kernel/device.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Generic devices that are part of the kernel's driver model.
4//!
5//! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6
7use crate::{
8 bindings, fmt,
9 prelude::*,
10 sync::aref::ARef,
11 types::{ForeignOwnable, Opaque},
12};
13use core::{any::TypeId, marker::PhantomData, ptr};
14
15#[cfg(CONFIG_PRINTK)]
16use crate::c_str;
17use crate::str::CStrExt as _;
18
19pub mod property;
20
21// Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`.
22static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>());
23
24/// The core representation of a device in the kernel's driver model.
25///
26/// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
27/// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
28/// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
29///
30/// # Device Types
31///
32/// A [`Device`] can represent either a bus device or a class device.
33///
34/// ## Bus Devices
35///
36/// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
37/// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
38/// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
39/// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
40///
41/// ## Class Devices
42///
43/// A class device is a [`Device`] that is associated with a logical category of functionality
44/// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
45/// cards, and input devices. Class devices are grouped under a common class and exposed to
46/// userspace via entries in `/sys/class/<class-name>/`.
47///
48/// # Device Context
49///
50/// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
51/// a [`Device`].
52///
53/// As the name indicates, this type state represents the context of the scope the [`Device`]
54/// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
55/// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
56///
57/// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
58///
59/// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
60/// itself has no additional requirements.
61///
62/// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
63/// type for the corresponding scope the [`Device`] reference is created in.
64///
65/// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
66/// [bus devices](#bus-devices) only.
67///
68/// # Implementing Bus Devices
69///
70/// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or
71/// [`platform::Device`].
72///
73/// A bus specific device should be defined as follows.
74///
75/// ```ignore
76/// #[repr(transparent)]
77/// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
78/// Opaque<bindings::bus_device_type>,
79/// PhantomData<Ctx>,
80/// );
81/// ```
82///
83/// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
84/// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
85/// [`DeviceContext`], since all other device context types are only valid within a certain scope.
86///
87/// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
88/// implementations should call the [`impl_device_context_deref`] macro as shown below.
89///
90/// ```ignore
91/// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
92/// // generic argument.
93/// kernel::impl_device_context_deref!(unsafe { Device });
94/// ```
95///
96/// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
97/// the following macro call.
98///
99/// ```ignore
100/// kernel::impl_device_context_into_aref!(Device);
101/// ```
102///
103/// Bus devices should also implement the following [`AsRef`] implementation, such that users can
104/// easily derive a generic [`Device`] reference.
105///
106/// ```ignore
107/// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
108/// fn as_ref(&self) -> &device::Device<Ctx> {
109/// ...
110/// }
111/// }
112/// ```
113///
114/// # Implementing Class Devices
115///
116/// Class device implementations require less infrastructure and depend slightly more on the
117/// specific subsystem.
118///
119/// An example implementation for a class device could look like this.
120///
121/// ```ignore
122/// #[repr(C)]
123/// pub struct Device<T: class::Driver> {
124/// dev: Opaque<bindings::class_device_type>,
125/// data: T::Data,
126/// }
127/// ```
128///
129/// This class device uses the sub-classing pattern to embed the driver's private data within the
130/// allocation of the class device. For this to be possible the class device is generic over the
131/// class specific `Driver` trait implementation.
132///
133/// Just like any device, class devices are reference counted and should hence implement
134/// [`AlwaysRefCounted`] for `Device`.
135///
136/// Class devices should also implement the following [`AsRef`] implementation, such that users can
137/// easily derive a generic [`Device`] reference.
138///
139/// ```ignore
140/// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
141/// fn as_ref(&self) -> &device::Device {
142/// ...
143/// }
144/// }
145/// ```
146///
147/// An example for a class device implementation is
148#[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
149#[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
150///
151/// # Invariants
152///
153/// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
154///
155/// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
156/// that the allocation remains valid at least until the matching call to `put_device`.
157///
158/// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
159/// dropped from any thread.
160///
161/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
162/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
163/// [`pci::Device`]: kernel::pci::Device
164/// [`platform::Device`]: kernel::platform::Device
165#[repr(transparent)]
166pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
167
168impl Device {
169 /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
170 ///
171 /// # Safety
172 ///
173 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
174 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
175 /// can't drop to zero, for the duration of this function call.
176 ///
177 /// It must also be ensured that `bindings::device::release` can be called from any thread.
178 /// While not officially documented, this should be the case for any `struct device`.
179 pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
180 // SAFETY: By the safety requirements ptr is valid
181 unsafe { Self::from_raw(ptr) }.into()
182 }
183
184 /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
185 ///
186 /// # Safety
187 ///
188 /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
189 /// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
190 pub unsafe fn as_bound(&self) -> &Device<Bound> {
191 let ptr = core::ptr::from_ref(self);
192
193 // CAST: By the safety requirements the caller is responsible to guarantee that the
194 // returned reference only lives as long as the device is actually bound.
195 let ptr = ptr.cast();
196
197 // SAFETY:
198 // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
199 // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
200 unsafe { &*ptr }
201 }
202}
203
204impl Device<CoreInternal> {
205 fn set_type_id<T: 'static>(&self) {
206 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
207 let private = unsafe { (*self.as_raw()).p };
208
209 // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is
210 // guaranteed to be a valid pointer to a `struct device_private`.
211 let driver_type = unsafe { &raw mut (*private).driver_type };
212
213 // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`.
214 unsafe {
215 driver_type
216 .cast::<TypeId>()
217 .write_unaligned(TypeId::of::<T>())
218 };
219 }
220
221 /// Store a pointer to the bound driver's private data.
222 pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result {
223 let data = KBox::pin_init(data, GFP_KERNEL)?;
224
225 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
226 unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) };
227 self.set_type_id::<T>();
228
229 Ok(())
230 }
231
232 /// Take ownership of the private data stored in this [`Device`].
233 ///
234 /// # Safety
235 ///
236 /// - Must only be called once after a preceding call to [`Device::set_drvdata`].
237 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
238 /// [`Device::set_drvdata`].
239 pub unsafe fn drvdata_obtain<T: 'static>(&self) -> Pin<KBox<T>> {
240 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
241 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
242
243 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
244 unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) };
245
246 // SAFETY:
247 // - By the safety requirements of this function, `ptr` comes from a previous call to
248 // `into_foreign()`.
249 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
250 // in `into_foreign()`.
251 unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) }
252 }
253
254 /// Borrow the driver's private data bound to this [`Device`].
255 ///
256 /// # Safety
257 ///
258 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
259 /// [`Device::drvdata_obtain`].
260 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
261 /// [`Device::set_drvdata`].
262 pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> {
263 // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones
264 // required by this method.
265 unsafe { self.drvdata_unchecked() }
266 }
267}
268
269impl Device<Bound> {
270 /// Borrow the driver's private data bound to this [`Device`].
271 ///
272 /// # Safety
273 ///
274 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
275 /// [`Device::drvdata_obtain`].
276 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
277 /// [`Device::set_drvdata`].
278 unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> {
279 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
280 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
281
282 // SAFETY:
283 // - By the safety requirements of this function, `ptr` comes from a previous call to
284 // `into_foreign()`.
285 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
286 // in `into_foreign()`.
287 unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) }
288 }
289
290 fn match_type_id<T: 'static>(&self) -> Result {
291 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
292 let private = unsafe { (*self.as_raw()).p };
293
294 // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a
295 // `struct device_private`.
296 let driver_type = unsafe { &raw mut (*private).driver_type };
297
298 // SAFETY:
299 // - `driver_type` is valid for (unaligned) reads of a `TypeId`.
300 // - A bound device guarantees that `driver_type` contains a valid `TypeId` value.
301 let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() };
302
303 if type_id != TypeId::of::<T>() {
304 return Err(EINVAL);
305 }
306
307 Ok(())
308 }
309
310 /// Access a driver's private data.
311 ///
312 /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match
313 /// the asserted type `T`.
314 pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> {
315 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
316 if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() {
317 return Err(ENOENT);
318 }
319
320 self.match_type_id::<T>()?;
321
322 // SAFETY:
323 // - The above check of `dev_get_drvdata()` guarantees that we are called after
324 // `set_drvdata()` and before `drvdata_obtain()`.
325 // - We've just checked that the type of the driver's private data is in fact `T`.
326 Ok(unsafe { self.drvdata_unchecked() })
327 }
328}
329
330impl<Ctx: DeviceContext> Device<Ctx> {
331 /// Obtain the raw `struct device *`.
332 pub(crate) fn as_raw(&self) -> *mut bindings::device {
333 self.0.get()
334 }
335
336 /// Returns a reference to the parent device, if any.
337 #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
338 pub(crate) fn parent(&self) -> Option<&Device> {
339 // SAFETY:
340 // - By the type invariant `self.as_raw()` is always valid.
341 // - The parent device is only ever set at device creation.
342 let parent = unsafe { (*self.as_raw()).parent };
343
344 if parent.is_null() {
345 None
346 } else {
347 // SAFETY:
348 // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
349 // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
350 // reference count of its parent.
351 Some(unsafe { Device::from_raw(parent) })
352 }
353 }
354
355 /// Convert a raw C `struct device` pointer to a `&'a Device`.
356 ///
357 /// # Safety
358 ///
359 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
360 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
361 /// can't drop to zero, for the duration of this function call and the entire duration when the
362 /// returned reference exists.
363 pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
364 // SAFETY: Guaranteed by the safety requirements of the function.
365 unsafe { &*ptr.cast() }
366 }
367
368 /// Prints an emergency-level message (level 0) prefixed with device information.
369 ///
370 /// More details are available from [`dev_emerg`].
371 ///
372 /// [`dev_emerg`]: crate::dev_emerg
373 pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
374 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
375 unsafe { self.printk(bindings::KERN_EMERG, args) };
376 }
377
378 /// Prints an alert-level message (level 1) prefixed with device information.
379 ///
380 /// More details are available from [`dev_alert`].
381 ///
382 /// [`dev_alert`]: crate::dev_alert
383 pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
384 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
385 unsafe { self.printk(bindings::KERN_ALERT, args) };
386 }
387
388 /// Prints a critical-level message (level 2) prefixed with device information.
389 ///
390 /// More details are available from [`dev_crit`].
391 ///
392 /// [`dev_crit`]: crate::dev_crit
393 pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
394 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
395 unsafe { self.printk(bindings::KERN_CRIT, args) };
396 }
397
398 /// Prints an error-level message (level 3) prefixed with device information.
399 ///
400 /// More details are available from [`dev_err`].
401 ///
402 /// [`dev_err`]: crate::dev_err
403 pub fn pr_err(&self, args: fmt::Arguments<'_>) {
404 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
405 unsafe { self.printk(bindings::KERN_ERR, args) };
406 }
407
408 /// Prints a warning-level message (level 4) prefixed with device information.
409 ///
410 /// More details are available from [`dev_warn`].
411 ///
412 /// [`dev_warn`]: crate::dev_warn
413 pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
414 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
415 unsafe { self.printk(bindings::KERN_WARNING, args) };
416 }
417
418 /// Prints a notice-level message (level 5) prefixed with device information.
419 ///
420 /// More details are available from [`dev_notice`].
421 ///
422 /// [`dev_notice`]: crate::dev_notice
423 pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
424 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
425 unsafe { self.printk(bindings::KERN_NOTICE, args) };
426 }
427
428 /// Prints an info-level message (level 6) prefixed with device information.
429 ///
430 /// More details are available from [`dev_info`].
431 ///
432 /// [`dev_info`]: crate::dev_info
433 pub fn pr_info(&self, args: fmt::Arguments<'_>) {
434 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
435 unsafe { self.printk(bindings::KERN_INFO, args) };
436 }
437
438 /// Prints a debug-level message (level 7) prefixed with device information.
439 ///
440 /// More details are available from [`dev_dbg`].
441 ///
442 /// [`dev_dbg`]: crate::dev_dbg
443 pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
444 if cfg!(debug_assertions) {
445 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
446 unsafe { self.printk(bindings::KERN_DEBUG, args) };
447 }
448 }
449
450 /// Prints the provided message to the console.
451 ///
452 /// # Safety
453 ///
454 /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
455 /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
456 #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
457 unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
458 // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
459 // is valid because `self` is valid. The "%pA" format string expects a pointer to
460 // `fmt::Arguments`, which is what we're passing as the last argument.
461 #[cfg(CONFIG_PRINTK)]
462 unsafe {
463 bindings::_dev_printk(
464 klevel.as_ptr().cast::<crate::ffi::c_char>(),
465 self.as_raw(),
466 c_str!("%pA").as_char_ptr(),
467 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
468 )
469 };
470 }
471
472 /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
473 pub fn fwnode(&self) -> Option<&property::FwNode> {
474 // SAFETY: `self` is valid.
475 let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
476 if fwnode_handle.is_null() {
477 return None;
478 }
479 // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
480 // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
481 // doesn't increment the refcount. It is safe to cast from a
482 // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
483 // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
484 Some(unsafe { &*fwnode_handle.cast() })
485 }
486}
487
488// SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
489// argument.
490kernel::impl_device_context_deref!(unsafe { Device });
491kernel::impl_device_context_into_aref!(Device);
492
493// SAFETY: Instances of `Device` are always reference-counted.
494unsafe impl crate::sync::aref::AlwaysRefCounted for Device {
495 fn inc_ref(&self) {
496 // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
497 unsafe { bindings::get_device(self.as_raw()) };
498 }
499
500 unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
501 // SAFETY: The safety requirements guarantee that the refcount is non-zero.
502 unsafe { bindings::put_device(obj.cast().as_ptr()) }
503 }
504}
505
506// SAFETY: As by the type invariant `Device` can be sent to any thread.
507unsafe impl Send for Device {}
508
509// SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
510// synchronization in `struct device`.
511unsafe impl Sync for Device {}
512
513/// Marker trait for the context or scope of a bus specific device.
514///
515/// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
516/// [`Device`].
517///
518/// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
519///
520/// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
521/// defines which [`DeviceContext`] type can be derived from another. For instance, any
522/// [`Device<Core>`] can dereference to a [`Device<Bound>`].
523///
524/// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
525///
526/// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
527///
528/// Bus devices can automatically implement the dereference hierarchy by using
529/// [`impl_device_context_deref`].
530///
531/// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
532/// from the specific scope the [`Device`] reference is valid in.
533///
534/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
535pub trait DeviceContext: private::Sealed {}
536
537/// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
538///
539/// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
540/// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
541/// [`AlwaysRefCounted`] for.
542///
543/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
544pub struct Normal;
545
546/// The [`Core`] context is the context of a bus specific device when it appears as argument of
547/// any bus specific callback, such as `probe()`.
548///
549/// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
550/// callback it appears in. It is intended to be used for synchronization purposes. Bus device
551/// implementations can implement methods for [`Device<Core>`], such that they can only be called
552/// from bus callbacks.
553pub struct Core;
554
555/// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
556/// abstraction.
557///
558/// The internal core context is intended to be used in exactly the same way as the [`Core`]
559/// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
560/// abstraction.
561///
562/// This context mainly exists to share generic [`Device`] infrastructure that should only be called
563/// from bus callbacks with bus abstractions, but without making them accessible for drivers.
564pub struct CoreInternal;
565
566/// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
567/// be bound to a driver.
568///
569/// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
570/// reference, the [`Device`] is guaranteed to be bound to a driver.
571///
572/// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
573/// which can be proven with the [`Bound`] device context.
574///
575/// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
576/// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
577/// from optimizations for accessing device resources, see also [`Devres::access`].
578///
579/// [`Devres`]: kernel::devres::Devres
580/// [`Devres::access`]: kernel::devres::Devres::access
581/// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
582pub struct Bound;
583
584mod private {
585 pub trait Sealed {}
586
587 impl Sealed for super::Bound {}
588 impl Sealed for super::Core {}
589 impl Sealed for super::CoreInternal {}
590 impl Sealed for super::Normal {}
591}
592
593impl DeviceContext for Bound {}
594impl DeviceContext for Core {}
595impl DeviceContext for CoreInternal {}
596impl DeviceContext for Normal {}
597
598/// Convert device references to bus device references.
599///
600/// Bus devices can implement this trait to allow abstractions to provide the bus device in
601/// class device callbacks.
602///
603/// This must not be used by drivers and is intended for bus and class device abstractions only.
604///
605/// # Safety
606///
607/// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a
608/// bus device structure.
609pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> {
610 /// The relative offset to the device field.
611 ///
612 /// Use `offset_of!(bindings, field)` macro to avoid breakage.
613 const OFFSET: usize;
614
615 /// Convert a reference to [`Device`] into `Self`.
616 ///
617 /// # Safety
618 ///
619 /// `dev` must be contained in `Self`.
620 unsafe fn from_device(dev: &Device<Ctx>) -> &Self
621 where
622 Self: Sized,
623 {
624 let raw = dev.as_raw();
625 // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements
626 // to be a valid pointer to `Self`.
627 unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() }
628 }
629}
630
631/// # Safety
632///
633/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
634/// generic argument of `$device`.
635#[doc(hidden)]
636#[macro_export]
637macro_rules! __impl_device_context_deref {
638 (unsafe { $device:ident, $src:ty => $dst:ty }) => {
639 impl ::core::ops::Deref for $device<$src> {
640 type Target = $device<$dst>;
641
642 fn deref(&self) -> &Self::Target {
643 let ptr: *const Self = self;
644
645 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
646 // safety requirement of the macro.
647 let ptr = ptr.cast::<Self::Target>();
648
649 // SAFETY: `ptr` was derived from `&self`.
650 unsafe { &*ptr }
651 }
652 }
653 };
654}
655
656/// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
657/// specific) device.
658///
659/// # Safety
660///
661/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
662/// generic argument of `$device`.
663#[macro_export]
664macro_rules! impl_device_context_deref {
665 (unsafe { $device:ident }) => {
666 // SAFETY: This macro has the exact same safety requirement as
667 // `__impl_device_context_deref!`.
668 ::kernel::__impl_device_context_deref!(unsafe {
669 $device,
670 $crate::device::CoreInternal => $crate::device::Core
671 });
672
673 // SAFETY: This macro has the exact same safety requirement as
674 // `__impl_device_context_deref!`.
675 ::kernel::__impl_device_context_deref!(unsafe {
676 $device,
677 $crate::device::Core => $crate::device::Bound
678 });
679
680 // SAFETY: This macro has the exact same safety requirement as
681 // `__impl_device_context_deref!`.
682 ::kernel::__impl_device_context_deref!(unsafe {
683 $device,
684 $crate::device::Bound => $crate::device::Normal
685 });
686 };
687}
688
689#[doc(hidden)]
690#[macro_export]
691macro_rules! __impl_device_context_into_aref {
692 ($src:ty, $device:tt) => {
693 impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> {
694 fn from(dev: &$device<$src>) -> Self {
695 (&**dev).into()
696 }
697 }
698 };
699}
700
701/// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
702/// `ARef<Device>`.
703#[macro_export]
704macro_rules! impl_device_context_into_aref {
705 ($device:tt) => {
706 ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
707 ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
708 ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
709 };
710}
711
712#[doc(hidden)]
713#[macro_export]
714macro_rules! dev_printk {
715 ($method:ident, $dev:expr, $($f:tt)*) => {
716 {
717 ($dev).$method($crate::prelude::fmt!($($f)*));
718 }
719 }
720}
721
722/// Prints an emergency-level message (level 0) prefixed with device information.
723///
724/// This level should be used if the system is unusable.
725///
726/// Equivalent to the kernel's `dev_emerg` macro.
727///
728/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
729/// [`core::fmt`] and [`std::format!`].
730///
731/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
732/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
733///
734/// # Examples
735///
736/// ```
737/// # use kernel::device::Device;
738///
739/// fn example(dev: &Device) {
740/// dev_emerg!(dev, "hello {}\n", "there");
741/// }
742/// ```
743#[macro_export]
744macro_rules! dev_emerg {
745 ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
746}
747
748/// Prints an alert-level message (level 1) prefixed with device information.
749///
750/// This level should be used if action must be taken immediately.
751///
752/// Equivalent to the kernel's `dev_alert` macro.
753///
754/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
755/// [`core::fmt`] and [`std::format!`].
756///
757/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
758/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
759///
760/// # Examples
761///
762/// ```
763/// # use kernel::device::Device;
764///
765/// fn example(dev: &Device) {
766/// dev_alert!(dev, "hello {}\n", "there");
767/// }
768/// ```
769#[macro_export]
770macro_rules! dev_alert {
771 ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
772}
773
774/// Prints a critical-level message (level 2) prefixed with device information.
775///
776/// This level should be used in critical conditions.
777///
778/// Equivalent to the kernel's `dev_crit` macro.
779///
780/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
781/// [`core::fmt`] and [`std::format!`].
782///
783/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
784/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
785///
786/// # Examples
787///
788/// ```
789/// # use kernel::device::Device;
790///
791/// fn example(dev: &Device) {
792/// dev_crit!(dev, "hello {}\n", "there");
793/// }
794/// ```
795#[macro_export]
796macro_rules! dev_crit {
797 ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
798}
799
800/// Prints an error-level message (level 3) prefixed with device information.
801///
802/// This level should be used in error conditions.
803///
804/// Equivalent to the kernel's `dev_err` macro.
805///
806/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
807/// [`core::fmt`] and [`std::format!`].
808///
809/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
810/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
811///
812/// # Examples
813///
814/// ```
815/// # use kernel::device::Device;
816///
817/// fn example(dev: &Device) {
818/// dev_err!(dev, "hello {}\n", "there");
819/// }
820/// ```
821#[macro_export]
822macro_rules! dev_err {
823 ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
824}
825
826/// Prints a warning-level message (level 4) prefixed with device information.
827///
828/// This level should be used in warning conditions.
829///
830/// Equivalent to the kernel's `dev_warn` macro.
831///
832/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
833/// [`core::fmt`] and [`std::format!`].
834///
835/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
836/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
837///
838/// # Examples
839///
840/// ```
841/// # use kernel::device::Device;
842///
843/// fn example(dev: &Device) {
844/// dev_warn!(dev, "hello {}\n", "there");
845/// }
846/// ```
847#[macro_export]
848macro_rules! dev_warn {
849 ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
850}
851
852/// Prints a notice-level message (level 5) prefixed with device information.
853///
854/// This level should be used in normal but significant conditions.
855///
856/// Equivalent to the kernel's `dev_notice` macro.
857///
858/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
859/// [`core::fmt`] and [`std::format!`].
860///
861/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
862/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
863///
864/// # Examples
865///
866/// ```
867/// # use kernel::device::Device;
868///
869/// fn example(dev: &Device) {
870/// dev_notice!(dev, "hello {}\n", "there");
871/// }
872/// ```
873#[macro_export]
874macro_rules! dev_notice {
875 ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
876}
877
878/// Prints an info-level message (level 6) prefixed with device information.
879///
880/// This level should be used for informational messages.
881///
882/// Equivalent to the kernel's `dev_info` macro.
883///
884/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
885/// [`core::fmt`] and [`std::format!`].
886///
887/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
888/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
889///
890/// # Examples
891///
892/// ```
893/// # use kernel::device::Device;
894///
895/// fn example(dev: &Device) {
896/// dev_info!(dev, "hello {}\n", "there");
897/// }
898/// ```
899#[macro_export]
900macro_rules! dev_info {
901 ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
902}
903
904/// Prints a debug-level message (level 7) prefixed with device information.
905///
906/// This level should be used for debug messages.
907///
908/// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
909///
910/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
911/// [`core::fmt`] and [`std::format!`].
912///
913/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
914/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
915///
916/// # Examples
917///
918/// ```
919/// # use kernel::device::Device;
920///
921/// fn example(dev: &Device) {
922/// dev_dbg!(dev, "hello {}\n", "there");
923/// }
924/// ```
925#[macro_export]
926macro_rules! dev_dbg {
927 ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
928}