kernel/dma.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Direct memory access (DMA).
4//!
5//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
6
7use crate::{
8 bindings, build_assert, device,
9 device::{Bound, Core},
10 error::{to_result, Result},
11 prelude::*,
12 sync::aref::ARef,
13 transmute::{AsBytes, FromBytes},
14};
15
16/// DMA address type.
17///
18/// Represents a bus address used for Direct Memory Access (DMA) operations.
19///
20/// This is an alias of the kernel's `dma_addr_t`, which may be `u32` or `u64` depending on
21/// `CONFIG_ARCH_DMA_ADDR_T_64BIT`.
22///
23/// Note that this may be `u64` even on 32-bit architectures.
24pub type DmaAddress = bindings::dma_addr_t;
25
26/// Trait to be implemented by DMA capable bus devices.
27///
28/// The [`dma::Device`](Device) trait should be implemented by bus specific device representations,
29/// where the underlying bus is DMA capable, such as [`pci::Device`](::kernel::pci::Device) or
30/// [`platform::Device`](::kernel::platform::Device).
31pub trait Device: AsRef<device::Device<Core>> {
32 /// Set up the device's DMA streaming addressing capabilities.
33 ///
34 /// This method is usually called once from `probe()` as soon as the device capabilities are
35 /// known.
36 ///
37 /// # Safety
38 ///
39 /// This method must not be called concurrently with any DMA allocation or mapping primitives,
40 /// such as [`CoherentAllocation::alloc_attrs`].
41 unsafe fn dma_set_mask(&self, mask: DmaMask) -> Result {
42 // SAFETY:
43 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
44 // - The safety requirement of this function guarantees that there are no concurrent calls
45 // to DMA allocation and mapping primitives using this mask.
46 to_result(unsafe { bindings::dma_set_mask(self.as_ref().as_raw(), mask.value()) })
47 }
48
49 /// Set up the device's DMA coherent addressing capabilities.
50 ///
51 /// This method is usually called once from `probe()` as soon as the device capabilities are
52 /// known.
53 ///
54 /// # Safety
55 ///
56 /// This method must not be called concurrently with any DMA allocation or mapping primitives,
57 /// such as [`CoherentAllocation::alloc_attrs`].
58 unsafe fn dma_set_coherent_mask(&self, mask: DmaMask) -> Result {
59 // SAFETY:
60 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
61 // - The safety requirement of this function guarantees that there are no concurrent calls
62 // to DMA allocation and mapping primitives using this mask.
63 to_result(unsafe { bindings::dma_set_coherent_mask(self.as_ref().as_raw(), mask.value()) })
64 }
65
66 /// Set up the device's DMA addressing capabilities.
67 ///
68 /// This is a combination of [`Device::dma_set_mask`] and [`Device::dma_set_coherent_mask`].
69 ///
70 /// This method is usually called once from `probe()` as soon as the device capabilities are
71 /// known.
72 ///
73 /// # Safety
74 ///
75 /// This method must not be called concurrently with any DMA allocation or mapping primitives,
76 /// such as [`CoherentAllocation::alloc_attrs`].
77 unsafe fn dma_set_mask_and_coherent(&self, mask: DmaMask) -> Result {
78 // SAFETY:
79 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
80 // - The safety requirement of this function guarantees that there are no concurrent calls
81 // to DMA allocation and mapping primitives using this mask.
82 to_result(unsafe {
83 bindings::dma_set_mask_and_coherent(self.as_ref().as_raw(), mask.value())
84 })
85 }
86}
87
88/// A DMA mask that holds a bitmask with the lowest `n` bits set.
89///
90/// Use [`DmaMask::new`] or [`DmaMask::try_new`] to construct a value. Values
91/// are guaranteed to never exceed the bit width of `u64`.
92///
93/// This is the Rust equivalent of the C macro `DMA_BIT_MASK()`.
94#[derive(Debug, Clone, Copy, PartialEq, Eq)]
95pub struct DmaMask(u64);
96
97impl DmaMask {
98 /// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
99 ///
100 /// For `n <= 64`, sets exactly the lowest `n` bits.
101 /// For `n > 64`, results in a build error.
102 ///
103 /// # Examples
104 ///
105 /// ```
106 /// use kernel::dma::DmaMask;
107 ///
108 /// let mask0 = DmaMask::new::<0>();
109 /// assert_eq!(mask0.value(), 0);
110 ///
111 /// let mask1 = DmaMask::new::<1>();
112 /// assert_eq!(mask1.value(), 0b1);
113 ///
114 /// let mask64 = DmaMask::new::<64>();
115 /// assert_eq!(mask64.value(), u64::MAX);
116 ///
117 /// // Build failure.
118 /// // let mask_overflow = DmaMask::new::<100>();
119 /// ```
120 #[inline]
121 pub const fn new<const N: u32>() -> Self {
122 let Ok(mask) = Self::try_new(N) else {
123 build_error!("Invalid DMA Mask.");
124 };
125
126 mask
127 }
128
129 /// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
130 ///
131 /// For `n <= 64`, sets exactly the lowest `n` bits.
132 /// For `n > 64`, returns [`EINVAL`].
133 ///
134 /// # Examples
135 ///
136 /// ```
137 /// use kernel::dma::DmaMask;
138 ///
139 /// let mask0 = DmaMask::try_new(0)?;
140 /// assert_eq!(mask0.value(), 0);
141 ///
142 /// let mask1 = DmaMask::try_new(1)?;
143 /// assert_eq!(mask1.value(), 0b1);
144 ///
145 /// let mask64 = DmaMask::try_new(64)?;
146 /// assert_eq!(mask64.value(), u64::MAX);
147 ///
148 /// let mask_overflow = DmaMask::try_new(100);
149 /// assert!(mask_overflow.is_err());
150 /// # Ok::<(), Error>(())
151 /// ```
152 #[inline]
153 pub const fn try_new(n: u32) -> Result<Self> {
154 Ok(Self(match n {
155 0 => 0,
156 1..=64 => u64::MAX >> (64 - n),
157 _ => return Err(EINVAL),
158 }))
159 }
160
161 /// Returns the underlying `u64` bitmask value.
162 #[inline]
163 pub const fn value(&self) -> u64 {
164 self.0
165 }
166}
167
168/// Possible attributes associated with a DMA mapping.
169///
170/// They can be combined with the operators `|`, `&`, and `!`.
171///
172/// Values can be used from the [`attrs`] module.
173///
174/// # Examples
175///
176/// ```
177/// # use kernel::device::{Bound, Device};
178/// use kernel::dma::{attrs::*, CoherentAllocation};
179///
180/// # fn test(dev: &Device<Bound>) -> Result {
181/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
182/// let c: CoherentAllocation<u64> =
183/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
184/// # Ok::<(), Error>(()) }
185/// ```
186#[derive(Clone, Copy, PartialEq)]
187#[repr(transparent)]
188pub struct Attrs(u32);
189
190impl Attrs {
191 /// Get the raw representation of this attribute.
192 pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
193 self.0 as crate::ffi::c_ulong
194 }
195
196 /// Check whether `flags` is contained in `self`.
197 pub fn contains(self, flags: Attrs) -> bool {
198 (self & flags) == flags
199 }
200}
201
202impl core::ops::BitOr for Attrs {
203 type Output = Self;
204 fn bitor(self, rhs: Self) -> Self::Output {
205 Self(self.0 | rhs.0)
206 }
207}
208
209impl core::ops::BitAnd for Attrs {
210 type Output = Self;
211 fn bitand(self, rhs: Self) -> Self::Output {
212 Self(self.0 & rhs.0)
213 }
214}
215
216impl core::ops::Not for Attrs {
217 type Output = Self;
218 fn not(self) -> Self::Output {
219 Self(!self.0)
220 }
221}
222
223/// DMA mapping attributes.
224pub mod attrs {
225 use super::Attrs;
226
227 /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
228 /// and writes may pass each other.
229 pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
230
231 /// Specifies that writes to the mapping may be buffered to improve performance.
232 pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
233
234 /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
235 pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
236
237 /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
238 /// that it has been already transferred to 'device' domain.
239 pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
240
241 /// Forces contiguous allocation of the buffer in physical memory.
242 pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
243
244 /// Hints DMA-mapping subsystem that it's probably not worth the time to try
245 /// to allocate memory to in a way that gives better TLB efficiency.
246 pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
247
248 /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
249 /// `__GFP_NOWARN`).
250 pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
251
252 /// Indicates that the buffer is fully accessible at an elevated privilege level (and
253 /// ideally inaccessible or at least read-only at lesser-privileged levels).
254 pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
255}
256
257/// DMA data direction.
258///
259/// Corresponds to the C [`enum dma_data_direction`].
260///
261/// [`enum dma_data_direction`]: srctree/include/linux/dma-direction.h
262#[derive(Copy, Clone, PartialEq, Eq, Debug)]
263#[repr(u32)]
264pub enum DataDirection {
265 /// The DMA mapping is for bidirectional data transfer.
266 ///
267 /// This is used when the buffer can be both read from and written to by the device.
268 /// The cache for the corresponding memory region is both flushed and invalidated.
269 Bidirectional = Self::const_cast(bindings::dma_data_direction_DMA_BIDIRECTIONAL),
270
271 /// The DMA mapping is for data transfer from memory to the device (write).
272 ///
273 /// The CPU has prepared data in the buffer, and the device will read it.
274 /// The cache for the corresponding memory region is flushed before device access.
275 ToDevice = Self::const_cast(bindings::dma_data_direction_DMA_TO_DEVICE),
276
277 /// The DMA mapping is for data transfer from the device to memory (read).
278 ///
279 /// The device will write data into the buffer for the CPU to read.
280 /// The cache for the corresponding memory region is invalidated before CPU access.
281 FromDevice = Self::const_cast(bindings::dma_data_direction_DMA_FROM_DEVICE),
282
283 /// The DMA mapping is not for data transfer.
284 ///
285 /// This is primarily for debugging purposes. With this direction, the DMA mapping API
286 /// will not perform any cache coherency operations.
287 None = Self::const_cast(bindings::dma_data_direction_DMA_NONE),
288}
289
290impl DataDirection {
291 /// Casts the bindgen-generated enum type to a `u32` at compile time.
292 ///
293 /// This function will cause a compile-time error if the underlying value of the
294 /// C enum is out of bounds for `u32`.
295 const fn const_cast(val: bindings::dma_data_direction) -> u32 {
296 // CAST: The C standard allows compilers to choose different integer types for enums.
297 // To safely check the value, we cast it to a wide signed integer type (`i128`)
298 // which can hold any standard C integer enum type without truncation.
299 let wide_val = val as i128;
300
301 // Check if the value is outside the valid range for the target type `u32`.
302 // CAST: `u32::MAX` is cast to `i128` to match the type of `wide_val` for the comparison.
303 if wide_val < 0 || wide_val > u32::MAX as i128 {
304 // Trigger a compile-time error in a const context.
305 build_error!("C enum value is out of bounds for the target type `u32`.");
306 }
307
308 // CAST: This cast is valid because the check above guarantees that `wide_val`
309 // is within the representable range of `u32`.
310 wide_val as u32
311 }
312}
313
314impl From<DataDirection> for bindings::dma_data_direction {
315 /// Returns the raw representation of [`enum dma_data_direction`].
316 fn from(direction: DataDirection) -> Self {
317 // CAST: `direction as u32` gets the underlying representation of our `#[repr(u32)]` enum.
318 // The subsequent cast to `Self` (the bindgen type) assumes the C enum is compatible
319 // with the enum variants of `DataDirection`, which is a valid assumption given our
320 // compile-time checks.
321 direction as u32 as Self
322 }
323}
324
325/// An abstraction of the `dma_alloc_coherent` API.
326///
327/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
328/// large coherent DMA regions.
329///
330/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
331/// processor's virtual address space) and the device address which can be given to the device
332/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
333/// is dropped.
334///
335/// # Invariants
336///
337/// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
338/// to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
339/// region.
340/// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
341/// - `size_of::<T> * count` fits into a `usize`.
342// TODO
343//
344// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
345// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
346// that device resources can never survive device unbind.
347//
348// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
349// allocation from surviving device unbind; it would require RCU read side critical sections to
350// access the memory, which may require subsequent unnecessary copies.
351//
352// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
353// entire `CoherentAllocation` including the allocated memory itself.
354pub struct CoherentAllocation<T: AsBytes + FromBytes> {
355 dev: ARef<device::Device>,
356 dma_handle: DmaAddress,
357 count: usize,
358 cpu_addr: *mut T,
359 dma_attrs: Attrs,
360}
361
362impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
363 /// Allocates a region of `size_of::<T> * count` of coherent memory.
364 ///
365 /// # Examples
366 ///
367 /// ```
368 /// # use kernel::device::{Bound, Device};
369 /// use kernel::dma::{attrs::*, CoherentAllocation};
370 ///
371 /// # fn test(dev: &Device<Bound>) -> Result {
372 /// let c: CoherentAllocation<u64> =
373 /// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
374 /// # Ok::<(), Error>(()) }
375 /// ```
376 pub fn alloc_attrs(
377 dev: &device::Device<Bound>,
378 count: usize,
379 gfp_flags: kernel::alloc::Flags,
380 dma_attrs: Attrs,
381 ) -> Result<CoherentAllocation<T>> {
382 build_assert!(
383 core::mem::size_of::<T>() > 0,
384 "It doesn't make sense for the allocated type to be a ZST"
385 );
386
387 let size = count
388 .checked_mul(core::mem::size_of::<T>())
389 .ok_or(EOVERFLOW)?;
390 let mut dma_handle = 0;
391 // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
392 let ret = unsafe {
393 bindings::dma_alloc_attrs(
394 dev.as_raw(),
395 size,
396 &mut dma_handle,
397 gfp_flags.as_raw(),
398 dma_attrs.as_raw(),
399 )
400 };
401 if ret.is_null() {
402 return Err(ENOMEM);
403 }
404 // INVARIANT:
405 // - We just successfully allocated a coherent region which is accessible for
406 // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
407 // to the device.
408 // - The allocated `size` is equal to `size_of::<T> * count`.
409 // - The allocated `size` fits into a `usize`.
410 Ok(Self {
411 dev: dev.into(),
412 dma_handle,
413 count,
414 cpu_addr: ret.cast::<T>(),
415 dma_attrs,
416 })
417 }
418
419 /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
420 /// `dma_attrs` is 0 by default.
421 pub fn alloc_coherent(
422 dev: &device::Device<Bound>,
423 count: usize,
424 gfp_flags: kernel::alloc::Flags,
425 ) -> Result<CoherentAllocation<T>> {
426 CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
427 }
428
429 /// Returns the number of elements `T` in this allocation.
430 ///
431 /// Note that this is not the size of the allocation in bytes, which is provided by
432 /// [`Self::size`].
433 pub fn count(&self) -> usize {
434 self.count
435 }
436
437 /// Returns the size in bytes of this allocation.
438 pub fn size(&self) -> usize {
439 // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
440 // a `usize`.
441 self.count * core::mem::size_of::<T>()
442 }
443
444 /// Returns the base address to the allocated region in the CPU's virtual address space.
445 pub fn start_ptr(&self) -> *const T {
446 self.cpu_addr
447 }
448
449 /// Returns the base address to the allocated region in the CPU's virtual address space as
450 /// a mutable pointer.
451 pub fn start_ptr_mut(&mut self) -> *mut T {
452 self.cpu_addr
453 }
454
455 /// Returns a DMA handle which may be given to the device as the DMA address base of
456 /// the region.
457 pub fn dma_handle(&self) -> DmaAddress {
458 self.dma_handle
459 }
460
461 /// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
462 /// device as the DMA address base of the region.
463 ///
464 /// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
465 pub fn dma_handle_with_offset(&self, offset: usize) -> Result<DmaAddress> {
466 if offset >= self.count {
467 Err(EINVAL)
468 } else {
469 // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
470 // into a `usize`, and `offset` is inferior to `count`.
471 Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as DmaAddress)
472 }
473 }
474
475 /// Common helper to validate a range applied from the allocated region in the CPU's virtual
476 /// address space.
477 fn validate_range(&self, offset: usize, count: usize) -> Result {
478 if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
479 return Err(EINVAL);
480 }
481 Ok(())
482 }
483
484 /// Returns the data from the region starting from `offset` as a slice.
485 /// `offset` and `count` are in units of `T`, not the number of bytes.
486 ///
487 /// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
488 /// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
489 /// instead.
490 ///
491 /// # Safety
492 ///
493 /// * Callers must ensure that the device does not read/write to/from memory while the returned
494 /// slice is live.
495 /// * Callers must ensure that this call does not race with a write to the same region while
496 /// the returned slice is live.
497 pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
498 self.validate_range(offset, count)?;
499 // SAFETY:
500 // - The pointer is valid due to type invariant on `CoherentAllocation`,
501 // we've just checked that the range and index is within bounds. The immutability of the
502 // data is also guaranteed by the safety requirements of the function.
503 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
504 // that `self.count` won't overflow early in the constructor.
505 Ok(unsafe { core::slice::from_raw_parts(self.cpu_addr.add(offset), count) })
506 }
507
508 /// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
509 /// slice is returned.
510 ///
511 /// # Safety
512 ///
513 /// * Callers must ensure that the device does not read/write to/from memory while the returned
514 /// slice is live.
515 /// * Callers must ensure that this call does not race with a read or write to the same region
516 /// while the returned slice is live.
517 pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
518 self.validate_range(offset, count)?;
519 // SAFETY:
520 // - The pointer is valid due to type invariant on `CoherentAllocation`,
521 // we've just checked that the range and index is within bounds. The immutability of the
522 // data is also guaranteed by the safety requirements of the function.
523 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
524 // that `self.count` won't overflow early in the constructor.
525 Ok(unsafe { core::slice::from_raw_parts_mut(self.cpu_addr.add(offset), count) })
526 }
527
528 /// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
529 /// number of bytes.
530 ///
531 /// # Safety
532 ///
533 /// * Callers must ensure that the device does not read/write to/from memory while the returned
534 /// slice is live.
535 /// * Callers must ensure that this call does not race with a read or write to the same region
536 /// that overlaps with this write.
537 ///
538 /// # Examples
539 ///
540 /// ```
541 /// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
542 /// let somedata: [u8; 4] = [0xf; 4];
543 /// let buf: &[u8] = &somedata;
544 /// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
545 /// // region.
546 /// unsafe { alloc.write(buf, 0)?; }
547 /// # Ok::<(), Error>(()) }
548 /// ```
549 pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
550 self.validate_range(offset, src.len())?;
551 // SAFETY:
552 // - The pointer is valid due to type invariant on `CoherentAllocation`
553 // and we've just checked that the range and index is within bounds.
554 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
555 // that `self.count` won't overflow early in the constructor.
556 unsafe {
557 core::ptr::copy_nonoverlapping(src.as_ptr(), self.cpu_addr.add(offset), src.len())
558 };
559 Ok(())
560 }
561
562 /// Returns a pointer to an element from the region with bounds checking. `offset` is in
563 /// units of `T`, not the number of bytes.
564 ///
565 /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
566 #[doc(hidden)]
567 pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
568 if offset >= self.count {
569 return Err(EINVAL);
570 }
571 // SAFETY:
572 // - The pointer is valid due to type invariant on `CoherentAllocation`
573 // and we've just checked that the range and index is within bounds.
574 // - `offset` can't overflow since it is smaller than `self.count` and we've checked
575 // that `self.count` won't overflow early in the constructor.
576 Ok(unsafe { self.cpu_addr.add(offset) })
577 }
578
579 /// Reads the value of `field` and ensures that its type is [`FromBytes`].
580 ///
581 /// # Safety
582 ///
583 /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
584 /// validated beforehand.
585 ///
586 /// Public but hidden since it should only be used from [`dma_read`] macro.
587 #[doc(hidden)]
588 pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
589 // SAFETY:
590 // - By the safety requirements field is valid.
591 // - Using read_volatile() here is not sound as per the usual rules, the usage here is
592 // a special exception with the following notes in place. When dealing with a potential
593 // race from a hardware or code outside kernel (e.g. user-space program), we need that
594 // read on a valid memory is not UB. Currently read_volatile() is used for this, and the
595 // rationale behind is that it should generate the same code as READ_ONCE() which the
596 // kernel already relies on to avoid UB on data races. Note that the usage of
597 // read_volatile() is limited to this particular case, it cannot be used to prevent
598 // the UB caused by racing between two kernel functions nor do they provide atomicity.
599 unsafe { field.read_volatile() }
600 }
601
602 /// Writes a value to `field` and ensures that its type is [`AsBytes`].
603 ///
604 /// # Safety
605 ///
606 /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
607 /// validated beforehand.
608 ///
609 /// Public but hidden since it should only be used from [`dma_write`] macro.
610 #[doc(hidden)]
611 pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
612 // SAFETY:
613 // - By the safety requirements field is valid.
614 // - Using write_volatile() here is not sound as per the usual rules, the usage here is
615 // a special exception with the following notes in place. When dealing with a potential
616 // race from a hardware or code outside kernel (e.g. user-space program), we need that
617 // write on a valid memory is not UB. Currently write_volatile() is used for this, and the
618 // rationale behind is that it should generate the same code as WRITE_ONCE() which the
619 // kernel already relies on to avoid UB on data races. Note that the usage of
620 // write_volatile() is limited to this particular case, it cannot be used to prevent
621 // the UB caused by racing between two kernel functions nor do they provide atomicity.
622 unsafe { field.write_volatile(val) }
623 }
624}
625
626/// Note that the device configured to do DMA must be halted before this object is dropped.
627impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
628 fn drop(&mut self) {
629 let size = self.count * core::mem::size_of::<T>();
630 // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
631 // The cpu address, and the dma handle are valid due to the type invariants on
632 // `CoherentAllocation`.
633 unsafe {
634 bindings::dma_free_attrs(
635 self.dev.as_raw(),
636 size,
637 self.cpu_addr.cast(),
638 self.dma_handle,
639 self.dma_attrs.as_raw(),
640 )
641 }
642 }
643}
644
645// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
646// can be sent to another thread.
647unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
648
649/// Reads a field of an item from an allocated region of structs.
650///
651/// # Examples
652///
653/// ```
654/// use kernel::device::Device;
655/// use kernel::dma::{attrs::*, CoherentAllocation};
656///
657/// struct MyStruct { field: u32, }
658///
659/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
660/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
661/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
662/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
663///
664/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
665/// let whole = kernel::dma_read!(alloc[2]);
666/// let field = kernel::dma_read!(alloc[1].field);
667/// # Ok::<(), Error>(()) }
668/// ```
669#[macro_export]
670macro_rules! dma_read {
671 ($dma:expr, $idx: expr, $($field:tt)*) => {{
672 (|| -> ::core::result::Result<_, $crate::error::Error> {
673 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
674 // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
675 // dereferenced. The compiler also further validates the expression on whether `field`
676 // is a member of `item` when expanded by the macro.
677 unsafe {
678 let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
679 ::core::result::Result::Ok(
680 $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
681 )
682 }
683 })()
684 }};
685 ($dma:ident [ $idx:expr ] $($field:tt)* ) => {
686 $crate::dma_read!($dma, $idx, $($field)*)
687 };
688 ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
689 $crate::dma_read!($($dma).*, $idx, $($field)*)
690 };
691}
692
693/// Writes to a field of an item from an allocated region of structs.
694///
695/// # Examples
696///
697/// ```
698/// use kernel::device::Device;
699/// use kernel::dma::{attrs::*, CoherentAllocation};
700///
701/// struct MyStruct { member: u32, }
702///
703/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
704/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
705/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
706/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
707///
708/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
709/// kernel::dma_write!(alloc[2].member = 0xf);
710/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
711/// # Ok::<(), Error>(()) }
712/// ```
713#[macro_export]
714macro_rules! dma_write {
715 ($dma:ident [ $idx:expr ] $($field:tt)*) => {{
716 $crate::dma_write!($dma, $idx, $($field)*)
717 }};
718 ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
719 $crate::dma_write!($($dma).*, $idx, $($field)*)
720 }};
721 ($dma:expr, $idx: expr, = $val:expr) => {
722 (|| -> ::core::result::Result<_, $crate::error::Error> {
723 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
724 // SAFETY: `item_from_index` ensures that `item` is always a valid item.
725 unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
726 ::core::result::Result::Ok(())
727 })()
728 };
729 ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
730 (|| -> ::core::result::Result<_, $crate::error::Error> {
731 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
732 // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
733 // dereferenced. The compiler also further validates the expression on whether `field`
734 // is a member of `item` when expanded by the macro.
735 unsafe {
736 let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
737 $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
738 }
739 ::core::result::Result::Ok(())
740 })()
741 };
742}