kernel/driver.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.).
4//!
5//! This documentation describes how to implement a bus specific driver API and how to align it with
6//! the design of (bus specific) devices.
7//!
8//! Note: Readers are expected to know the content of the documentation of [`Device`] and
9//! [`DeviceContext`].
10//!
11//! # Driver Trait
12//!
13//! The main driver interface is defined by a bus specific driver trait. For instance:
14//!
15//! ```ignore
16//! pub trait Driver: Send {
17//! /// The type holding information about each device ID supported by the driver.
18//! type IdInfo: 'static;
19//!
20//! /// The table of OF device ids supported by the driver.
21//! const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None;
22//!
23//! /// The table of ACPI device ids supported by the driver.
24//! const ACPI_ID_TABLE: Option<acpi::IdTable<Self::IdInfo>> = None;
25//!
26//! /// Driver probe.
27//! fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> impl PinInit<Self, Error>;
28//!
29//! /// Driver unbind (optional).
30//! fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) {
31//! let _ = (dev, this);
32//! }
33//! }
34//! ```
35//!
36//! For specific examples see:
37//!
38//! * [`platform::Driver`](kernel::platform::Driver)
39#"
42)]
43#")]
44//!
45//! The `probe()` callback should return a `impl PinInit<Self, Error>`, i.e. the driver's private
46//! data. The bus abstraction should store the pointer in the corresponding bus device. The generic
47//! [`Device`] infrastructure provides common helpers for this purpose on its
48//! [`Device<CoreInternal>`] implementation.
49//!
50//! All driver callbacks should provide a reference to the driver's private data. Once the driver
51//! is unbound from the device, the bus abstraction should take back the ownership of the driver's
52//! private data from the corresponding [`Device`] and [`drop`] it.
53//!
54//! All driver callbacks should provide a [`Device<Core>`] reference (see also [`device::Core`]).
55//!
56//! # Adapter
57//!
58//! The adapter implementation of a bus represents the abstraction layer between the C bus
59//! callbacks and the Rust bus callbacks. It therefore has to be generic over an implementation of
60//! the [driver trait](#driver-trait).
61//!
62//! ```ignore
63//! pub struct Adapter<T: Driver>;
64//! ```
65//!
66//! There's a common [`Adapter`] trait that can be implemented to inherit common driver
67//! infrastructure, such as finding the ID info from an [`of::IdTable`] or [`acpi::IdTable`].
68//!
69//! # Driver Registration
70//!
71//! In order to register C driver types (such as `struct platform_driver`) the [adapter](#adapter)
72//! should implement the [`RegistrationOps`] trait.
73//!
74//! This trait implementation can be used to create the actual registration with the common
75//! [`Registration`] type.
76//!
77//! Typically, bus abstractions want to provide a bus specific `module_bus_driver!` macro, which
78//! creates a kernel module with exactly one [`Registration`] for the bus specific adapter.
79//!
80//! The generic driver infrastructure provides a helper for this with the [`module_driver`] macro.
81//!
82//! # Device IDs
83//!
84//! Besides the common device ID types, such as [`of::DeviceId`] and [`acpi::DeviceId`], most buses
85//! may need to implement their own device ID types.
86//!
87//! For this purpose the generic infrastructure in [`device_id`] should be used.
88//!
89//! [`Core`]: device::Core
90//! [`Device`]: device::Device
91//! [`Device<Core>`]: device::Device<device::Core>
92//! [`Device<CoreInternal>`]: device::Device<device::CoreInternal>
93//! [`DeviceContext`]: device::DeviceContext
94//! [`device_id`]: kernel::device_id
95//! [`module_driver`]: kernel::module_driver
96
97use crate::error::{Error, Result};
98use crate::{acpi, device, of, str::CStr, try_pin_init, types::Opaque, ThisModule};
99use core::pin::Pin;
100use pin_init::{pin_data, pinned_drop, PinInit};
101
102/// The [`RegistrationOps`] trait serves as generic interface for subsystems (e.g., PCI, Platform,
103/// Amba, etc.) to provide the corresponding subsystem specific implementation to register /
104/// unregister a driver of the particular type (`RegType`).
105///
106/// For instance, the PCI subsystem would set `RegType` to `bindings::pci_driver` and call
107/// `bindings::__pci_register_driver` from `RegistrationOps::register` and
108/// `bindings::pci_unregister_driver` from `RegistrationOps::unregister`.
109///
110/// # Safety
111///
112/// A call to [`RegistrationOps::unregister`] for a given instance of `RegType` is only valid if a
113/// preceding call to [`RegistrationOps::register`] has been successful.
114pub unsafe trait RegistrationOps {
115 /// The type that holds information about the registration. This is typically a struct defined
116 /// by the C portion of the kernel.
117 type RegType: Default;
118
119 /// Registers a driver.
120 ///
121 /// # Safety
122 ///
123 /// On success, `reg` must remain pinned and valid until the matching call to
124 /// [`RegistrationOps::unregister`].
125 unsafe fn register(
126 reg: &Opaque<Self::RegType>,
127 name: &'static CStr,
128 module: &'static ThisModule,
129 ) -> Result;
130
131 /// Unregisters a driver previously registered with [`RegistrationOps::register`].
132 ///
133 /// # Safety
134 ///
135 /// Must only be called after a preceding successful call to [`RegistrationOps::register`] for
136 /// the same `reg`.
137 unsafe fn unregister(reg: &Opaque<Self::RegType>);
138}
139
140/// A [`Registration`] is a generic type that represents the registration of some driver type (e.g.
141/// `bindings::pci_driver`). Therefore a [`Registration`] must be initialized with a type that
142/// implements the [`RegistrationOps`] trait, such that the generic `T::register` and
143/// `T::unregister` calls result in the subsystem specific registration calls.
144///
145///Once the `Registration` structure is dropped, the driver is unregistered.
146#[pin_data(PinnedDrop)]
147pub struct Registration<T: RegistrationOps> {
148 #[pin]
149 reg: Opaque<T::RegType>,
150}
151
152// SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to
153// share references to it with multiple threads as nothing can be done.
154unsafe impl<T: RegistrationOps> Sync for Registration<T> {}
155
156// SAFETY: Both registration and unregistration are implemented in C and safe to be performed from
157// any thread, so `Registration` is `Send`.
158unsafe impl<T: RegistrationOps> Send for Registration<T> {}
159
160impl<T: RegistrationOps> Registration<T> {
161 /// Creates a new instance of the registration object.
162 pub fn new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error> {
163 try_pin_init!(Self {
164 reg <- Opaque::try_ffi_init(|ptr: *mut T::RegType| {
165 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write.
166 unsafe { ptr.write(T::RegType::default()) };
167
168 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write, and it has
169 // just been initialised above, so it's also valid for read.
170 let drv = unsafe { &*(ptr as *const Opaque<T::RegType>) };
171
172 // SAFETY: `drv` is guaranteed to be pinned until `T::unregister`.
173 unsafe { T::register(drv, name, module) }
174 }),
175 })
176 }
177}
178
179#[pinned_drop]
180impl<T: RegistrationOps> PinnedDrop for Registration<T> {
181 fn drop(self: Pin<&mut Self>) {
182 // SAFETY: The existence of `self` guarantees that `self.reg` has previously been
183 // successfully registered with `T::register`
184 unsafe { T::unregister(&self.reg) };
185 }
186}
187
188/// Declares a kernel module that exposes a single driver.
189///
190/// It is meant to be used as a helper by other subsystems so they can more easily expose their own
191/// macros.
192#[macro_export]
193macro_rules! module_driver {
194 (<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => {
195 type Ops<$gen_type> = $driver_ops;
196
197 #[$crate::prelude::pin_data]
198 struct DriverModule {
199 #[pin]
200 _driver: $crate::driver::Registration<Ops<$type>>,
201 }
202
203 impl $crate::InPlaceModule for DriverModule {
204 fn init(
205 module: &'static $crate::ThisModule
206 ) -> impl ::pin_init::PinInit<Self, $crate::error::Error> {
207 $crate::try_pin_init!(Self {
208 _driver <- $crate::driver::Registration::new(
209 <Self as $crate::ModuleMetadata>::NAME,
210 module,
211 ),
212 })
213 }
214 }
215
216 $crate::prelude::module! {
217 type: DriverModule,
218 $($f)*
219 }
220 }
221}
222
223/// The bus independent adapter to match a drivers and a devices.
224///
225/// This trait should be implemented by the bus specific adapter, which represents the connection
226/// of a device and a driver.
227///
228/// It provides bus independent functions for device / driver interactions.
229pub trait Adapter {
230 /// The type holding driver private data about each device id supported by the driver.
231 type IdInfo: 'static;
232
233 /// The [`acpi::IdTable`] of the corresponding driver
234 fn acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>;
235
236 /// Returns the driver's private data from the matching entry in the [`acpi::IdTable`], if any.
237 ///
238 /// If this returns `None`, it means there is no match with an entry in the [`acpi::IdTable`].
239 fn acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
240 #[cfg(not(CONFIG_ACPI))]
241 {
242 let _ = dev;
243 None
244 }
245
246 #[cfg(CONFIG_ACPI)]
247 {
248 let table = Self::acpi_id_table()?;
249
250 // SAFETY:
251 // - `table` has static lifetime, hence it's valid for read,
252 // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
253 let raw_id = unsafe { bindings::acpi_match_device(table.as_ptr(), dev.as_raw()) };
254
255 if raw_id.is_null() {
256 None
257 } else {
258 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct acpi_device_id`
259 // and does not add additional invariants, so it's safe to transmute.
260 let id = unsafe { &*raw_id.cast::<acpi::DeviceId>() };
261
262 Some(table.info(<acpi::DeviceId as crate::device_id::RawDeviceIdIndex>::index(id)))
263 }
264 }
265 }
266
267 /// The [`of::IdTable`] of the corresponding driver.
268 fn of_id_table() -> Option<of::IdTable<Self::IdInfo>>;
269
270 /// Returns the driver's private data from the matching entry in the [`of::IdTable`], if any.
271 ///
272 /// If this returns `None`, it means there is no match with an entry in the [`of::IdTable`].
273 fn of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
274 #[cfg(not(CONFIG_OF))]
275 {
276 let _ = dev;
277 None
278 }
279
280 #[cfg(CONFIG_OF)]
281 {
282 let table = Self::of_id_table()?;
283
284 // SAFETY:
285 // - `table` has static lifetime, hence it's valid for read,
286 // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
287 let raw_id = unsafe { bindings::of_match_device(table.as_ptr(), dev.as_raw()) };
288
289 if raw_id.is_null() {
290 None
291 } else {
292 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct of_device_id`
293 // and does not add additional invariants, so it's safe to transmute.
294 let id = unsafe { &*raw_id.cast::<of::DeviceId>() };
295
296 Some(
297 table.info(<of::DeviceId as crate::device_id::RawDeviceIdIndex>::index(
298 id,
299 )),
300 )
301 }
302 }
303 }
304
305 /// Returns the driver's private data from the matching entry of any of the ID tables, if any.
306 ///
307 /// If this returns `None`, it means that there is no match in any of the ID tables directly
308 /// associated with a [`device::Device`].
309 fn id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
310 let id = Self::acpi_id_info(dev);
311 if id.is_some() {
312 return id;
313 }
314
315 let id = Self::of_id_info(dev);
316 if id.is_some() {
317 return id;
318 }
319
320 None
321 }
322}