!(ESRCH, "No such process.");
38 declare_err!(EINTR, "Interrupted system call.");
39 declare_err!(EIO, "I/O error.");
40 declare_err!(ENXIO, "No such device or address.");
41 declare_err!(E2BIG, "Argument list too long.");
42 declare_err!(ENOEXEC, "Exec format error.");
43 declare_err!(EBADF, "Bad file number.");
44 declare_err!(ECHILD, "No child processes.");
45 declare_err!(EAGAIN, "Try again.");
46 declare_err!(ENOMEM, "Out of memory.");
47 declare_err!(EACCES, "Permission denied.");
48 declare_err!(EFAULT, "Bad address.");
49 declare_err!(ENOTBLK, "Block device required.");
50 declare_err!(EBUSY, "Device or resource busy.");
51 declare_err!(EEXIST, "File exists.");
52 declare_err!(EXDEV, "Cross-device link.");
53 declare_err!(ENODEV, "No such device.");
54 declare_err!(ENOTDIR, "Not a directory.");
55 declare_err!(EISDIR, "Is a directory.");
56 declare_err!(EINVAL, "Invalid argument.");
57 declare_err!(ENFILE, "File table overflow.");
58 declare_err!(EMFILE, "Too many open files.");
59 declare_err!(ENOTTY, "Not a typewriter.");
60 declare_err!(ETXTBSY, "Text file busy.");
61 declare_err!(EFBIG, "File too large.");
62 declare_err!(ENOSPC, "No space left on device.");
63 declare_err!(ESPIPE, "Illegal seek.");
64 declare_err!(EROFS, "Read-only file system.");
65 declare_err!(EMLINK, "Too many links.");
66 declare_err!(EPIPE, "Broken pipe.");
67 declare_err!(EDOM, "Math argument out of domain of func.");
68 declare_err!(ERANGE, "Math result not representable.");
69 declare_err!(EOVERFLOW, "Value too large for defined data type.");
70 declare_err!(ETIMEDOUT, "Connection timed out.");
71 declare_err!(ERESTARTSYS, "Restart the system call.");
72 declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted.");
73 declare_err!(ERESTARTNOHAND, "Restart if no handler.");
74 declare_err!(ENOIOCTLCMD, "No ioctl command.");
75 declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall.");
76 declare_err!(EPROBE_DEFER, "Driver requests probe retry.");
77 declare_err!(EOPENSTALE, "Open found a stale dentry.");
78 declare_err!(ENOPARAM, "Parameter not supported.");
79 declare_err!(EBADHANDLE, "Illegal NFS file handle.");
80 declare_err!(ENOTSYNC, "Update synchronization mismatch.");
81 declare_err!(EBADCOOKIE, "Cookie is stale.");
82 declare_err!(ENOTSUPP, "Operation is not supported.");
83 declare_err!(ETOOSMALL, "Buffer or request is too small.");
84 declare_err!(ESERVERFAULT, "An untranslatable error occurred.");
85 declare_err!(EBADTYPE, "Type not supported by server.");
86 declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout.");
87 declare_err!(EIOCBQUEUED, "iocb queued, will get completion event.");
88 declare_err!(ERECALLCONFLICT, "Conflict with recalled state.");
89 declare_err!(ENOGRACE, "NFS file lock reclaim refused.");
90}
91
92/// Generic integer kernel error.
93///
94/// The kernel defines a set of integer generic error codes based on C and
95/// POSIX ones. These codes may have a more specific meaning in some contexts.
96///
97/// # Invariants
98///
99/// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`).
100#[derive(Clone, Copy, PartialEq, Eq)]
101pub struct Error(NonZeroI32);
102
103impl Error {
104 /// Creates an [`Error`] from a kernel error code.
105 ///
106 /// It is a bug to pass an out-of-range `errno`. `EINVAL` would
107 /// be returned in such a case.
108 pub fn from_errno(errno: crate::ffi::c_int) -> Error {
109 if let Some(error) = Self::try_from_errno(errno) {
110 error
111 } else {
112 // TODO: Make it a `WARN_ONCE` once available.
113 crate::pr_warn!(
114 "attempted to create `Error` with out of range `errno`: {}\n",
115 errno
116 );
117 code::EINVAL
118 }
119 }
120
121 /// Creates an [`Error`] from a kernel error code.
122 ///
123 /// Returns [`None`] if `errno` is out-of-range.
124 const fn try_from_errno(errno: crate::ffi::c_int) -> Option<Error> {
125 if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 {
126 return None;
127 }
128
129 // SAFETY: `errno` is checked above to be in a valid range.
130 Some(unsafe { Error::from_errno_unchecked(errno) })
131 }
132
133 /// Creates an [`Error`] from a kernel error code.
134 ///
135 /// # Safety
136 ///
137 /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`).
138 const unsafe fn from_errno_unchecked(errno: crate::ffi::c_int) -> Error {
139 // INVARIANT: The contract ensures the type invariant
140 // will hold.
141 // SAFETY: The caller guarantees `errno` is non-zero.
142 Error(unsafe { NonZeroI32::new_unchecked(errno) })
143 }
144
145 /// Returns the kernel error code.
146 pub fn to_errno(self) -> crate::ffi::c_int {
147 self.0.get()
148 }
149
150 #[cfg(CONFIG_BLOCK)]
151 pub(crate) fn to_blk_status(self) -> bindings::blk_status_t {
152 // SAFETY: `self.0` is a valid error due to its invariant.
153 unsafe { bindings::errno_to_blk_status(self.0.get()) }
154 }
155
156 /// Returns the error encoded as a pointer.
157 pub fn to_ptr<T>(self) -> *mut T {
158 // SAFETY: `self.0` is a valid error due to its invariant.
159 unsafe { bindings::ERR_PTR(self.0.get() as crate::ffi::c_long).cast() }
160 }
161
162 /// Returns a string representing the error, if one exists.
163 #[cfg(not(testlib))]
164 pub fn name(&self) -> Option<&'static CStr> {
165 // SAFETY: Just an FFI call, there are no extra safety requirements.
166 let ptr = unsafe { bindings::errname(-self.0.get()) };
167 if ptr.is_null() {
168 None
169 } else {
170 // SAFETY: The string returned by `errname` is static and `NUL`-terminated.
171 Some(unsafe { CStr::from_char_ptr(ptr) })
172 }
173 }
174
175 /// Returns a string representing the error, if one exists.
176 ///
177 /// When `testlib` is configured, this always returns `None` to avoid the dependency on a
178 /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still
179 /// run in userspace.
180 #[cfg(testlib)]
181 pub fn name(&self) -> Option<&'static CStr> {
182 None
183 }
184}
185
186impl fmt::Debug for Error {
187 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
188 match self.name() {
189 // Print out number if no name can be found.
190 None => f.debug_tuple("Error").field(&-self.0).finish(),
191 Some(name) => f
192 .debug_tuple(
193 // SAFETY: These strings are ASCII-only.
194 unsafe { core::str::from_utf8_unchecked(name.to_bytes()) },
195 )
196 .finish(),
197 }
198 }
199}
200
201impl From<AllocError> for Error {
202 fn from(_: AllocError) -> Error {
203 code::ENOMEM
204 }
205}
206
207impl From<TryFromIntError> for Error {
208 fn from(_: TryFromIntError) -> Error {
209 code::EINVAL
210 }
211}
212
213impl From<Utf8Error> for Error {
214 fn from(_: Utf8Error) -> Error {
215 code::EINVAL
216 }
217}
218
219impl From<LayoutError> for Error {
220 fn from(_: LayoutError) -> Error {
221 code::ENOMEM
222 }
223}
224
225impl From<fmt::Error> for Error {
226 fn from(_: fmt::Error) -> Error {
227 code::EINVAL
228 }
229}
230
231impl From<core::convert::Infallible> for Error {
232 fn from(e: core::convert::Infallible) -> Error {
233 match e {}
234 }
235}
236
237/// A [`Result`] with an [`Error`] error type.
238///
239/// To be used as the return type for functions that may fail.
240///
241/// # Error codes in C and Rust
242///
243/// In C, it is common that functions indicate success or failure through
244/// their return value; modifying or returning extra data through non-`const`
245/// pointer parameters. In particular, in the kernel, functions that may fail
246/// typically return an `int` that represents a generic error code. We model
247/// those as [`Error`].
248///
249/// In Rust, it is idiomatic to model functions that may fail as returning
250/// a [`Result`]. Since in the kernel many functions return an error code,
251/// [`Result`] is a type alias for a [`core::result::Result`] that uses
252/// [`Error`] as its error type.
253///
254/// Note that even if a function does not return anything when it succeeds,
255/// it should still be modeled as returning a [`Result`] rather than
256/// just an [`Error`].
257///
258/// Calling a function that returns [`Result`] forces the caller to handle
259/// the returned [`Result`].
260///
261/// This can be done "manually" by using [`match`]. Using [`match`] to decode
262/// the [`Result`] is similar to C where all the return value decoding and the
263/// error handling is done explicitly by writing handling code for each
264/// error to cover. Using [`match`] the error and success handling can be
265/// implemented in all detail as required. For example (inspired by
266/// [`samples/rust/rust_minimal.rs`]):
267///
268/// ```
269/// # #[allow(clippy::single_match)]
270/// fn example() -> Result {
271/// let mut numbers = KVec::new();
272///
273/// match numbers.push(72, GFP_KERNEL) {
274/// Err(e) => {
275/// pr_err!("Error pushing 72: {e:?}");
276/// return Err(e.into());
277/// }
278/// // Do nothing, continue.
279/// Ok(()) => (),
280/// }
281///
282/// match numbers.push(108, GFP_KERNEL) {
283/// Err(e) => {
284/// pr_err!("Error pushing 108: {e:?}");
285/// return Err(e.into());
286/// }
287/// // Do nothing, continue.
288/// Ok(()) => (),
289/// }
290///
291/// match numbers.push(200, GFP_KERNEL) {
292/// Err(e) => {
293/// pr_err!("Error pushing 200: {e:?}");
294/// return Err(e.into());
295/// }
296/// // Do nothing, continue.
297/// Ok(()) => (),
298/// }
299///
300/// Ok(())
301/// }
302/// # example()?;
303/// # Ok::<(), Error>(())
304/// ```
305///
306/// An alternative to be more concise is the [`if let`] syntax:
307///
308/// ```
309/// fn example() -> Result {
310/// let mut numbers = KVec::new();
311///
312/// if let Err(e) = numbers.push(72, GFP_KERNEL) {
313/// pr_err!("Error pushing 72: {e:?}");
314/// return Err(e.into());
315/// }
316///
317/// if let Err(e) = numbers.push(108, GFP_KERNEL) {
318/// pr_err!("Error pushing 108: {e:?}");
319/// return Err(e.into());
320/// }
321///
322/// if let Err(e) = numbers.push(200, GFP_KERNEL) {
323/// pr_err!("Error pushing 200: {e:?}");
324/// return Err(e.into());
325/// }
326///
327/// Ok(())
328/// }
329/// # example()?;
330/// # Ok::<(), Error>(())
331/// ```
332///
333/// Instead of these verbose [`match`]/[`if let`], the [`?`] operator can
334/// be used to handle the [`Result`]. Using the [`?`] operator is often
335/// the best choice to handle [`Result`] in a non-verbose way as done in
336/// [`samples/rust/rust_minimal.rs`]:
337///
338/// ```
339/// fn example() -> Result {
340/// let mut numbers = KVec::new();
341///
342/// numbers.push(72, GFP_KERNEL)?;
343/// numbers.push(108, GFP_KERNEL)?;
344/// numbers.push(200, GFP_KERNEL)?;
345///
346/// Ok(())
347/// }
348/// # example()?;
349/// # Ok::<(), Error>(())
350/// ```
351///
352/// Another possibility is to call [`unwrap()`](Result::unwrap) or
353/// [`expect()`](Result::expect). However, use of these functions is
354/// *heavily discouraged* in the kernel because they trigger a Rust
355/// [`panic!`] if an error happens, which may destabilize the system or
356/// entirely break it as a result -- just like the C [`BUG()`] macro.
357/// Please see the documentation for the C macro [`BUG()`] for guidance
358/// on when to use these functions.
359///
360/// Alternatively, depending on the use case, using [`unwrap_or()`],
361/// [`unwrap_or_else()`], [`unwrap_or_default()`] or [`unwrap_unchecked()`]
362/// might be an option, as well.
363///
364/// For even more details, please see the [Rust documentation].
365///
366/// [`match`]: https://doc.rust-lang.org/reference/expressions/match-expr.html
367/// [`samples/rust/rust_minimal.rs`]: srctree/samples/rust/rust_minimal.rs
368/// [`if let`]: https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions
369/// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator
370/// [`unwrap()`]: Result::unwrap
371/// [`expect()`]: Result::expect
372/// [`BUG()`]: https://docs.kernel.org/process/deprecated.html#bug-and-bug-on
373/// [`unwrap_or()`]: Result::unwrap_or
374/// [`unwrap_or_else()`]: Result::unwrap_or_else
375/// [`unwrap_or_default()`]: Result::unwrap_or_default
376/// [`unwrap_unchecked()`]: Result::unwrap_unchecked
377/// [Rust documentation]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html
378pub type Result<T = (), E = Error> = core::result::Result<T, E>;
379
380/// Converts an integer as returned by a C kernel function to an error if it's negative, and
381/// `Ok(())` otherwise.
382pub fn to_result(err: crate::ffi::c_int) -> Result {
383 if err < 0 {
384 Err(Error::from_errno(err))
385 } else {
386 Ok(())
387 }
388}
389
390/// Transform a kernel "error pointer" to a normal pointer.
391///
392/// Some kernel C API functions return an "error pointer" which optionally
393/// embeds an `errno`. Callers are supposed to check the returned pointer
394/// for errors. This function performs the check and converts the "error pointer"
395/// to a normal pointer in an idiomatic fashion.
396///
397/// # Examples
398///
399/// ```ignore
400/// # use kernel::from_err_ptr;
401/// # use kernel::bindings;
402/// fn devm_platform_ioremap_resource(
403/// pdev: &mut PlatformDevice,
404/// index: u32,
405/// ) -> Result<*mut kernel::ffi::c_void> {
406/// // SAFETY: `pdev` points to a valid platform device. There are no safety requirements
407/// // on `index`.
408/// from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) })
409/// }
410/// ```
411pub fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> {
412 // CAST: Casting a pointer to `*const crate::ffi::c_void` is always valid.
413 let const_ptr: *const crate::ffi::c_void = ptr.cast();
414 // SAFETY: The FFI function does not deref the pointer.
415 if unsafe { bindings::IS_ERR(const_ptr) } {
416 // SAFETY: The FFI function does not deref the pointer.
417 let err = unsafe { bindings::PTR_ERR(const_ptr) };
418
419 #[allow(clippy::unnecessary_cast)]
420 // CAST: If `IS_ERR()` returns `true`,
421 // then `PTR_ERR()` is guaranteed to return a
422 // negative value greater-or-equal to `-bindings::MAX_ERRNO`,
423 // which always fits in an `i16`, as per the invariant above.
424 // And an `i16` always fits in an `i32`. So casting `err` to
425 // an `i32` can never overflow, and is always valid.
426 //
427 // SAFETY: `IS_ERR()` ensures `err` is a
428 // negative value greater-or-equal to `-bindings::MAX_ERRNO`.
429 return Err(unsafe { Error::from_errno_unchecked(err as crate::ffi::c_int) });
430 }
431 Ok(ptr)
432}
433
434/// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to
435/// a C integer result.
436///
437/// This is useful when calling Rust functions that return [`crate::error::Result<T>`]
438/// from inside `extern "C"` functions that need to return an integer error result.
439///
440/// `T` should be convertible from an `i16` via `From<i16>`.
441///
442/// # Examples
443///
444/// ```ignore
445/// # use kernel::from_result;
446/// # use kernel::bindings;
447/// unsafe extern "C" fn probe_callback(
448/// pdev: *mut bindings::platform_device,
449/// ) -> kernel::ffi::c_int {
450/// from_result(|| {
451/// let ptr = devm_alloc(pdev)?;
452/// bindings::platform_set_drvdata(pdev, ptr);
453/// Ok(0)
454/// })
455/// }
456/// ```
457pub fn from_result<T, F>(f: F) -> T
458where
459 T: From<i16>,
460 F: FnOnce() -> Result<T>,
461{
462 match f() {
463 Ok(v) => v,
464 // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`,
465 // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above,
466 // therefore a negative `errno` always fits in an `i16` and will not overflow.
467 Err(e) => T::from(e.to_errno() as i16),
468 }
469}
470
471/// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait.
472pub const VTABLE_DEFAULT_ERROR: &str =
473 "This function must not be called, see the #[vtable] documentation.";