kernel/uaccess.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Slices to user space memory regions.
4//!
5//! C header: [`include/linux/uaccess.h`](srctree/include/linux/uaccess.h)
6
7use crate::{
8 alloc::{Allocator, Flags},
9 bindings,
10 error::Result,
11 ffi::c_void,
12 prelude::*,
13 transmute::{AsBytes, FromBytes},
14};
15use core::mem::{size_of, MaybeUninit};
16
17/// The type used for userspace addresses.
18pub type UserPtr = usize;
19
20/// A pointer to an area in userspace memory, which can be either read-only or read-write.
21///
22/// All methods on this struct are safe: attempting to read or write on bad addresses (either out of
23/// the bound of the slice or unmapped addresses) will return [`EFAULT`]. Concurrent access,
24/// *including data races to/from userspace memory*, is permitted, because fundamentally another
25/// userspace thread/process could always be modifying memory at the same time (in the same way that
26/// userspace Rust's [`std::io`] permits data races with the contents of files on disk). In the
27/// presence of a race, the exact byte values read/written are unspecified but the operation is
28/// well-defined. Kernelspace code should validate its copy of data after completing a read, and not
29/// expect that multiple reads of the same address will return the same value.
30///
31/// These APIs are designed to make it difficult to accidentally write TOCTOU (time-of-check to
32/// time-of-use) bugs. Every time a memory location is read, the reader's position is advanced by
33/// the read length and the next read will start from there. This helps prevent accidentally reading
34/// the same location twice and causing a TOCTOU bug.
35///
36/// Creating a [`UserSliceReader`] and/or [`UserSliceWriter`] consumes the `UserSlice`, helping
37/// ensure that there aren't multiple readers or writers to the same location.
38///
39/// If double-fetching a memory location is necessary for some reason, then that is done by creating
40/// multiple readers to the same memory location, e.g. using [`clone_reader`].
41///
42/// # Examples
43///
44/// Takes a region of userspace memory from the current process, and modify it by adding one to
45/// every byte in the region.
46///
47/// ```no_run
48/// use kernel::ffi::c_void;
49/// use kernel::uaccess::{UserPtr, UserSlice};
50///
51/// fn bytes_add_one(uptr: UserPtr, len: usize) -> Result {
52/// let (read, mut write) = UserSlice::new(uptr, len).reader_writer();
53///
54/// let mut buf = KVec::new();
55/// read.read_all(&mut buf, GFP_KERNEL)?;
56///
57/// for b in &mut buf {
58/// *b = b.wrapping_add(1);
59/// }
60///
61/// write.write_slice(&buf)?;
62/// Ok(())
63/// }
64/// ```
65///
66/// Example illustrating a TOCTOU (time-of-check to time-of-use) bug.
67///
68/// ```no_run
69/// use kernel::ffi::c_void;
70/// use kernel::uaccess::{UserPtr, UserSlice};
71///
72/// /// Returns whether the data in this region is valid.
73/// fn is_valid(uptr: UserPtr, len: usize) -> Result<bool> {
74/// let read = UserSlice::new(uptr, len).reader();
75///
76/// let mut buf = KVec::new();
77/// read.read_all(&mut buf, GFP_KERNEL)?;
78///
79/// todo!()
80/// }
81///
82/// /// Returns the bytes behind this user pointer if they are valid.
83/// fn get_bytes_if_valid(uptr: UserPtr, len: usize) -> Result<KVec<u8>> {
84/// if !is_valid(uptr, len)? {
85/// return Err(EINVAL);
86/// }
87///
88/// let read = UserSlice::new(uptr, len).reader();
89///
90/// let mut buf = KVec::new();
91/// read.read_all(&mut buf, GFP_KERNEL)?;
92///
93/// // THIS IS A BUG! The bytes could have changed since we checked them.
94/// //
95/// // To avoid this kind of bug, don't call `UserSlice::new` multiple
96/// // times with the same address.
97/// Ok(buf)
98/// }
99/// ```
100///
101/// [`std::io`]: https://doc.rust-lang.org/std/io/index.html
102/// [`clone_reader`]: UserSliceReader::clone_reader
103pub struct UserSlice {
104 ptr: UserPtr,
105 length: usize,
106}
107
108impl UserSlice {
109 /// Constructs a user slice from a raw pointer and a length in bytes.
110 ///
111 /// Constructing a [`UserSlice`] performs no checks on the provided address and length, it can
112 /// safely be constructed inside a kernel thread with no current userspace process. Reads and
113 /// writes wrap the kernel APIs `copy_from_user` and `copy_to_user`, which check the memory map
114 /// of the current process and enforce that the address range is within the user range (no
115 /// additional calls to `access_ok` are needed). Validity of the pointer is checked when you
116 /// attempt to read or write, not in the call to `UserSlice::new`.
117 ///
118 /// Callers must be careful to avoid time-of-check-time-of-use (TOCTOU) issues. The simplest way
119 /// is to create a single instance of [`UserSlice`] per user memory block as it reads each byte
120 /// at most once.
121 pub fn new(ptr: UserPtr, length: usize) -> Self {
122 UserSlice { ptr, length }
123 }
124
125 /// Reads the entirety of the user slice, appending it to the end of the provided buffer.
126 ///
127 /// Fails with [`EFAULT`] if the read happens on a bad address.
128 pub fn read_all<A: Allocator>(self, buf: &mut Vec<u8, A>, flags: Flags) -> Result {
129 self.reader().read_all(buf, flags)
130 }
131
132 /// Constructs a [`UserSliceReader`].
133 pub fn reader(self) -> UserSliceReader {
134 UserSliceReader {
135 ptr: self.ptr,
136 length: self.length,
137 }
138 }
139
140 /// Constructs a [`UserSliceWriter`].
141 pub fn writer(self) -> UserSliceWriter {
142 UserSliceWriter {
143 ptr: self.ptr,
144 length: self.length,
145 }
146 }
147
148 /// Constructs both a [`UserSliceReader`] and a [`UserSliceWriter`].
149 ///
150 /// Usually when this is used, you will first read the data, and then overwrite it afterwards.
151 pub fn reader_writer(self) -> (UserSliceReader, UserSliceWriter) {
152 (
153 UserSliceReader {
154 ptr: self.ptr,
155 length: self.length,
156 },
157 UserSliceWriter {
158 ptr: self.ptr,
159 length: self.length,
160 },
161 )
162 }
163}
164
165/// A reader for [`UserSlice`].
166///
167/// Used to incrementally read from the user slice.
168pub struct UserSliceReader {
169 ptr: UserPtr,
170 length: usize,
171}
172
173impl UserSliceReader {
174 /// Skip the provided number of bytes.
175 ///
176 /// Returns an error if skipping more than the length of the buffer.
177 pub fn skip(&mut self, num_skip: usize) -> Result {
178 // Update `self.length` first since that's the fallible part of this operation.
179 self.length = self.length.checked_sub(num_skip).ok_or(EFAULT)?;
180 self.ptr = self.ptr.wrapping_add(num_skip);
181 Ok(())
182 }
183
184 /// Create a reader that can access the same range of data.
185 ///
186 /// Reading from the clone does not advance the current reader.
187 ///
188 /// The caller should take care to not introduce TOCTOU issues, as described in the
189 /// documentation for [`UserSlice`].
190 pub fn clone_reader(&self) -> UserSliceReader {
191 UserSliceReader {
192 ptr: self.ptr,
193 length: self.length,
194 }
195 }
196
197 /// Returns the number of bytes left to be read from this reader.
198 ///
199 /// Note that even reading less than this number of bytes may fail.
200 pub fn len(&self) -> usize {
201 self.length
202 }
203
204 /// Returns `true` if no data is available in the io buffer.
205 pub fn is_empty(&self) -> bool {
206 self.length == 0
207 }
208
209 /// Reads raw data from the user slice into a kernel buffer.
210 ///
211 /// For a version that uses `&mut [u8]`, please see [`UserSliceReader::read_slice`].
212 ///
213 /// Fails with [`EFAULT`] if the read happens on a bad address, or if the read goes out of
214 /// bounds of this [`UserSliceReader`]. This call may modify `out` even if it returns an error.
215 ///
216 /// # Guarantees
217 ///
218 /// After a successful call to this method, all bytes in `out` are initialized.
219 pub fn read_raw(&mut self, out: &mut [MaybeUninit<u8>]) -> Result {
220 let len = out.len();
221 let out_ptr = out.as_mut_ptr().cast::<c_void>();
222 if len > self.length {
223 return Err(EFAULT);
224 }
225 // SAFETY: `out_ptr` points into a mutable slice of length `len`, so we may write
226 // that many bytes to it.
227 let res = unsafe { bindings::copy_from_user(out_ptr, self.ptr as *const c_void, len) };
228 if res != 0 {
229 return Err(EFAULT);
230 }
231 self.ptr = self.ptr.wrapping_add(len);
232 self.length -= len;
233 Ok(())
234 }
235
236 /// Reads raw data from the user slice into a kernel buffer.
237 ///
238 /// Fails with [`EFAULT`] if the read happens on a bad address, or if the read goes out of
239 /// bounds of this [`UserSliceReader`]. This call may modify `out` even if it returns an error.
240 pub fn read_slice(&mut self, out: &mut [u8]) -> Result {
241 // SAFETY: The types are compatible and `read_raw` doesn't write uninitialized bytes to
242 // `out`.
243 let out = unsafe { &mut *(out as *mut [u8] as *mut [MaybeUninit<u8>]) };
244 self.read_raw(out)
245 }
246
247 /// Reads a value of the specified type.
248 ///
249 /// Fails with [`EFAULT`] if the read happens on a bad address, or if the read goes out of
250 /// bounds of this [`UserSliceReader`].
251 pub fn read<T: FromBytes>(&mut self) -> Result<T> {
252 let len = size_of::<T>();
253 if len > self.length {
254 return Err(EFAULT);
255 }
256 let mut out: MaybeUninit<T> = MaybeUninit::uninit();
257 // SAFETY: The local variable `out` is valid for writing `size_of::<T>()` bytes.
258 //
259 // By using the _copy_from_user variant, we skip the check_object_size check that verifies
260 // the kernel pointer. This mirrors the logic on the C side that skips the check when the
261 // length is a compile-time constant.
262 let res = unsafe {
263 bindings::_copy_from_user(
264 out.as_mut_ptr().cast::<c_void>(),
265 self.ptr as *const c_void,
266 len,
267 )
268 };
269 if res != 0 {
270 return Err(EFAULT);
271 }
272 self.ptr = self.ptr.wrapping_add(len);
273 self.length -= len;
274 // SAFETY: The read above has initialized all bytes in `out`, and since `T` implements
275 // `FromBytes`, any bit-pattern is a valid value for this type.
276 Ok(unsafe { out.assume_init() })
277 }
278
279 /// Reads the entirety of the user slice, appending it to the end of the provided buffer.
280 ///
281 /// Fails with [`EFAULT`] if the read happens on a bad address.
282 pub fn read_all<A: Allocator>(mut self, buf: &mut Vec<u8, A>, flags: Flags) -> Result {
283 let len = self.length;
284 buf.reserve(len, flags)?;
285
286 // The call to `reserve` was successful, so the spare capacity is at least `len` bytes long.
287 self.read_raw(&mut buf.spare_capacity_mut()[..len])?;
288
289 // SAFETY: Since the call to `read_raw` was successful, so the next `len` bytes of the
290 // vector have been initialized.
291 unsafe { buf.inc_len(len) };
292 Ok(())
293 }
294}
295
296/// A writer for [`UserSlice`].
297///
298/// Used to incrementally write into the user slice.
299pub struct UserSliceWriter {
300 ptr: UserPtr,
301 length: usize,
302}
303
304impl UserSliceWriter {
305 /// Returns the amount of space remaining in this buffer.
306 ///
307 /// Note that even writing less than this number of bytes may fail.
308 pub fn len(&self) -> usize {
309 self.length
310 }
311
312 /// Returns `true` if no more data can be written to this buffer.
313 pub fn is_empty(&self) -> bool {
314 self.length == 0
315 }
316
317 /// Writes raw data to this user pointer from a kernel buffer.
318 ///
319 /// Fails with [`EFAULT`] if the write happens on a bad address, or if the write goes out of
320 /// bounds of this [`UserSliceWriter`]. This call may modify the associated userspace slice even
321 /// if it returns an error.
322 pub fn write_slice(&mut self, data: &[u8]) -> Result {
323 let len = data.len();
324 let data_ptr = data.as_ptr().cast::<c_void>();
325 if len > self.length {
326 return Err(EFAULT);
327 }
328 // SAFETY: `data_ptr` points into an immutable slice of length `len`, so we may read
329 // that many bytes from it.
330 let res = unsafe { bindings::copy_to_user(self.ptr as *mut c_void, data_ptr, len) };
331 if res != 0 {
332 return Err(EFAULT);
333 }
334 self.ptr = self.ptr.wrapping_add(len);
335 self.length -= len;
336 Ok(())
337 }
338
339 /// Writes the provided Rust value to this userspace pointer.
340 ///
341 /// Fails with [`EFAULT`] if the write happens on a bad address, or if the write goes out of
342 /// bounds of this [`UserSliceWriter`]. This call may modify the associated userspace slice even
343 /// if it returns an error.
344 pub fn write<T: AsBytes>(&mut self, value: &T) -> Result {
345 let len = size_of::<T>();
346 if len > self.length {
347 return Err(EFAULT);
348 }
349 // SAFETY: The reference points to a value of type `T`, so it is valid for reading
350 // `size_of::<T>()` bytes.
351 //
352 // By using the _copy_to_user variant, we skip the check_object_size check that verifies the
353 // kernel pointer. This mirrors the logic on the C side that skips the check when the length
354 // is a compile-time constant.
355 let res = unsafe {
356 bindings::_copy_to_user(
357 self.ptr as *mut c_void,
358 (value as *const T).cast::<c_void>(),
359 len,
360 )
361 };
362 if res != 0 {
363 return Err(EFAULT);
364 }
365 self.ptr = self.ptr.wrapping_add(len);
366 self.length -= len;
367 Ok(())
368 }
369}