core/
cell.rs

1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//!  - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//!    interior value by duplicating it.
38//!  - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//!    interior value with [`Default::default()`] and returns the replaced value.
40//!  - All types have:
41//!    - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//!      value.
43//!    - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//!      interior value.
45//!    - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//!   if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//!     let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//!     // Create a new block to limit the scope of the dynamic borrow
131//!     {
132//!         let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//!         map.insert("africa", 92388);
134//!         map.insert("kyoto", 11837);
135//!         map.insert("piccadilly", 11826);
136//!         map.insert("marbles", 38);
137//!     }
138//!
139//!     // Note that if we had not let the previous borrow of the cache fall out
140//!     // of scope then the subsequent borrow would cause a dynamic thread panic.
141//!     // This is the major hazard of using `RefCell`.
142//!     let total: i32 = shared_map.borrow().values().sum();
143//!     println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//!     edges: Vec<(i32, i32)>,
164//!     span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//!     fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//!         self.span_tree_cache
170//!             .get_or_init(|| self.calc_span_tree())
171//!             .clone()
172//!     }
173//!
174//!     fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//!         // Expensive computation goes here
176//!         vec![]
177//!     }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//!     ptr: NonNull<RcInner<T>>,
197//!     phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//!     strong: Cell<usize>,
202//!     refcount: Cell<usize>,
203//!     value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//!     fn clone(&self) -> Rc<T> {
208//!         self.inc_strong();
209//!         Rc {
210//!             ptr: self.ptr,
211//!             phantom: PhantomData,
212//!         }
213//!     }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//!     fn inner(&self) -> &RcInner<T>;
219//!
220//!     fn strong(&self) -> usize {
221//!         self.inner().strong.get()
222//!     }
223//!
224//!     fn inc_strong(&self) {
225//!         self.inner()
226//!             .strong
227//!             .set(self.strong()
228//!                      .checked_add(1)
229//!                      .unwrap_or_else(|| abort() ));
230//!     }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//!    fn inner(&self) -> &RcInner<T> {
235//!        unsafe {
236//!            self.ptr.as_ref()
237//!        }
238//!    }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255use crate::marker::{Destruct, PhantomData, Unsize};
256use crate::mem::{self, ManuallyDrop};
257use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
258use crate::panic::const_panic;
259use crate::pin::PinCoerceUnsized;
260use crate::ptr::{self, NonNull};
261use crate::range;
262
263mod lazy;
264mod once;
265
266#[stable(feature = "lazy_cell", since = "1.80.0")]
267pub use lazy::LazyCell;
268#[stable(feature = "once_cell", since = "1.70.0")]
269pub use once::OnceCell;
270
271/// A mutable memory location.
272///
273/// # Memory layout
274///
275/// `Cell<T>` has the same [memory layout and caveats as
276/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
277/// `Cell<T>` has the same in-memory representation as its inner type `T`.
278///
279/// # Examples
280///
281/// In this example, you can see that `Cell<T>` enables mutation inside an
282/// immutable struct. In other words, it enables "interior mutability".
283///
284/// ```
285/// use std::cell::Cell;
286///
287/// struct SomeStruct {
288///     regular_field: u8,
289///     special_field: Cell<u8>,
290/// }
291///
292/// let my_struct = SomeStruct {
293///     regular_field: 0,
294///     special_field: Cell::new(1),
295/// };
296///
297/// let new_value = 100;
298///
299/// // ERROR: `my_struct` is immutable
300/// // my_struct.regular_field = new_value;
301///
302/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
303/// // which can always be mutated
304/// my_struct.special_field.set(new_value);
305/// assert_eq!(my_struct.special_field.get(), new_value);
306/// ```
307///
308/// See the [module-level documentation](self) for more.
309#[rustc_diagnostic_item = "Cell"]
310#[stable(feature = "rust1", since = "1.0.0")]
311#[repr(transparent)]
312#[rustc_pub_transparent]
313pub struct Cell<T: ?Sized> {
314    value: UnsafeCell<T>,
315}
316
317#[stable(feature = "rust1", since = "1.0.0")]
318unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
319
320// Note that this negative impl isn't strictly necessary for correctness,
321// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
322// However, given how important `Cell`'s `!Sync`-ness is,
323// having an explicit negative impl is nice for documentation purposes
324// and results in nicer error messages.
325#[stable(feature = "rust1", since = "1.0.0")]
326impl<T: ?Sized> !Sync for Cell<T> {}
327
328#[stable(feature = "rust1", since = "1.0.0")]
329impl<T: Copy> Clone for Cell<T> {
330    #[inline]
331    fn clone(&self) -> Cell<T> {
332        Cell::new(self.get())
333    }
334}
335
336#[stable(feature = "rust1", since = "1.0.0")]
337#[rustc_const_unstable(feature = "const_default", issue = "143894")]
338impl<T: [const] Default> const Default for Cell<T> {
339    /// Creates a `Cell<T>`, with the `Default` value for T.
340    #[inline]
341    fn default() -> Cell<T> {
342        Cell::new(Default::default())
343    }
344}
345
346#[stable(feature = "rust1", since = "1.0.0")]
347impl<T: PartialEq + Copy> PartialEq for Cell<T> {
348    #[inline]
349    fn eq(&self, other: &Cell<T>) -> bool {
350        self.get() == other.get()
351    }
352}
353
354#[stable(feature = "cell_eq", since = "1.2.0")]
355impl<T: Eq + Copy> Eq for Cell<T> {}
356
357#[stable(feature = "cell_ord", since = "1.10.0")]
358impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
359    #[inline]
360    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
361        self.get().partial_cmp(&other.get())
362    }
363
364    #[inline]
365    fn lt(&self, other: &Cell<T>) -> bool {
366        self.get() < other.get()
367    }
368
369    #[inline]
370    fn le(&self, other: &Cell<T>) -> bool {
371        self.get() <= other.get()
372    }
373
374    #[inline]
375    fn gt(&self, other: &Cell<T>) -> bool {
376        self.get() > other.get()
377    }
378
379    #[inline]
380    fn ge(&self, other: &Cell<T>) -> bool {
381        self.get() >= other.get()
382    }
383}
384
385#[stable(feature = "cell_ord", since = "1.10.0")]
386impl<T: Ord + Copy> Ord for Cell<T> {
387    #[inline]
388    fn cmp(&self, other: &Cell<T>) -> Ordering {
389        self.get().cmp(&other.get())
390    }
391}
392
393#[stable(feature = "cell_from", since = "1.12.0")]
394#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
395impl<T> const From<T> for Cell<T> {
396    /// Creates a new `Cell<T>` containing the given value.
397    fn from(t: T) -> Cell<T> {
398        Cell::new(t)
399    }
400}
401
402impl<T> Cell<T> {
403    /// Creates a new `Cell` containing the given value.
404    ///
405    /// # Examples
406    ///
407    /// ```
408    /// use std::cell::Cell;
409    ///
410    /// let c = Cell::new(5);
411    /// ```
412    #[stable(feature = "rust1", since = "1.0.0")]
413    #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
414    #[inline]
415    pub const fn new(value: T) -> Cell<T> {
416        Cell { value: UnsafeCell::new(value) }
417    }
418
419    /// Sets the contained value.
420    ///
421    /// # Examples
422    ///
423    /// ```
424    /// use std::cell::Cell;
425    ///
426    /// let c = Cell::new(5);
427    ///
428    /// c.set(10);
429    /// ```
430    #[inline]
431    #[stable(feature = "rust1", since = "1.0.0")]
432    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
433    #[rustc_should_not_be_called_on_const_items]
434    pub const fn set(&self, val: T)
435    where
436        T: [const] Destruct,
437    {
438        self.replace(val);
439    }
440
441    /// Swaps the values of two `Cell`s.
442    ///
443    /// The difference with `std::mem::swap` is that this function doesn't
444    /// require a `&mut` reference.
445    ///
446    /// # Panics
447    ///
448    /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
449    /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
450    /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
451    ///
452    /// # Examples
453    ///
454    /// ```
455    /// use std::cell::Cell;
456    ///
457    /// let c1 = Cell::new(5i32);
458    /// let c2 = Cell::new(10i32);
459    /// c1.swap(&c2);
460    /// assert_eq!(10, c1.get());
461    /// assert_eq!(5, c2.get());
462    /// ```
463    #[inline]
464    #[stable(feature = "move_cell", since = "1.17.0")]
465    #[rustc_should_not_be_called_on_const_items]
466    pub fn swap(&self, other: &Self) {
467        // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
468        // do the check in const, so trying to use it here would be inviting unnecessary fragility.
469        fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
470            let src_usize = src.addr();
471            let dst_usize = dst.addr();
472            let diff = src_usize.abs_diff(dst_usize);
473            diff >= size_of::<T>()
474        }
475
476        if ptr::eq(self, other) {
477            // Swapping wouldn't change anything.
478            return;
479        }
480        if !is_nonoverlapping(self, other) {
481            // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
482            panic!("`Cell::swap` on overlapping non-identical `Cell`s");
483        }
484        // SAFETY: This can be risky if called from separate threads, but `Cell`
485        // is `!Sync` so this won't happen. This also won't invalidate any
486        // pointers since `Cell` makes sure nothing else will be pointing into
487        // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
488        // so `swap` will just properly copy two full values of type `T` back and forth.
489        unsafe {
490            mem::swap(&mut *self.value.get(), &mut *other.value.get());
491        }
492    }
493
494    /// Replaces the contained value with `val`, and returns the old contained value.
495    ///
496    /// # Examples
497    ///
498    /// ```
499    /// use std::cell::Cell;
500    ///
501    /// let cell = Cell::new(5);
502    /// assert_eq!(cell.get(), 5);
503    /// assert_eq!(cell.replace(10), 5);
504    /// assert_eq!(cell.get(), 10);
505    /// ```
506    #[inline]
507    #[stable(feature = "move_cell", since = "1.17.0")]
508    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
509    #[rustc_confusables("swap")]
510    #[rustc_should_not_be_called_on_const_items]
511    pub const fn replace(&self, val: T) -> T {
512        // SAFETY: This can cause data races if called from a separate thread,
513        // but `Cell` is `!Sync` so this won't happen.
514        mem::replace(unsafe { &mut *self.value.get() }, val)
515    }
516
517    /// Unwraps the value, consuming the cell.
518    ///
519    /// # Examples
520    ///
521    /// ```
522    /// use std::cell::Cell;
523    ///
524    /// let c = Cell::new(5);
525    /// let five = c.into_inner();
526    ///
527    /// assert_eq!(five, 5);
528    /// ```
529    #[stable(feature = "move_cell", since = "1.17.0")]
530    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
531    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
532    pub const fn into_inner(self) -> T {
533        self.value.into_inner()
534    }
535}
536
537impl<T: Copy> Cell<T> {
538    /// Returns a copy of the contained value.
539    ///
540    /// # Examples
541    ///
542    /// ```
543    /// use std::cell::Cell;
544    ///
545    /// let c = Cell::new(5);
546    ///
547    /// let five = c.get();
548    /// ```
549    #[inline]
550    #[stable(feature = "rust1", since = "1.0.0")]
551    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
552    #[rustc_should_not_be_called_on_const_items]
553    pub const fn get(&self) -> T {
554        // SAFETY: This can cause data races if called from a separate thread,
555        // but `Cell` is `!Sync` so this won't happen.
556        unsafe { *self.value.get() }
557    }
558
559    /// Updates the contained value using a function.
560    ///
561    /// # Examples
562    ///
563    /// ```
564    /// use std::cell::Cell;
565    ///
566    /// let c = Cell::new(5);
567    /// c.update(|x| x + 1);
568    /// assert_eq!(c.get(), 6);
569    /// ```
570    #[inline]
571    #[stable(feature = "cell_update", since = "1.88.0")]
572    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
573    #[rustc_should_not_be_called_on_const_items]
574    pub const fn update(&self, f: impl [const] FnOnce(T) -> T)
575    where
576        // FIXME(const-hack): `Copy` should imply `const Destruct`
577        T: [const] Destruct,
578    {
579        let old = self.get();
580        self.set(f(old));
581    }
582}
583
584impl<T: ?Sized> Cell<T> {
585    /// Returns a raw pointer to the underlying data in this cell.
586    ///
587    /// # Examples
588    ///
589    /// ```
590    /// use std::cell::Cell;
591    ///
592    /// let c = Cell::new(5);
593    ///
594    /// let ptr = c.as_ptr();
595    /// ```
596    #[inline]
597    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
598    #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
599    #[rustc_as_ptr]
600    #[rustc_never_returns_null_ptr]
601    pub const fn as_ptr(&self) -> *mut T {
602        self.value.get()
603    }
604
605    /// Returns a mutable reference to the underlying data.
606    ///
607    /// This call borrows `Cell` mutably (at compile-time) which guarantees
608    /// that we possess the only reference.
609    ///
610    /// However be cautious: this method expects `self` to be mutable, which is
611    /// generally not the case when using a `Cell`. If you require interior
612    /// mutability by reference, consider using `RefCell` which provides
613    /// run-time checked mutable borrows through its [`borrow_mut`] method.
614    ///
615    /// [`borrow_mut`]: RefCell::borrow_mut()
616    ///
617    /// # Examples
618    ///
619    /// ```
620    /// use std::cell::Cell;
621    ///
622    /// let mut c = Cell::new(5);
623    /// *c.get_mut() += 1;
624    ///
625    /// assert_eq!(c.get(), 6);
626    /// ```
627    #[inline]
628    #[stable(feature = "cell_get_mut", since = "1.11.0")]
629    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
630    pub const fn get_mut(&mut self) -> &mut T {
631        self.value.get_mut()
632    }
633
634    /// Returns a `&Cell<T>` from a `&mut T`
635    ///
636    /// # Examples
637    ///
638    /// ```
639    /// use std::cell::Cell;
640    ///
641    /// let slice: &mut [i32] = &mut [1, 2, 3];
642    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
643    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
644    ///
645    /// assert_eq!(slice_cell.len(), 3);
646    /// ```
647    #[inline]
648    #[stable(feature = "as_cell", since = "1.37.0")]
649    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
650    pub const fn from_mut(t: &mut T) -> &Cell<T> {
651        // SAFETY: `&mut` ensures unique access.
652        unsafe { &*(t as *mut T as *const Cell<T>) }
653    }
654}
655
656impl<T: Default> Cell<T> {
657    /// Takes the value of the cell, leaving `Default::default()` in its place.
658    ///
659    /// # Examples
660    ///
661    /// ```
662    /// use std::cell::Cell;
663    ///
664    /// let c = Cell::new(5);
665    /// let five = c.take();
666    ///
667    /// assert_eq!(five, 5);
668    /// assert_eq!(c.into_inner(), 0);
669    /// ```
670    #[stable(feature = "move_cell", since = "1.17.0")]
671    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
672    pub const fn take(&self) -> T
673    where
674        T: [const] Default,
675    {
676        self.replace(Default::default())
677    }
678}
679
680#[unstable(feature = "coerce_unsized", issue = "18598")]
681impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
682
683// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
684// and become dyn-compatible method receivers.
685// Note that currently `Cell` itself cannot be a method receiver
686// because it does not implement Deref.
687// In other words:
688// `self: Cell<&Self>` won't work
689// `self: CellWrapper<Self>` becomes possible
690#[unstable(feature = "dispatch_from_dyn", issue = "none")]
691impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
692
693impl<T> Cell<[T]> {
694    /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
695    ///
696    /// # Examples
697    ///
698    /// ```
699    /// use std::cell::Cell;
700    ///
701    /// let slice: &mut [i32] = &mut [1, 2, 3];
702    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
703    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
704    ///
705    /// assert_eq!(slice_cell.len(), 3);
706    /// ```
707    #[stable(feature = "as_cell", since = "1.37.0")]
708    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
709    pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
710        // SAFETY: `Cell<T>` has the same memory layout as `T`.
711        unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
712    }
713}
714
715impl<T, const N: usize> Cell<[T; N]> {
716    /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
717    ///
718    /// # Examples
719    ///
720    /// ```
721    /// use std::cell::Cell;
722    ///
723    /// let mut array: [i32; 3] = [1, 2, 3];
724    /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
725    /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
726    /// ```
727    #[stable(feature = "as_array_of_cells", since = "1.91.0")]
728    #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
729    pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
730        // SAFETY: `Cell<T>` has the same memory layout as `T`.
731        unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
732    }
733}
734
735/// Types for which cloning `Cell<Self>` is sound.
736///
737/// # Safety
738///
739/// Implementing this trait for a type is sound if and only if the following code is sound for T =
740/// that type.
741///
742/// ```
743/// #![feature(cell_get_cloned)]
744/// # use std::cell::{CloneFromCell, Cell};
745/// fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
746///     unsafe { T::clone(&*cell.as_ptr()) }
747/// }
748/// ```
749///
750/// Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
751/// following is unsound:
752///
753/// ```rust
754/// #![feature(cell_get_cloned)]
755/// # use std::cell::Cell;
756///
757/// #[derive(Copy, Debug)]
758/// pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
759///
760/// impl Clone for Bad<'_> {
761///     fn clone(&self) -> Self {
762///         let a: &u8 = &self.1;
763///         // when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
764///         // it -- this is UB
765///         self.0.unwrap().set(Self(None, 1));
766///         dbg!((a, self));
767///         Self(None, 0)
768///     }
769/// }
770///
771/// // this is not sound
772/// // unsafe impl CloneFromCell for Bad<'_> {}
773/// ```
774#[unstable(feature = "cell_get_cloned", issue = "145329")]
775// Allow potential overlapping implementations in user code
776#[marker]
777pub unsafe trait CloneFromCell: Clone {}
778
779// `CloneFromCell` can be implemented for types that don't have indirection and which don't access
780// `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
781#[unstable(feature = "cell_get_cloned", issue = "145329")]
782unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
783#[unstable(feature = "cell_get_cloned", issue = "145329")]
784unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
785#[unstable(feature = "cell_get_cloned", issue = "145329")]
786unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
787#[unstable(feature = "cell_get_cloned", issue = "145329")]
788unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
789#[unstable(feature = "cell_get_cloned", issue = "145329")]
790unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
791#[unstable(feature = "cell_get_cloned", issue = "145329")]
792unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
793#[unstable(feature = "cell_get_cloned", issue = "145329")]
794unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
795
796#[unstable(feature = "cell_get_cloned", issue = "145329")]
797impl<T: CloneFromCell> Cell<T> {
798    /// Get a clone of the `Cell` that contains a copy of the original value.
799    ///
800    /// This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
801    /// cheaper `clone()` method.
802    ///
803    /// # Examples
804    ///
805    /// ```
806    /// #![feature(cell_get_cloned)]
807    ///
808    /// use core::cell::Cell;
809    /// use std::rc::Rc;
810    ///
811    /// let rc = Rc::new(1usize);
812    /// let c1 = Cell::new(rc);
813    /// let c2 = c1.get_cloned();
814    /// assert_eq!(*c2.into_inner(), 1);
815    /// ```
816    pub fn get_cloned(&self) -> Self {
817        // SAFETY: T is CloneFromCell, which guarantees that this is sound.
818        Cell::new(T::clone(unsafe { &*self.as_ptr() }))
819    }
820}
821
822/// A mutable memory location with dynamically checked borrow rules
823///
824/// See the [module-level documentation](self) for more.
825#[rustc_diagnostic_item = "RefCell"]
826#[stable(feature = "rust1", since = "1.0.0")]
827pub struct RefCell<T: ?Sized> {
828    borrow: Cell<BorrowCounter>,
829    // Stores the location of the earliest currently active borrow.
830    // This gets updated whenever we go from having zero borrows
831    // to having a single borrow. When a borrow occurs, this gets included
832    // in the generated `BorrowError`/`BorrowMutError`
833    #[cfg(feature = "debug_refcell")]
834    borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
835    value: UnsafeCell<T>,
836}
837
838/// An error returned by [`RefCell::try_borrow`].
839#[stable(feature = "try_borrow", since = "1.13.0")]
840#[non_exhaustive]
841#[derive(Debug)]
842pub struct BorrowError {
843    #[cfg(feature = "debug_refcell")]
844    location: &'static crate::panic::Location<'static>,
845}
846
847#[stable(feature = "try_borrow", since = "1.13.0")]
848impl Display for BorrowError {
849    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
850        #[cfg(feature = "debug_refcell")]
851        let res = write!(
852            f,
853            "RefCell already mutably borrowed; a previous borrow was at {}",
854            self.location
855        );
856
857        #[cfg(not(feature = "debug_refcell"))]
858        let res = Display::fmt("RefCell already mutably borrowed", f);
859
860        res
861    }
862}
863
864/// An error returned by [`RefCell::try_borrow_mut`].
865#[stable(feature = "try_borrow", since = "1.13.0")]
866#[non_exhaustive]
867#[derive(Debug)]
868pub struct BorrowMutError {
869    #[cfg(feature = "debug_refcell")]
870    location: &'static crate::panic::Location<'static>,
871}
872
873#[stable(feature = "try_borrow", since = "1.13.0")]
874impl Display for BorrowMutError {
875    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
876        #[cfg(feature = "debug_refcell")]
877        let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
878
879        #[cfg(not(feature = "debug_refcell"))]
880        let res = Display::fmt("RefCell already borrowed", f);
881
882        res
883    }
884}
885
886// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
887#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
888#[track_caller]
889#[cold]
890const fn panic_already_borrowed(err: BorrowMutError) -> ! {
891    const_panic!(
892        "RefCell already borrowed",
893        "{err}",
894        err: BorrowMutError = err,
895    )
896}
897
898// This ensures the panicking code is outlined from `borrow` for `RefCell`.
899#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
900#[track_caller]
901#[cold]
902const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
903    const_panic!(
904        "RefCell already mutably borrowed",
905        "{err}",
906        err: BorrowError = err,
907    )
908}
909
910// Positive values represent the number of `Ref` active. Negative values
911// represent the number of `RefMut` active. Multiple `RefMut`s can only be
912// active at a time if they refer to distinct, nonoverlapping components of a
913// `RefCell` (e.g., different ranges of a slice).
914//
915// `Ref` and `RefMut` are both two words in size, and so there will likely never
916// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
917// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
918// However, this is not a guarantee, as a pathological program could repeatedly
919// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
920// explicitly check for overflow and underflow in order to avoid unsafety, or at
921// least behave correctly in the event that overflow or underflow happens (e.g.,
922// see BorrowRef::new).
923type BorrowCounter = isize;
924const UNUSED: BorrowCounter = 0;
925
926#[inline(always)]
927const fn is_writing(x: BorrowCounter) -> bool {
928    x < UNUSED
929}
930
931#[inline(always)]
932const fn is_reading(x: BorrowCounter) -> bool {
933    x > UNUSED
934}
935
936impl<T> RefCell<T> {
937    /// Creates a new `RefCell` containing `value`.
938    ///
939    /// # Examples
940    ///
941    /// ```
942    /// use std::cell::RefCell;
943    ///
944    /// let c = RefCell::new(5);
945    /// ```
946    #[stable(feature = "rust1", since = "1.0.0")]
947    #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
948    #[inline]
949    pub const fn new(value: T) -> RefCell<T> {
950        RefCell {
951            value: UnsafeCell::new(value),
952            borrow: Cell::new(UNUSED),
953            #[cfg(feature = "debug_refcell")]
954            borrowed_at: Cell::new(None),
955        }
956    }
957
958    /// Consumes the `RefCell`, returning the wrapped value.
959    ///
960    /// # Examples
961    ///
962    /// ```
963    /// use std::cell::RefCell;
964    ///
965    /// let c = RefCell::new(5);
966    ///
967    /// let five = c.into_inner();
968    /// ```
969    #[stable(feature = "rust1", since = "1.0.0")]
970    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
971    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
972    #[inline]
973    pub const fn into_inner(self) -> T {
974        // Since this function takes `self` (the `RefCell`) by value, the
975        // compiler statically verifies that it is not currently borrowed.
976        self.value.into_inner()
977    }
978
979    /// Replaces the wrapped value with a new one, returning the old value,
980    /// without deinitializing either one.
981    ///
982    /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
983    ///
984    /// # Panics
985    ///
986    /// Panics if the value is currently borrowed.
987    ///
988    /// # Examples
989    ///
990    /// ```
991    /// use std::cell::RefCell;
992    /// let cell = RefCell::new(5);
993    /// let old_value = cell.replace(6);
994    /// assert_eq!(old_value, 5);
995    /// assert_eq!(cell, RefCell::new(6));
996    /// ```
997    #[inline]
998    #[stable(feature = "refcell_replace", since = "1.24.0")]
999    #[track_caller]
1000    #[rustc_confusables("swap")]
1001    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1002    #[rustc_should_not_be_called_on_const_items]
1003    pub const fn replace(&self, t: T) -> T {
1004        mem::replace(&mut self.borrow_mut(), t)
1005    }
1006
1007    /// Replaces the wrapped value with a new one computed from `f`, returning
1008    /// the old value, without deinitializing either one.
1009    ///
1010    /// # Panics
1011    ///
1012    /// Panics if the value is currently borrowed.
1013    ///
1014    /// # Examples
1015    ///
1016    /// ```
1017    /// use std::cell::RefCell;
1018    /// let cell = RefCell::new(5);
1019    /// let old_value = cell.replace_with(|&mut old| old + 1);
1020    /// assert_eq!(old_value, 5);
1021    /// assert_eq!(cell, RefCell::new(6));
1022    /// ```
1023    #[inline]
1024    #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1025    #[track_caller]
1026    #[rustc_should_not_be_called_on_const_items]
1027    pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1028        let mut_borrow = &mut *self.borrow_mut();
1029        let replacement = f(mut_borrow);
1030        mem::replace(mut_borrow, replacement)
1031    }
1032
1033    /// Swaps the wrapped value of `self` with the wrapped value of `other`,
1034    /// without deinitializing either one.
1035    ///
1036    /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1037    ///
1038    /// # Panics
1039    ///
1040    /// Panics if the value in either `RefCell` is currently borrowed, or
1041    /// if `self` and `other` point to the same `RefCell`.
1042    ///
1043    /// # Examples
1044    ///
1045    /// ```
1046    /// use std::cell::RefCell;
1047    /// let c = RefCell::new(5);
1048    /// let d = RefCell::new(6);
1049    /// c.swap(&d);
1050    /// assert_eq!(c, RefCell::new(6));
1051    /// assert_eq!(d, RefCell::new(5));
1052    /// ```
1053    #[inline]
1054    #[stable(feature = "refcell_swap", since = "1.24.0")]
1055    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1056    #[rustc_should_not_be_called_on_const_items]
1057    pub const fn swap(&self, other: &Self) {
1058        mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1059    }
1060}
1061
1062impl<T: ?Sized> RefCell<T> {
1063    /// Immutably borrows the wrapped value.
1064    ///
1065    /// The borrow lasts until the returned `Ref` exits scope. Multiple
1066    /// immutable borrows can be taken out at the same time.
1067    ///
1068    /// # Panics
1069    ///
1070    /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1071    /// [`try_borrow`](#method.try_borrow).
1072    ///
1073    /// # Examples
1074    ///
1075    /// ```
1076    /// use std::cell::RefCell;
1077    ///
1078    /// let c = RefCell::new(5);
1079    ///
1080    /// let borrowed_five = c.borrow();
1081    /// let borrowed_five2 = c.borrow();
1082    /// ```
1083    ///
1084    /// An example of panic:
1085    ///
1086    /// ```should_panic
1087    /// use std::cell::RefCell;
1088    ///
1089    /// let c = RefCell::new(5);
1090    ///
1091    /// let m = c.borrow_mut();
1092    /// let b = c.borrow(); // this causes a panic
1093    /// ```
1094    #[stable(feature = "rust1", since = "1.0.0")]
1095    #[inline]
1096    #[track_caller]
1097    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1098    #[rustc_should_not_be_called_on_const_items]
1099    pub const fn borrow(&self) -> Ref<'_, T> {
1100        match self.try_borrow() {
1101            Ok(b) => b,
1102            Err(err) => panic_already_mutably_borrowed(err),
1103        }
1104    }
1105
1106    /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1107    /// borrowed.
1108    ///
1109    /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1110    /// taken out at the same time.
1111    ///
1112    /// This is the non-panicking variant of [`borrow`](#method.borrow).
1113    ///
1114    /// # Examples
1115    ///
1116    /// ```
1117    /// use std::cell::RefCell;
1118    ///
1119    /// let c = RefCell::new(5);
1120    ///
1121    /// {
1122    ///     let m = c.borrow_mut();
1123    ///     assert!(c.try_borrow().is_err());
1124    /// }
1125    ///
1126    /// {
1127    ///     let m = c.borrow();
1128    ///     assert!(c.try_borrow().is_ok());
1129    /// }
1130    /// ```
1131    #[stable(feature = "try_borrow", since = "1.13.0")]
1132    #[inline]
1133    #[cfg_attr(feature = "debug_refcell", track_caller)]
1134    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1135    #[rustc_should_not_be_called_on_const_items]
1136    pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1137        match BorrowRef::new(&self.borrow) {
1138            Some(b) => {
1139                #[cfg(feature = "debug_refcell")]
1140                {
1141                    // `borrowed_at` is always the *first* active borrow
1142                    if b.borrow.get() == 1 {
1143                        self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1144                    }
1145                }
1146
1147                // SAFETY: `BorrowRef` ensures that there is only immutable access
1148                // to the value while borrowed.
1149                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1150                Ok(Ref { value, borrow: b })
1151            }
1152            None => Err(BorrowError {
1153                // If a borrow occurred, then we must already have an outstanding borrow,
1154                // so `borrowed_at` will be `Some`
1155                #[cfg(feature = "debug_refcell")]
1156                location: self.borrowed_at.get().unwrap(),
1157            }),
1158        }
1159    }
1160
1161    /// Mutably borrows the wrapped value.
1162    ///
1163    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1164    /// from it exit scope. The value cannot be borrowed while this borrow is
1165    /// active.
1166    ///
1167    /// # Panics
1168    ///
1169    /// Panics if the value is currently borrowed. For a non-panicking variant, use
1170    /// [`try_borrow_mut`](#method.try_borrow_mut).
1171    ///
1172    /// # Examples
1173    ///
1174    /// ```
1175    /// use std::cell::RefCell;
1176    ///
1177    /// let c = RefCell::new("hello".to_owned());
1178    ///
1179    /// *c.borrow_mut() = "bonjour".to_owned();
1180    ///
1181    /// assert_eq!(&*c.borrow(), "bonjour");
1182    /// ```
1183    ///
1184    /// An example of panic:
1185    ///
1186    /// ```should_panic
1187    /// use std::cell::RefCell;
1188    ///
1189    /// let c = RefCell::new(5);
1190    /// let m = c.borrow();
1191    ///
1192    /// let b = c.borrow_mut(); // this causes a panic
1193    /// ```
1194    #[stable(feature = "rust1", since = "1.0.0")]
1195    #[inline]
1196    #[track_caller]
1197    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1198    #[rustc_should_not_be_called_on_const_items]
1199    pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1200        match self.try_borrow_mut() {
1201            Ok(b) => b,
1202            Err(err) => panic_already_borrowed(err),
1203        }
1204    }
1205
1206    /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1207    ///
1208    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1209    /// from it exit scope. The value cannot be borrowed while this borrow is
1210    /// active.
1211    ///
1212    /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1213    ///
1214    /// # Examples
1215    ///
1216    /// ```
1217    /// use std::cell::RefCell;
1218    ///
1219    /// let c = RefCell::new(5);
1220    ///
1221    /// {
1222    ///     let m = c.borrow();
1223    ///     assert!(c.try_borrow_mut().is_err());
1224    /// }
1225    ///
1226    /// assert!(c.try_borrow_mut().is_ok());
1227    /// ```
1228    #[stable(feature = "try_borrow", since = "1.13.0")]
1229    #[inline]
1230    #[cfg_attr(feature = "debug_refcell", track_caller)]
1231    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1232    #[rustc_should_not_be_called_on_const_items]
1233    pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1234        match BorrowRefMut::new(&self.borrow) {
1235            Some(b) => {
1236                #[cfg(feature = "debug_refcell")]
1237                {
1238                    self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1239                }
1240
1241                // SAFETY: `BorrowRefMut` guarantees unique access.
1242                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1243                Ok(RefMut { value, borrow: b, marker: PhantomData })
1244            }
1245            None => Err(BorrowMutError {
1246                // If a borrow occurred, then we must already have an outstanding borrow,
1247                // so `borrowed_at` will be `Some`
1248                #[cfg(feature = "debug_refcell")]
1249                location: self.borrowed_at.get().unwrap(),
1250            }),
1251        }
1252    }
1253
1254    /// Returns a raw pointer to the underlying data in this cell.
1255    ///
1256    /// # Examples
1257    ///
1258    /// ```
1259    /// use std::cell::RefCell;
1260    ///
1261    /// let c = RefCell::new(5);
1262    ///
1263    /// let ptr = c.as_ptr();
1264    /// ```
1265    #[inline]
1266    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1267    #[rustc_as_ptr]
1268    #[rustc_never_returns_null_ptr]
1269    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1270    pub const fn as_ptr(&self) -> *mut T {
1271        self.value.get()
1272    }
1273
1274    /// Returns a mutable reference to the underlying data.
1275    ///
1276    /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1277    /// that no borrows to the underlying data exist. The dynamic checks inherent
1278    /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1279    /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1280    /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1281    /// consider using the unstable [`undo_leak`] method.
1282    ///
1283    /// This method can only be called if `RefCell` can be mutably borrowed,
1284    /// which in general is only the case directly after the `RefCell` has
1285    /// been created. In these situations, skipping the aforementioned dynamic
1286    /// borrowing checks may yield better ergonomics and runtime-performance.
1287    ///
1288    /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1289    /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1290    ///
1291    /// [`borrow_mut`]: RefCell::borrow_mut()
1292    /// [`forget()`]: mem::forget
1293    /// [`undo_leak`]: RefCell::undo_leak()
1294    ///
1295    /// # Examples
1296    ///
1297    /// ```
1298    /// use std::cell::RefCell;
1299    ///
1300    /// let mut c = RefCell::new(5);
1301    /// *c.get_mut() += 1;
1302    ///
1303    /// assert_eq!(c, RefCell::new(6));
1304    /// ```
1305    #[inline]
1306    #[stable(feature = "cell_get_mut", since = "1.11.0")]
1307    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1308    pub const fn get_mut(&mut self) -> &mut T {
1309        self.value.get_mut()
1310    }
1311
1312    /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1313    ///
1314    /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1315    /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1316    /// if some `Ref` or `RefMut` borrows have been leaked.
1317    ///
1318    /// [`get_mut`]: RefCell::get_mut()
1319    ///
1320    /// # Examples
1321    ///
1322    /// ```
1323    /// #![feature(cell_leak)]
1324    /// use std::cell::RefCell;
1325    ///
1326    /// let mut c = RefCell::new(0);
1327    /// std::mem::forget(c.borrow_mut());
1328    ///
1329    /// assert!(c.try_borrow().is_err());
1330    /// c.undo_leak();
1331    /// assert!(c.try_borrow().is_ok());
1332    /// ```
1333    #[unstable(feature = "cell_leak", issue = "69099")]
1334    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1335    pub const fn undo_leak(&mut self) -> &mut T {
1336        *self.borrow.get_mut() = UNUSED;
1337        self.get_mut()
1338    }
1339
1340    /// Immutably borrows the wrapped value, returning an error if the value is
1341    /// currently mutably borrowed.
1342    ///
1343    /// # Safety
1344    ///
1345    /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1346    /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1347    /// borrowing the `RefCell` while the reference returned by this method
1348    /// is alive is undefined behavior.
1349    ///
1350    /// # Examples
1351    ///
1352    /// ```
1353    /// use std::cell::RefCell;
1354    ///
1355    /// let c = RefCell::new(5);
1356    ///
1357    /// {
1358    ///     let m = c.borrow_mut();
1359    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1360    /// }
1361    ///
1362    /// {
1363    ///     let m = c.borrow();
1364    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1365    /// }
1366    /// ```
1367    #[stable(feature = "borrow_state", since = "1.37.0")]
1368    #[inline]
1369    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1370    pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1371        if !is_writing(self.borrow.get()) {
1372            // SAFETY: We check that nobody is actively writing now, but it is
1373            // the caller's responsibility to ensure that nobody writes until
1374            // the returned reference is no longer in use.
1375            // Also, `self.value.get()` refers to the value owned by `self`
1376            // and is thus guaranteed to be valid for the lifetime of `self`.
1377            Ok(unsafe { &*self.value.get() })
1378        } else {
1379            Err(BorrowError {
1380                // If a borrow occurred, then we must already have an outstanding borrow,
1381                // so `borrowed_at` will be `Some`
1382                #[cfg(feature = "debug_refcell")]
1383                location: self.borrowed_at.get().unwrap(),
1384            })
1385        }
1386    }
1387}
1388
1389impl<T: Default> RefCell<T> {
1390    /// Takes the wrapped value, leaving `Default::default()` in its place.
1391    ///
1392    /// # Panics
1393    ///
1394    /// Panics if the value is currently borrowed.
1395    ///
1396    /// # Examples
1397    ///
1398    /// ```
1399    /// use std::cell::RefCell;
1400    ///
1401    /// let c = RefCell::new(5);
1402    /// let five = c.take();
1403    ///
1404    /// assert_eq!(five, 5);
1405    /// assert_eq!(c.into_inner(), 0);
1406    /// ```
1407    #[stable(feature = "refcell_take", since = "1.50.0")]
1408    pub fn take(&self) -> T {
1409        self.replace(Default::default())
1410    }
1411}
1412
1413#[stable(feature = "rust1", since = "1.0.0")]
1414unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1415
1416#[stable(feature = "rust1", since = "1.0.0")]
1417impl<T: ?Sized> !Sync for RefCell<T> {}
1418
1419#[stable(feature = "rust1", since = "1.0.0")]
1420impl<T: Clone> Clone for RefCell<T> {
1421    /// # Panics
1422    ///
1423    /// Panics if the value is currently mutably borrowed.
1424    #[inline]
1425    #[track_caller]
1426    fn clone(&self) -> RefCell<T> {
1427        RefCell::new(self.borrow().clone())
1428    }
1429
1430    /// # Panics
1431    ///
1432    /// Panics if `source` is currently mutably borrowed.
1433    #[inline]
1434    #[track_caller]
1435    fn clone_from(&mut self, source: &Self) {
1436        self.get_mut().clone_from(&source.borrow())
1437    }
1438}
1439
1440#[stable(feature = "rust1", since = "1.0.0")]
1441#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1442impl<T: [const] Default> const Default for RefCell<T> {
1443    /// Creates a `RefCell<T>`, with the `Default` value for T.
1444    #[inline]
1445    fn default() -> RefCell<T> {
1446        RefCell::new(Default::default())
1447    }
1448}
1449
1450#[stable(feature = "rust1", since = "1.0.0")]
1451impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1452    /// # Panics
1453    ///
1454    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1455    #[inline]
1456    fn eq(&self, other: &RefCell<T>) -> bool {
1457        *self.borrow() == *other.borrow()
1458    }
1459}
1460
1461#[stable(feature = "cell_eq", since = "1.2.0")]
1462impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1463
1464#[stable(feature = "cell_ord", since = "1.10.0")]
1465impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1466    /// # Panics
1467    ///
1468    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1469    #[inline]
1470    fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1471        self.borrow().partial_cmp(&*other.borrow())
1472    }
1473
1474    /// # Panics
1475    ///
1476    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1477    #[inline]
1478    fn lt(&self, other: &RefCell<T>) -> bool {
1479        *self.borrow() < *other.borrow()
1480    }
1481
1482    /// # Panics
1483    ///
1484    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1485    #[inline]
1486    fn le(&self, other: &RefCell<T>) -> bool {
1487        *self.borrow() <= *other.borrow()
1488    }
1489
1490    /// # Panics
1491    ///
1492    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1493    #[inline]
1494    fn gt(&self, other: &RefCell<T>) -> bool {
1495        *self.borrow() > *other.borrow()
1496    }
1497
1498    /// # Panics
1499    ///
1500    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1501    #[inline]
1502    fn ge(&self, other: &RefCell<T>) -> bool {
1503        *self.borrow() >= *other.borrow()
1504    }
1505}
1506
1507#[stable(feature = "cell_ord", since = "1.10.0")]
1508impl<T: ?Sized + Ord> Ord for RefCell<T> {
1509    /// # Panics
1510    ///
1511    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1512    #[inline]
1513    fn cmp(&self, other: &RefCell<T>) -> Ordering {
1514        self.borrow().cmp(&*other.borrow())
1515    }
1516}
1517
1518#[stable(feature = "cell_from", since = "1.12.0")]
1519#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1520impl<T> const From<T> for RefCell<T> {
1521    /// Creates a new `RefCell<T>` containing the given value.
1522    fn from(t: T) -> RefCell<T> {
1523        RefCell::new(t)
1524    }
1525}
1526
1527#[unstable(feature = "coerce_unsized", issue = "18598")]
1528impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1529
1530struct BorrowRef<'b> {
1531    borrow: &'b Cell<BorrowCounter>,
1532}
1533
1534impl<'b> BorrowRef<'b> {
1535    #[inline]
1536    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1537        let b = borrow.get().wrapping_add(1);
1538        if !is_reading(b) {
1539            // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1540            // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1541            //    due to Rust's reference aliasing rules
1542            // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1543            //    into isize::MIN (the max amount of writing borrows) so we can't allow
1544            //    an additional read borrow because isize can't represent so many read borrows
1545            //    (this can only happen if you mem::forget more than a small constant amount of
1546            //    `Ref`s, which is not good practice)
1547            None
1548        } else {
1549            // Incrementing borrow can result in a reading value (> 0) in these cases:
1550            // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1551            // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1552            //    is large enough to represent having one more read borrow
1553            borrow.replace(b);
1554            Some(BorrowRef { borrow })
1555        }
1556    }
1557}
1558
1559#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1560impl const Drop for BorrowRef<'_> {
1561    #[inline]
1562    fn drop(&mut self) {
1563        let borrow = self.borrow.get();
1564        debug_assert!(is_reading(borrow));
1565        self.borrow.replace(borrow - 1);
1566    }
1567}
1568
1569#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1570impl const Clone for BorrowRef<'_> {
1571    #[inline]
1572    fn clone(&self) -> Self {
1573        // Since this Ref exists, we know the borrow flag
1574        // is a reading borrow.
1575        let borrow = self.borrow.get();
1576        debug_assert!(is_reading(borrow));
1577        // Prevent the borrow counter from overflowing into
1578        // a writing borrow.
1579        assert!(borrow != BorrowCounter::MAX);
1580        self.borrow.replace(borrow + 1);
1581        BorrowRef { borrow: self.borrow }
1582    }
1583}
1584
1585/// Wraps a borrowed reference to a value in a `RefCell` box.
1586/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1587///
1588/// See the [module-level documentation](self) for more.
1589#[stable(feature = "rust1", since = "1.0.0")]
1590#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1591#[rustc_diagnostic_item = "RefCellRef"]
1592pub struct Ref<'b, T: ?Sized + 'b> {
1593    // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1594    // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1595    // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1596    value: NonNull<T>,
1597    borrow: BorrowRef<'b>,
1598}
1599
1600#[stable(feature = "rust1", since = "1.0.0")]
1601#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1602impl<T: ?Sized> const Deref for Ref<'_, T> {
1603    type Target = T;
1604
1605    #[inline]
1606    fn deref(&self) -> &T {
1607        // SAFETY: the value is accessible as long as we hold our borrow.
1608        unsafe { self.value.as_ref() }
1609    }
1610}
1611
1612#[unstable(feature = "deref_pure_trait", issue = "87121")]
1613unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1614
1615impl<'b, T: ?Sized> Ref<'b, T> {
1616    /// Copies a `Ref`.
1617    ///
1618    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1619    ///
1620    /// This is an associated function that needs to be used as
1621    /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1622    /// with the widespread use of `r.borrow().clone()` to clone the contents of
1623    /// a `RefCell`.
1624    #[stable(feature = "cell_extras", since = "1.15.0")]
1625    #[must_use]
1626    #[inline]
1627    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1628    pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1629        Ref { value: orig.value, borrow: orig.borrow.clone() }
1630    }
1631
1632    /// Makes a new `Ref` for a component of the borrowed data.
1633    ///
1634    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1635    ///
1636    /// This is an associated function that needs to be used as `Ref::map(...)`.
1637    /// A method would interfere with methods of the same name on the contents
1638    /// of a `RefCell` used through `Deref`.
1639    ///
1640    /// # Examples
1641    ///
1642    /// ```
1643    /// use std::cell::{RefCell, Ref};
1644    ///
1645    /// let c = RefCell::new((5, 'b'));
1646    /// let b1: Ref<'_, (u32, char)> = c.borrow();
1647    /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1648    /// assert_eq!(*b2, 5)
1649    /// ```
1650    #[stable(feature = "cell_map", since = "1.8.0")]
1651    #[inline]
1652    pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1653    where
1654        F: FnOnce(&T) -> &U,
1655    {
1656        Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1657    }
1658
1659    /// Makes a new `Ref` for an optional component of the borrowed data. The
1660    /// original guard is returned as an `Err(..)` if the closure returns
1661    /// `None`.
1662    ///
1663    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1664    ///
1665    /// This is an associated function that needs to be used as
1666    /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1667    /// name on the contents of a `RefCell` used through `Deref`.
1668    ///
1669    /// # Examples
1670    ///
1671    /// ```
1672    /// use std::cell::{RefCell, Ref};
1673    ///
1674    /// let c = RefCell::new(vec![1, 2, 3]);
1675    /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1676    /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1677    /// assert_eq!(*b2.unwrap(), 2);
1678    /// ```
1679    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1680    #[inline]
1681    pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1682    where
1683        F: FnOnce(&T) -> Option<&U>,
1684    {
1685        match f(&*orig) {
1686            Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1687            None => Err(orig),
1688        }
1689    }
1690
1691    /// Tries to makes a new `Ref` for a component of the borrowed data.
1692    /// On failure, the original guard is returned alongside with the error
1693    /// returned by the closure.
1694    ///
1695    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1696    ///
1697    /// This is an associated function that needs to be used as
1698    /// `Ref::try_map(...)`. A method would interfere with methods of the same
1699    /// name on the contents of a `RefCell` used through `Deref`.
1700    ///
1701    /// # Examples
1702    ///
1703    /// ```
1704    /// #![feature(refcell_try_map)]
1705    /// use std::cell::{RefCell, Ref};
1706    /// use std::str::{from_utf8, Utf8Error};
1707    ///
1708    /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1709    /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1710    /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1711    /// assert_eq!(&*b2.unwrap(), "🦀");
1712    ///
1713    /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1714    /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1715    /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1716    /// let (b3, e) = b2.unwrap_err();
1717    /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1718    /// assert_eq!(e.valid_up_to(), 0);
1719    /// ```
1720    #[unstable(feature = "refcell_try_map", issue = "143801")]
1721    #[inline]
1722    pub fn try_map<U: ?Sized, E>(
1723        orig: Ref<'b, T>,
1724        f: impl FnOnce(&T) -> Result<&U, E>,
1725    ) -> Result<Ref<'b, U>, (Self, E)> {
1726        match f(&*orig) {
1727            Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1728            Err(e) => Err((orig, e)),
1729        }
1730    }
1731
1732    /// Splits a `Ref` into multiple `Ref`s for different components of the
1733    /// borrowed data.
1734    ///
1735    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1736    ///
1737    /// This is an associated function that needs to be used as
1738    /// `Ref::map_split(...)`. A method would interfere with methods of the same
1739    /// name on the contents of a `RefCell` used through `Deref`.
1740    ///
1741    /// # Examples
1742    ///
1743    /// ```
1744    /// use std::cell::{Ref, RefCell};
1745    ///
1746    /// let cell = RefCell::new([1, 2, 3, 4]);
1747    /// let borrow = cell.borrow();
1748    /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1749    /// assert_eq!(*begin, [1, 2]);
1750    /// assert_eq!(*end, [3, 4]);
1751    /// ```
1752    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1753    #[inline]
1754    pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1755    where
1756        F: FnOnce(&T) -> (&U, &V),
1757    {
1758        let (a, b) = f(&*orig);
1759        let borrow = orig.borrow.clone();
1760        (
1761            Ref { value: NonNull::from(a), borrow },
1762            Ref { value: NonNull::from(b), borrow: orig.borrow },
1763        )
1764    }
1765
1766    /// Converts into a reference to the underlying data.
1767    ///
1768    /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1769    /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1770    /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1771    /// have occurred in total.
1772    ///
1773    /// This is an associated function that needs to be used as
1774    /// `Ref::leak(...)`. A method would interfere with methods of the
1775    /// same name on the contents of a `RefCell` used through `Deref`.
1776    ///
1777    /// # Examples
1778    ///
1779    /// ```
1780    /// #![feature(cell_leak)]
1781    /// use std::cell::{RefCell, Ref};
1782    /// let cell = RefCell::new(0);
1783    ///
1784    /// let value = Ref::leak(cell.borrow());
1785    /// assert_eq!(*value, 0);
1786    ///
1787    /// assert!(cell.try_borrow().is_ok());
1788    /// assert!(cell.try_borrow_mut().is_err());
1789    /// ```
1790    #[unstable(feature = "cell_leak", issue = "69099")]
1791    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1792    pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1793        // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1794        // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1795        // unique reference to the borrowed RefCell. No further mutable references can be created
1796        // from the original cell.
1797        mem::forget(orig.borrow);
1798        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1799        unsafe { orig.value.as_ref() }
1800    }
1801}
1802
1803#[unstable(feature = "coerce_unsized", issue = "18598")]
1804impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1805
1806#[stable(feature = "std_guard_impls", since = "1.20.0")]
1807impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1808    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1809        (**self).fmt(f)
1810    }
1811}
1812
1813impl<'b, T: ?Sized> RefMut<'b, T> {
1814    /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1815    /// variant.
1816    ///
1817    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1818    ///
1819    /// This is an associated function that needs to be used as
1820    /// `RefMut::map(...)`. A method would interfere with methods of the same
1821    /// name on the contents of a `RefCell` used through `Deref`.
1822    ///
1823    /// # Examples
1824    ///
1825    /// ```
1826    /// use std::cell::{RefCell, RefMut};
1827    ///
1828    /// let c = RefCell::new((5, 'b'));
1829    /// {
1830    ///     let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1831    ///     let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1832    ///     assert_eq!(*b2, 5);
1833    ///     *b2 = 42;
1834    /// }
1835    /// assert_eq!(*c.borrow(), (42, 'b'));
1836    /// ```
1837    #[stable(feature = "cell_map", since = "1.8.0")]
1838    #[inline]
1839    pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1840    where
1841        F: FnOnce(&mut T) -> &mut U,
1842    {
1843        let value = NonNull::from(f(&mut *orig));
1844        RefMut { value, borrow: orig.borrow, marker: PhantomData }
1845    }
1846
1847    /// Makes a new `RefMut` for an optional component of the borrowed data. The
1848    /// original guard is returned as an `Err(..)` if the closure returns
1849    /// `None`.
1850    ///
1851    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1852    ///
1853    /// This is an associated function that needs to be used as
1854    /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1855    /// same name on the contents of a `RefCell` used through `Deref`.
1856    ///
1857    /// # Examples
1858    ///
1859    /// ```
1860    /// use std::cell::{RefCell, RefMut};
1861    ///
1862    /// let c = RefCell::new(vec![1, 2, 3]);
1863    ///
1864    /// {
1865    ///     let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1866    ///     let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1867    ///
1868    ///     if let Ok(mut b2) = b2 {
1869    ///         *b2 += 2;
1870    ///     }
1871    /// }
1872    ///
1873    /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1874    /// ```
1875    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1876    #[inline]
1877    pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1878    where
1879        F: FnOnce(&mut T) -> Option<&mut U>,
1880    {
1881        // SAFETY: function holds onto an exclusive reference for the duration
1882        // of its call through `orig`, and the pointer is only de-referenced
1883        // inside of the function call never allowing the exclusive reference to
1884        // escape.
1885        match f(&mut *orig) {
1886            Some(value) => {
1887                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1888            }
1889            None => Err(orig),
1890        }
1891    }
1892
1893    /// Tries to makes a new `RefMut` for a component of the borrowed data.
1894    /// On failure, the original guard is returned alongside with the error
1895    /// returned by the closure.
1896    ///
1897    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1898    ///
1899    /// This is an associated function that needs to be used as
1900    /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1901    /// name on the contents of a `RefCell` used through `Deref`.
1902    ///
1903    /// # Examples
1904    ///
1905    /// ```
1906    /// #![feature(refcell_try_map)]
1907    /// use std::cell::{RefCell, RefMut};
1908    /// use std::str::{from_utf8_mut, Utf8Error};
1909    ///
1910    /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1911    /// {
1912    ///     let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1913    ///     let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1914    ///     let mut b2 = b2.unwrap();
1915    ///     assert_eq!(&*b2, "hello");
1916    ///     b2.make_ascii_uppercase();
1917    /// }
1918    /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1919    ///
1920    /// let c = RefCell::new(vec![0xFF]);
1921    /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1922    /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1923    /// let (b3, e) = b2.unwrap_err();
1924    /// assert_eq!(*b3, vec![0xFF]);
1925    /// assert_eq!(e.valid_up_to(), 0);
1926    /// ```
1927    #[unstable(feature = "refcell_try_map", issue = "143801")]
1928    #[inline]
1929    pub fn try_map<U: ?Sized, E>(
1930        mut orig: RefMut<'b, T>,
1931        f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1932    ) -> Result<RefMut<'b, U>, (Self, E)> {
1933        // SAFETY: function holds onto an exclusive reference for the duration
1934        // of its call through `orig`, and the pointer is only de-referenced
1935        // inside of the function call never allowing the exclusive reference to
1936        // escape.
1937        match f(&mut *orig) {
1938            Ok(value) => {
1939                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1940            }
1941            Err(e) => Err((orig, e)),
1942        }
1943    }
1944
1945    /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1946    /// borrowed data.
1947    ///
1948    /// The underlying `RefCell` will remain mutably borrowed until both
1949    /// returned `RefMut`s go out of scope.
1950    ///
1951    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1952    ///
1953    /// This is an associated function that needs to be used as
1954    /// `RefMut::map_split(...)`. A method would interfere with methods of the
1955    /// same name on the contents of a `RefCell` used through `Deref`.
1956    ///
1957    /// # Examples
1958    ///
1959    /// ```
1960    /// use std::cell::{RefCell, RefMut};
1961    ///
1962    /// let cell = RefCell::new([1, 2, 3, 4]);
1963    /// let borrow = cell.borrow_mut();
1964    /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1965    /// assert_eq!(*begin, [1, 2]);
1966    /// assert_eq!(*end, [3, 4]);
1967    /// begin.copy_from_slice(&[4, 3]);
1968    /// end.copy_from_slice(&[2, 1]);
1969    /// ```
1970    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1971    #[inline]
1972    pub fn map_split<U: ?Sized, V: ?Sized, F>(
1973        mut orig: RefMut<'b, T>,
1974        f: F,
1975    ) -> (RefMut<'b, U>, RefMut<'b, V>)
1976    where
1977        F: FnOnce(&mut T) -> (&mut U, &mut V),
1978    {
1979        let borrow = orig.borrow.clone();
1980        let (a, b) = f(&mut *orig);
1981        (
1982            RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1983            RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1984        )
1985    }
1986
1987    /// Converts into a mutable reference to the underlying data.
1988    ///
1989    /// The underlying `RefCell` can not be borrowed from again and will always appear already
1990    /// mutably borrowed, making the returned reference the only to the interior.
1991    ///
1992    /// This is an associated function that needs to be used as
1993    /// `RefMut::leak(...)`. A method would interfere with methods of the
1994    /// same name on the contents of a `RefCell` used through `Deref`.
1995    ///
1996    /// # Examples
1997    ///
1998    /// ```
1999    /// #![feature(cell_leak)]
2000    /// use std::cell::{RefCell, RefMut};
2001    /// let cell = RefCell::new(0);
2002    ///
2003    /// let value = RefMut::leak(cell.borrow_mut());
2004    /// assert_eq!(*value, 0);
2005    /// *value = 1;
2006    ///
2007    /// assert!(cell.try_borrow_mut().is_err());
2008    /// ```
2009    #[unstable(feature = "cell_leak", issue = "69099")]
2010    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2011    pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2012        // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2013        // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2014        // require a unique reference to the borrowed RefCell. No further references can be created
2015        // from the original cell within that lifetime, making the current borrow the only
2016        // reference for the remaining lifetime.
2017        mem::forget(orig.borrow);
2018        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2019        unsafe { orig.value.as_mut() }
2020    }
2021}
2022
2023struct BorrowRefMut<'b> {
2024    borrow: &'b Cell<BorrowCounter>,
2025}
2026
2027#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2028impl const Drop for BorrowRefMut<'_> {
2029    #[inline]
2030    fn drop(&mut self) {
2031        let borrow = self.borrow.get();
2032        debug_assert!(is_writing(borrow));
2033        self.borrow.replace(borrow + 1);
2034    }
2035}
2036
2037impl<'b> BorrowRefMut<'b> {
2038    #[inline]
2039    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2040        // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2041        // mutable reference, and so there must currently be no existing
2042        // references. Thus, while clone increments the mutable refcount, here
2043        // we explicitly only allow going from UNUSED to UNUSED - 1.
2044        match borrow.get() {
2045            UNUSED => {
2046                borrow.replace(UNUSED - 1);
2047                Some(BorrowRefMut { borrow })
2048            }
2049            _ => None,
2050        }
2051    }
2052
2053    // Clones a `BorrowRefMut`.
2054    //
2055    // This is only valid if each `BorrowRefMut` is used to track a mutable
2056    // reference to a distinct, nonoverlapping range of the original object.
2057    // This isn't in a Clone impl so that code doesn't call this implicitly.
2058    #[inline]
2059    fn clone(&self) -> BorrowRefMut<'b> {
2060        let borrow = self.borrow.get();
2061        debug_assert!(is_writing(borrow));
2062        // Prevent the borrow counter from underflowing.
2063        assert!(borrow != BorrowCounter::MIN);
2064        self.borrow.set(borrow - 1);
2065        BorrowRefMut { borrow: self.borrow }
2066    }
2067}
2068
2069/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2070///
2071/// See the [module-level documentation](self) for more.
2072#[stable(feature = "rust1", since = "1.0.0")]
2073#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2074#[rustc_diagnostic_item = "RefCellRefMut"]
2075pub struct RefMut<'b, T: ?Sized + 'b> {
2076    // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2077    // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2078    value: NonNull<T>,
2079    borrow: BorrowRefMut<'b>,
2080    // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2081    marker: PhantomData<&'b mut T>,
2082}
2083
2084#[stable(feature = "rust1", since = "1.0.0")]
2085#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2086impl<T: ?Sized> const Deref for RefMut<'_, T> {
2087    type Target = T;
2088
2089    #[inline]
2090    fn deref(&self) -> &T {
2091        // SAFETY: the value is accessible as long as we hold our borrow.
2092        unsafe { self.value.as_ref() }
2093    }
2094}
2095
2096#[stable(feature = "rust1", since = "1.0.0")]
2097#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2098impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2099    #[inline]
2100    fn deref_mut(&mut self) -> &mut T {
2101        // SAFETY: the value is accessible as long as we hold our borrow.
2102        unsafe { self.value.as_mut() }
2103    }
2104}
2105
2106#[unstable(feature = "deref_pure_trait", issue = "87121")]
2107unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2108
2109#[unstable(feature = "coerce_unsized", issue = "18598")]
2110impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2111
2112#[stable(feature = "std_guard_impls", since = "1.20.0")]
2113impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2114    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2115        (**self).fmt(f)
2116    }
2117}
2118
2119/// The core primitive for interior mutability in Rust.
2120///
2121/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2122/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2123/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2124/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2125/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2126///
2127/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2128/// use `UnsafeCell` to wrap their data.
2129///
2130/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2131/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2132/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2133///
2134/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2135/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2136/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2137/// [`core::sync::atomic`].
2138///
2139/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2140/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2141/// correctly.
2142///
2143/// [`.get()`]: `UnsafeCell::get`
2144/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2145///
2146/// # Aliasing rules
2147///
2148/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2149///
2150/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2151///   you must not access the data in any way that contradicts that reference for the remainder of
2152///   `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2153///   to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2154///   within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2155///   `&mut T` reference that is released to safe code, then you must not access the data within the
2156///   `UnsafeCell` until that reference expires.
2157///
2158/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2159///   until the reference expires. As a special exception, given an `&T`, any part of it that is
2160///   inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2161///   last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2162///   of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2163///   *every part of it* (including padding) is inside an `UnsafeCell`.
2164///
2165/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2166/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2167/// memory has not yet been deallocated.
2168///
2169/// To assist with proper design, the following scenarios are explicitly declared legal
2170/// for single-threaded code:
2171///
2172/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2173///    references, but not with a `&mut T`
2174///
2175/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2176///    co-exist with it. A `&mut T` must always be unique.
2177///
2178/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2179/// `&UnsafeCell<T>` references alias the cell) is
2180/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2181/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2182/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2183/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2184/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2185/// may be aliased for the duration of that `&mut` borrow.
2186/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2187/// a `&mut T`.
2188///
2189/// [`.get_mut()`]: `UnsafeCell::get_mut`
2190///
2191/// # Memory layout
2192///
2193/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2194/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2195/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2196/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2197/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2198/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2199/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2200/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2201/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2202/// thus this can cause distortions in the type size in these cases.
2203///
2204/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2205/// _shared_ `UnsafeCell<T>` is through [`.get()`]  or [`.raw_get()`]. A `&mut T` reference
2206/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2207/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2208/// same memory layout, the following is not allowed and undefined behavior:
2209///
2210/// ```rust,compile_fail
2211/// # use std::cell::UnsafeCell;
2212/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2213///   let t = ptr as *const UnsafeCell<T> as *mut T;
2214///   // This is undefined behavior, because the `*mut T` pointer
2215///   // was not obtained through `.get()` nor `.raw_get()`:
2216///   unsafe { &mut *t }
2217/// }
2218/// ```
2219///
2220/// Instead, do this:
2221///
2222/// ```rust
2223/// # use std::cell::UnsafeCell;
2224/// // Safety: the caller must ensure that there are no references that
2225/// // point to the *contents* of the `UnsafeCell`.
2226/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2227///   unsafe { &mut *ptr.get() }
2228/// }
2229/// ```
2230///
2231/// Converting in the other direction from a `&mut T`
2232/// to an `&UnsafeCell<T>` is allowed:
2233///
2234/// ```rust
2235/// # use std::cell::UnsafeCell;
2236/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2237///   let t = ptr as *mut T as *const UnsafeCell<T>;
2238///   // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2239///   unsafe { &*t }
2240/// }
2241/// ```
2242///
2243/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2244/// [`.raw_get()`]: `UnsafeCell::raw_get`
2245///
2246/// # Examples
2247///
2248/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2249/// there being multiple references aliasing the cell:
2250///
2251/// ```
2252/// use std::cell::UnsafeCell;
2253///
2254/// let x: UnsafeCell<i32> = 42.into();
2255/// // Get multiple / concurrent / shared references to the same `x`.
2256/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2257///
2258/// unsafe {
2259///     // SAFETY: within this scope there are no other references to `x`'s contents,
2260///     // so ours is effectively unique.
2261///     let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2262///     *p1_exclusive += 27; //                                     |
2263/// } // <---------- cannot go beyond this point -------------------+
2264///
2265/// unsafe {
2266///     // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2267///     // so we can have multiple shared accesses concurrently.
2268///     let p2_shared: &i32 = &*p2.get();
2269///     assert_eq!(*p2_shared, 42 + 27);
2270///     let p1_shared: &i32 = &*p1.get();
2271///     assert_eq!(*p1_shared, *p2_shared);
2272/// }
2273/// ```
2274///
2275/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2276/// implies exclusive access to its `T`:
2277///
2278/// ```rust
2279/// #![forbid(unsafe_code)]
2280/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2281/// // `unsafe` here.
2282/// use std::cell::UnsafeCell;
2283///
2284/// let mut x: UnsafeCell<i32> = 42.into();
2285///
2286/// // Get a compile-time-checked unique reference to `x`.
2287/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2288/// // With an exclusive reference, we can mutate the contents for free.
2289/// *p_unique.get_mut() = 0;
2290/// // Or, equivalently:
2291/// x = UnsafeCell::new(0);
2292///
2293/// // When we own the value, we can extract the contents for free.
2294/// let contents: i32 = x.into_inner();
2295/// assert_eq!(contents, 0);
2296/// ```
2297#[lang = "unsafe_cell"]
2298#[stable(feature = "rust1", since = "1.0.0")]
2299#[repr(transparent)]
2300#[rustc_pub_transparent]
2301pub struct UnsafeCell<T: ?Sized> {
2302    value: T,
2303}
2304
2305#[stable(feature = "rust1", since = "1.0.0")]
2306impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2307
2308impl<T> UnsafeCell<T> {
2309    /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2310    /// value.
2311    ///
2312    /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2313    ///
2314    /// # Examples
2315    ///
2316    /// ```
2317    /// use std::cell::UnsafeCell;
2318    ///
2319    /// let uc = UnsafeCell::new(5);
2320    /// ```
2321    #[stable(feature = "rust1", since = "1.0.0")]
2322    #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2323    #[inline(always)]
2324    pub const fn new(value: T) -> UnsafeCell<T> {
2325        UnsafeCell { value }
2326    }
2327
2328    /// Unwraps the value, consuming the cell.
2329    ///
2330    /// # Examples
2331    ///
2332    /// ```
2333    /// use std::cell::UnsafeCell;
2334    ///
2335    /// let uc = UnsafeCell::new(5);
2336    ///
2337    /// let five = uc.into_inner();
2338    /// ```
2339    #[inline(always)]
2340    #[stable(feature = "rust1", since = "1.0.0")]
2341    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2342    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2343    pub const fn into_inner(self) -> T {
2344        self.value
2345    }
2346
2347    /// Replace the value in this `UnsafeCell` and return the old value.
2348    ///
2349    /// # Safety
2350    ///
2351    /// The caller must take care to avoid aliasing and data races.
2352    ///
2353    /// - It is Undefined Behavior to allow calls to race with
2354    ///   any other access to the wrapped value.
2355    /// - It is Undefined Behavior to call this while any other
2356    ///   reference(s) to the wrapped value are alive.
2357    ///
2358    /// # Examples
2359    ///
2360    /// ```
2361    /// #![feature(unsafe_cell_access)]
2362    /// use std::cell::UnsafeCell;
2363    ///
2364    /// let uc = UnsafeCell::new(5);
2365    ///
2366    /// let old = unsafe { uc.replace(10) };
2367    /// assert_eq!(old, 5);
2368    /// ```
2369    #[inline]
2370    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2371    #[rustc_should_not_be_called_on_const_items]
2372    pub const unsafe fn replace(&self, value: T) -> T {
2373        // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2374        unsafe { ptr::replace(self.get(), value) }
2375    }
2376}
2377
2378impl<T: ?Sized> UnsafeCell<T> {
2379    /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2380    ///
2381    /// # Examples
2382    ///
2383    /// ```
2384    /// use std::cell::UnsafeCell;
2385    ///
2386    /// let mut val = 42;
2387    /// let uc = UnsafeCell::from_mut(&mut val);
2388    ///
2389    /// *uc.get_mut() -= 1;
2390    /// assert_eq!(*uc.get_mut(), 41);
2391    /// ```
2392    #[inline(always)]
2393    #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2394    #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2395    pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2396        // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2397        unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2398    }
2399
2400    /// Gets a mutable pointer to the wrapped value.
2401    ///
2402    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2403    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2404    /// caveats.
2405    ///
2406    /// # Examples
2407    ///
2408    /// ```
2409    /// use std::cell::UnsafeCell;
2410    ///
2411    /// let uc = UnsafeCell::new(5);
2412    ///
2413    /// let five = uc.get();
2414    /// ```
2415    #[inline(always)]
2416    #[stable(feature = "rust1", since = "1.0.0")]
2417    #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2418    #[rustc_as_ptr]
2419    #[rustc_never_returns_null_ptr]
2420    #[rustc_should_not_be_called_on_const_items]
2421    pub const fn get(&self) -> *mut T {
2422        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2423        // #[repr(transparent)]. This exploits std's special status, there is
2424        // no guarantee for user code that this will work in future versions of the compiler!
2425        self as *const UnsafeCell<T> as *const T as *mut T
2426    }
2427
2428    /// Returns a mutable reference to the underlying data.
2429    ///
2430    /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2431    /// guarantees that we possess the only reference.
2432    ///
2433    /// # Examples
2434    ///
2435    /// ```
2436    /// use std::cell::UnsafeCell;
2437    ///
2438    /// let mut c = UnsafeCell::new(5);
2439    /// *c.get_mut() += 1;
2440    ///
2441    /// assert_eq!(*c.get_mut(), 6);
2442    /// ```
2443    #[inline(always)]
2444    #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2445    #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2446    pub const fn get_mut(&mut self) -> &mut T {
2447        &mut self.value
2448    }
2449
2450    /// Gets a mutable pointer to the wrapped value.
2451    /// The difference from [`get`] is that this function accepts a raw pointer,
2452    /// which is useful to avoid the creation of temporary references.
2453    ///
2454    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2455    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2456    /// caveats.
2457    ///
2458    /// [`get`]: UnsafeCell::get()
2459    ///
2460    /// # Examples
2461    ///
2462    /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2463    /// calling `get` would require creating a reference to uninitialized data:
2464    ///
2465    /// ```
2466    /// use std::cell::UnsafeCell;
2467    /// use std::mem::MaybeUninit;
2468    ///
2469    /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2470    /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2471    /// // avoid below which references to uninitialized data
2472    /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2473    /// let uc = unsafe { m.assume_init() };
2474    ///
2475    /// assert_eq!(uc.into_inner(), 5);
2476    /// ```
2477    #[inline(always)]
2478    #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2479    #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2480    #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2481    pub const fn raw_get(this: *const Self) -> *mut T {
2482        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2483        // #[repr(transparent)]. This exploits std's special status, there is
2484        // no guarantee for user code that this will work in future versions of the compiler!
2485        this as *const T as *mut T
2486    }
2487
2488    /// Get a shared reference to the value within the `UnsafeCell`.
2489    ///
2490    /// # Safety
2491    ///
2492    /// - It is Undefined Behavior to call this while any mutable
2493    ///   reference to the wrapped value is alive.
2494    /// - Mutating the wrapped value while the returned
2495    ///   reference is alive is Undefined Behavior.
2496    ///
2497    /// # Examples
2498    ///
2499    /// ```
2500    /// #![feature(unsafe_cell_access)]
2501    /// use std::cell::UnsafeCell;
2502    ///
2503    /// let uc = UnsafeCell::new(5);
2504    ///
2505    /// let val = unsafe { uc.as_ref_unchecked() };
2506    /// assert_eq!(val, &5);
2507    /// ```
2508    #[inline]
2509    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2510    #[rustc_should_not_be_called_on_const_items]
2511    pub const unsafe fn as_ref_unchecked(&self) -> &T {
2512        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2513        unsafe { self.get().as_ref_unchecked() }
2514    }
2515
2516    /// Get an exclusive reference to the value within the `UnsafeCell`.
2517    ///
2518    /// # Safety
2519    ///
2520    /// - It is Undefined Behavior to call this while any other
2521    ///   reference(s) to the wrapped value are alive.
2522    /// - Mutating the wrapped value through other means while the
2523    ///   returned reference is alive is Undefined Behavior.
2524    ///
2525    /// # Examples
2526    ///
2527    /// ```
2528    /// #![feature(unsafe_cell_access)]
2529    /// use std::cell::UnsafeCell;
2530    ///
2531    /// let uc = UnsafeCell::new(5);
2532    ///
2533    /// unsafe { *uc.as_mut_unchecked() += 1; }
2534    /// assert_eq!(uc.into_inner(), 6);
2535    /// ```
2536    #[inline]
2537    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2538    #[allow(clippy::mut_from_ref)]
2539    #[rustc_should_not_be_called_on_const_items]
2540    pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2541        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2542        unsafe { self.get().as_mut_unchecked() }
2543    }
2544}
2545
2546#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2547#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2548impl<T: [const] Default> const Default for UnsafeCell<T> {
2549    /// Creates an `UnsafeCell`, with the `Default` value for T.
2550    fn default() -> UnsafeCell<T> {
2551        UnsafeCell::new(Default::default())
2552    }
2553}
2554
2555#[stable(feature = "cell_from", since = "1.12.0")]
2556#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2557impl<T> const From<T> for UnsafeCell<T> {
2558    /// Creates a new `UnsafeCell<T>` containing the given value.
2559    fn from(t: T) -> UnsafeCell<T> {
2560        UnsafeCell::new(t)
2561    }
2562}
2563
2564#[unstable(feature = "coerce_unsized", issue = "18598")]
2565impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2566
2567// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2568// and become dyn-compatible method receivers.
2569// Note that currently `UnsafeCell` itself cannot be a method receiver
2570// because it does not implement Deref.
2571// In other words:
2572// `self: UnsafeCell<&Self>` won't work
2573// `self: UnsafeCellWrapper<Self>` becomes possible
2574#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2575impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2576
2577/// [`UnsafeCell`], but [`Sync`].
2578///
2579/// This is just an `UnsafeCell`, except it implements `Sync`
2580/// if `T` implements `Sync`.
2581///
2582/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2583/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2584/// shared between threads, if that's intentional.
2585/// Providing proper synchronization is still the task of the user,
2586/// making this type just as unsafe to use.
2587///
2588/// See [`UnsafeCell`] for details.
2589#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2590#[repr(transparent)]
2591#[rustc_diagnostic_item = "SyncUnsafeCell"]
2592#[rustc_pub_transparent]
2593pub struct SyncUnsafeCell<T: ?Sized> {
2594    value: UnsafeCell<T>,
2595}
2596
2597#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2598unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2599
2600#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2601impl<T> SyncUnsafeCell<T> {
2602    /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2603    #[inline]
2604    pub const fn new(value: T) -> Self {
2605        Self { value: UnsafeCell { value } }
2606    }
2607
2608    /// Unwraps the value, consuming the cell.
2609    #[inline]
2610    #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2611    pub const fn into_inner(self) -> T {
2612        self.value.into_inner()
2613    }
2614}
2615
2616#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2617impl<T: ?Sized> SyncUnsafeCell<T> {
2618    /// Gets a mutable pointer to the wrapped value.
2619    ///
2620    /// This can be cast to a pointer of any kind.
2621    /// Ensure that the access is unique (no active references, mutable or not)
2622    /// when casting to `&mut T`, and ensure that there are no mutations
2623    /// or mutable aliases going on when casting to `&T`
2624    #[inline]
2625    #[rustc_as_ptr]
2626    #[rustc_never_returns_null_ptr]
2627    #[rustc_should_not_be_called_on_const_items]
2628    pub const fn get(&self) -> *mut T {
2629        self.value.get()
2630    }
2631
2632    /// Returns a mutable reference to the underlying data.
2633    ///
2634    /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2635    /// guarantees that we possess the only reference.
2636    #[inline]
2637    pub const fn get_mut(&mut self) -> &mut T {
2638        self.value.get_mut()
2639    }
2640
2641    /// Gets a mutable pointer to the wrapped value.
2642    ///
2643    /// See [`UnsafeCell::get`] for details.
2644    #[inline]
2645    pub const fn raw_get(this: *const Self) -> *mut T {
2646        // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2647        // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2648        // See UnsafeCell::raw_get.
2649        this as *const T as *mut T
2650    }
2651}
2652
2653#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2654#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2655impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2656    /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2657    fn default() -> SyncUnsafeCell<T> {
2658        SyncUnsafeCell::new(Default::default())
2659    }
2660}
2661
2662#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2663#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2664impl<T> const From<T> for SyncUnsafeCell<T> {
2665    /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2666    fn from(t: T) -> SyncUnsafeCell<T> {
2667        SyncUnsafeCell::new(t)
2668    }
2669}
2670
2671#[unstable(feature = "coerce_unsized", issue = "18598")]
2672//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2673impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2674
2675// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2676// and become dyn-compatible method receivers.
2677// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2678// because it does not implement Deref.
2679// In other words:
2680// `self: SyncUnsafeCell<&Self>` won't work
2681// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2682#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2683//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2684impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2685
2686#[allow(unused)]
2687fn assert_coerce_unsized(
2688    a: UnsafeCell<&i32>,
2689    b: SyncUnsafeCell<&i32>,
2690    c: Cell<&i32>,
2691    d: RefCell<&i32>,
2692) {
2693    let _: UnsafeCell<&dyn Send> = a;
2694    let _: SyncUnsafeCell<&dyn Send> = b;
2695    let _: Cell<&dyn Send> = c;
2696    let _: RefCell<&dyn Send> = d;
2697}
2698
2699#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2700unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2701
2702#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2703unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2704
2705#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2706unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2707
2708#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2709unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2710
2711#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2712unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2713
2714#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2715unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}