kernel/
dma.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Direct memory access (DMA).
4//!
5//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
6
7use crate::{
8    bindings, build_assert, device,
9    device::{Bound, Core},
10    error::{to_result, Result},
11    prelude::*,
12    sync::aref::ARef,
13    transmute::{AsBytes, FromBytes},
14};
15use core::ptr::NonNull;
16
17/// DMA address type.
18///
19/// Represents a bus address used for Direct Memory Access (DMA) operations.
20///
21/// This is an alias of the kernel's `dma_addr_t`, which may be `u32` or `u64` depending on
22/// `CONFIG_ARCH_DMA_ADDR_T_64BIT`.
23///
24/// Note that this may be `u64` even on 32-bit architectures.
25pub type DmaAddress = bindings::dma_addr_t;
26
27/// Trait to be implemented by DMA capable bus devices.
28///
29/// The [`dma::Device`](Device) trait should be implemented by bus specific device representations,
30/// where the underlying bus is DMA capable, such as:
31#[cfg_attr(CONFIG_PCI, doc = "* [`pci::Device`](kernel::pci::Device)")]
32/// * [`platform::Device`](::kernel::platform::Device)
33pub trait Device: AsRef<device::Device<Core>> {
34    /// Set up the device's DMA streaming addressing capabilities.
35    ///
36    /// This method is usually called once from `probe()` as soon as the device capabilities are
37    /// known.
38    ///
39    /// # Safety
40    ///
41    /// This method must not be called concurrently with any DMA allocation or mapping primitives,
42    /// such as [`CoherentAllocation::alloc_attrs`].
43    unsafe fn dma_set_mask(&self, mask: DmaMask) -> Result {
44        // SAFETY:
45        // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
46        // - The safety requirement of this function guarantees that there are no concurrent calls
47        //   to DMA allocation and mapping primitives using this mask.
48        to_result(unsafe { bindings::dma_set_mask(self.as_ref().as_raw(), mask.value()) })
49    }
50
51    /// Set up the device's DMA coherent addressing capabilities.
52    ///
53    /// This method is usually called once from `probe()` as soon as the device capabilities are
54    /// known.
55    ///
56    /// # Safety
57    ///
58    /// This method must not be called concurrently with any DMA allocation or mapping primitives,
59    /// such as [`CoherentAllocation::alloc_attrs`].
60    unsafe fn dma_set_coherent_mask(&self, mask: DmaMask) -> Result {
61        // SAFETY:
62        // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
63        // - The safety requirement of this function guarantees that there are no concurrent calls
64        //   to DMA allocation and mapping primitives using this mask.
65        to_result(unsafe { bindings::dma_set_coherent_mask(self.as_ref().as_raw(), mask.value()) })
66    }
67
68    /// Set up the device's DMA addressing capabilities.
69    ///
70    /// This is a combination of [`Device::dma_set_mask`] and [`Device::dma_set_coherent_mask`].
71    ///
72    /// This method is usually called once from `probe()` as soon as the device capabilities are
73    /// known.
74    ///
75    /// # Safety
76    ///
77    /// This method must not be called concurrently with any DMA allocation or mapping primitives,
78    /// such as [`CoherentAllocation::alloc_attrs`].
79    unsafe fn dma_set_mask_and_coherent(&self, mask: DmaMask) -> Result {
80        // SAFETY:
81        // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
82        // - The safety requirement of this function guarantees that there are no concurrent calls
83        //   to DMA allocation and mapping primitives using this mask.
84        to_result(unsafe {
85            bindings::dma_set_mask_and_coherent(self.as_ref().as_raw(), mask.value())
86        })
87    }
88}
89
90/// A DMA mask that holds a bitmask with the lowest `n` bits set.
91///
92/// Use [`DmaMask::new`] or [`DmaMask::try_new`] to construct a value. Values
93/// are guaranteed to never exceed the bit width of `u64`.
94///
95/// This is the Rust equivalent of the C macro `DMA_BIT_MASK()`.
96#[derive(Debug, Clone, Copy, PartialEq, Eq)]
97pub struct DmaMask(u64);
98
99impl DmaMask {
100    /// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
101    ///
102    /// For `n <= 64`, sets exactly the lowest `n` bits.
103    /// For `n > 64`, results in a build error.
104    ///
105    /// # Examples
106    ///
107    /// ```
108    /// use kernel::dma::DmaMask;
109    ///
110    /// let mask0 = DmaMask::new::<0>();
111    /// assert_eq!(mask0.value(), 0);
112    ///
113    /// let mask1 = DmaMask::new::<1>();
114    /// assert_eq!(mask1.value(), 0b1);
115    ///
116    /// let mask64 = DmaMask::new::<64>();
117    /// assert_eq!(mask64.value(), u64::MAX);
118    ///
119    /// // Build failure.
120    /// // let mask_overflow = DmaMask::new::<100>();
121    /// ```
122    #[inline]
123    pub const fn new<const N: u32>() -> Self {
124        let Ok(mask) = Self::try_new(N) else {
125            build_error!("Invalid DMA Mask.");
126        };
127
128        mask
129    }
130
131    /// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
132    ///
133    /// For `n <= 64`, sets exactly the lowest `n` bits.
134    /// For `n > 64`, returns [`EINVAL`].
135    ///
136    /// # Examples
137    ///
138    /// ```
139    /// use kernel::dma::DmaMask;
140    ///
141    /// let mask0 = DmaMask::try_new(0)?;
142    /// assert_eq!(mask0.value(), 0);
143    ///
144    /// let mask1 = DmaMask::try_new(1)?;
145    /// assert_eq!(mask1.value(), 0b1);
146    ///
147    /// let mask64 = DmaMask::try_new(64)?;
148    /// assert_eq!(mask64.value(), u64::MAX);
149    ///
150    /// let mask_overflow = DmaMask::try_new(100);
151    /// assert!(mask_overflow.is_err());
152    /// # Ok::<(), Error>(())
153    /// ```
154    #[inline]
155    pub const fn try_new(n: u32) -> Result<Self> {
156        Ok(Self(match n {
157            0 => 0,
158            1..=64 => u64::MAX >> (64 - n),
159            _ => return Err(EINVAL),
160        }))
161    }
162
163    /// Returns the underlying `u64` bitmask value.
164    #[inline]
165    pub const fn value(&self) -> u64 {
166        self.0
167    }
168}
169
170/// Possible attributes associated with a DMA mapping.
171///
172/// They can be combined with the operators `|`, `&`, and `!`.
173///
174/// Values can be used from the [`attrs`] module.
175///
176/// # Examples
177///
178/// ```
179/// # use kernel::device::{Bound, Device};
180/// use kernel::dma::{attrs::*, CoherentAllocation};
181///
182/// # fn test(dev: &Device<Bound>) -> Result {
183/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
184/// let c: CoherentAllocation<u64> =
185///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
186/// # Ok::<(), Error>(()) }
187/// ```
188#[derive(Clone, Copy, PartialEq)]
189#[repr(transparent)]
190pub struct Attrs(u32);
191
192impl Attrs {
193    /// Get the raw representation of this attribute.
194    pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
195        self.0 as crate::ffi::c_ulong
196    }
197
198    /// Check whether `flags` is contained in `self`.
199    pub fn contains(self, flags: Attrs) -> bool {
200        (self & flags) == flags
201    }
202}
203
204impl core::ops::BitOr for Attrs {
205    type Output = Self;
206    fn bitor(self, rhs: Self) -> Self::Output {
207        Self(self.0 | rhs.0)
208    }
209}
210
211impl core::ops::BitAnd for Attrs {
212    type Output = Self;
213    fn bitand(self, rhs: Self) -> Self::Output {
214        Self(self.0 & rhs.0)
215    }
216}
217
218impl core::ops::Not for Attrs {
219    type Output = Self;
220    fn not(self) -> Self::Output {
221        Self(!self.0)
222    }
223}
224
225/// DMA mapping attributes.
226pub mod attrs {
227    use super::Attrs;
228
229    /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
230    /// and writes may pass each other.
231    pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
232
233    /// Specifies that writes to the mapping may be buffered to improve performance.
234    pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
235
236    /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
237    pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
238
239    /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
240    /// that it has been already transferred to 'device' domain.
241    pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
242
243    /// Forces contiguous allocation of the buffer in physical memory.
244    pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
245
246    /// Hints DMA-mapping subsystem that it's probably not worth the time to try
247    /// to allocate memory to in a way that gives better TLB efficiency.
248    pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
249
250    /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
251    /// `__GFP_NOWARN`).
252    pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
253
254    /// Indicates that the buffer is fully accessible at an elevated privilege level (and
255    /// ideally inaccessible or at least read-only at lesser-privileged levels).
256    pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
257
258    /// Indicates that the buffer is MMIO memory.
259    pub const DMA_ATTR_MMIO: Attrs = Attrs(bindings::DMA_ATTR_MMIO);
260}
261
262/// DMA data direction.
263///
264/// Corresponds to the C [`enum dma_data_direction`].
265///
266/// [`enum dma_data_direction`]: srctree/include/linux/dma-direction.h
267#[derive(Copy, Clone, PartialEq, Eq, Debug)]
268#[repr(u32)]
269pub enum DataDirection {
270    /// The DMA mapping is for bidirectional data transfer.
271    ///
272    /// This is used when the buffer can be both read from and written to by the device.
273    /// The cache for the corresponding memory region is both flushed and invalidated.
274    Bidirectional = Self::const_cast(bindings::dma_data_direction_DMA_BIDIRECTIONAL),
275
276    /// The DMA mapping is for data transfer from memory to the device (write).
277    ///
278    /// The CPU has prepared data in the buffer, and the device will read it.
279    /// The cache for the corresponding memory region is flushed before device access.
280    ToDevice = Self::const_cast(bindings::dma_data_direction_DMA_TO_DEVICE),
281
282    /// The DMA mapping is for data transfer from the device to memory (read).
283    ///
284    /// The device will write data into the buffer for the CPU to read.
285    /// The cache for the corresponding memory region is invalidated before CPU access.
286    FromDevice = Self::const_cast(bindings::dma_data_direction_DMA_FROM_DEVICE),
287
288    /// The DMA mapping is not for data transfer.
289    ///
290    /// This is primarily for debugging purposes. With this direction, the DMA mapping API
291    /// will not perform any cache coherency operations.
292    None = Self::const_cast(bindings::dma_data_direction_DMA_NONE),
293}
294
295impl DataDirection {
296    /// Casts the bindgen-generated enum type to a `u32` at compile time.
297    ///
298    /// This function will cause a compile-time error if the underlying value of the
299    /// C enum is out of bounds for `u32`.
300    const fn const_cast(val: bindings::dma_data_direction) -> u32 {
301        // CAST: The C standard allows compilers to choose different integer types for enums.
302        // To safely check the value, we cast it to a wide signed integer type (`i128`)
303        // which can hold any standard C integer enum type without truncation.
304        let wide_val = val as i128;
305
306        // Check if the value is outside the valid range for the target type `u32`.
307        // CAST: `u32::MAX` is cast to `i128` to match the type of `wide_val` for the comparison.
308        if wide_val < 0 || wide_val > u32::MAX as i128 {
309            // Trigger a compile-time error in a const context.
310            build_error!("C enum value is out of bounds for the target type `u32`.");
311        }
312
313        // CAST: This cast is valid because the check above guarantees that `wide_val`
314        // is within the representable range of `u32`.
315        wide_val as u32
316    }
317}
318
319impl From<DataDirection> for bindings::dma_data_direction {
320    /// Returns the raw representation of [`enum dma_data_direction`].
321    fn from(direction: DataDirection) -> Self {
322        // CAST: `direction as u32` gets the underlying representation of our `#[repr(u32)]` enum.
323        // The subsequent cast to `Self` (the bindgen type) assumes the C enum is compatible
324        // with the enum variants of `DataDirection`, which is a valid assumption given our
325        // compile-time checks.
326        direction as u32 as Self
327    }
328}
329
330/// An abstraction of the `dma_alloc_coherent` API.
331///
332/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
333/// large coherent DMA regions.
334///
335/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
336/// processor's virtual address space) and the device address which can be given to the device
337/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
338/// is dropped.
339///
340/// # Invariants
341///
342/// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
343///   to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
344///   region.
345/// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
346/// - `size_of::<T> * count` fits into a `usize`.
347// TODO
348//
349// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
350// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
351// that device resources can never survive device unbind.
352//
353// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
354// allocation from surviving device unbind; it would require RCU read side critical sections to
355// access the memory, which may require subsequent unnecessary copies.
356//
357// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
358// entire `CoherentAllocation` including the allocated memory itself.
359pub struct CoherentAllocation<T: AsBytes + FromBytes> {
360    dev: ARef<device::Device>,
361    dma_handle: DmaAddress,
362    count: usize,
363    cpu_addr: NonNull<T>,
364    dma_attrs: Attrs,
365}
366
367impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
368    /// Allocates a region of `size_of::<T> * count` of coherent memory.
369    ///
370    /// # Examples
371    ///
372    /// ```
373    /// # use kernel::device::{Bound, Device};
374    /// use kernel::dma::{attrs::*, CoherentAllocation};
375    ///
376    /// # fn test(dev: &Device<Bound>) -> Result {
377    /// let c: CoherentAllocation<u64> =
378    ///     CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
379    /// # Ok::<(), Error>(()) }
380    /// ```
381    pub fn alloc_attrs(
382        dev: &device::Device<Bound>,
383        count: usize,
384        gfp_flags: kernel::alloc::Flags,
385        dma_attrs: Attrs,
386    ) -> Result<CoherentAllocation<T>> {
387        build_assert!(
388            core::mem::size_of::<T>() > 0,
389            "It doesn't make sense for the allocated type to be a ZST"
390        );
391
392        let size = count
393            .checked_mul(core::mem::size_of::<T>())
394            .ok_or(EOVERFLOW)?;
395        let mut dma_handle = 0;
396        // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
397        let addr = unsafe {
398            bindings::dma_alloc_attrs(
399                dev.as_raw(),
400                size,
401                &mut dma_handle,
402                gfp_flags.as_raw(),
403                dma_attrs.as_raw(),
404            )
405        };
406        let addr = NonNull::new(addr).ok_or(ENOMEM)?;
407        // INVARIANT:
408        // - We just successfully allocated a coherent region which is accessible for
409        //   `count` elements, hence the cpu address is valid. We also hold a refcounted reference
410        //   to the device.
411        // - The allocated `size` is equal to `size_of::<T> * count`.
412        // - The allocated `size` fits into a `usize`.
413        Ok(Self {
414            dev: dev.into(),
415            dma_handle,
416            count,
417            cpu_addr: addr.cast(),
418            dma_attrs,
419        })
420    }
421
422    /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
423    /// `dma_attrs` is 0 by default.
424    pub fn alloc_coherent(
425        dev: &device::Device<Bound>,
426        count: usize,
427        gfp_flags: kernel::alloc::Flags,
428    ) -> Result<CoherentAllocation<T>> {
429        CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
430    }
431
432    /// Returns the number of elements `T` in this allocation.
433    ///
434    /// Note that this is not the size of the allocation in bytes, which is provided by
435    /// [`Self::size`].
436    pub fn count(&self) -> usize {
437        self.count
438    }
439
440    /// Returns the size in bytes of this allocation.
441    pub fn size(&self) -> usize {
442        // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
443        // a `usize`.
444        self.count * core::mem::size_of::<T>()
445    }
446
447    /// Returns the base address to the allocated region in the CPU's virtual address space.
448    pub fn start_ptr(&self) -> *const T {
449        self.cpu_addr.as_ptr()
450    }
451
452    /// Returns the base address to the allocated region in the CPU's virtual address space as
453    /// a mutable pointer.
454    pub fn start_ptr_mut(&mut self) -> *mut T {
455        self.cpu_addr.as_ptr()
456    }
457
458    /// Returns a DMA handle which may be given to the device as the DMA address base of
459    /// the region.
460    pub fn dma_handle(&self) -> DmaAddress {
461        self.dma_handle
462    }
463
464    /// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
465    /// device as the DMA address base of the region.
466    ///
467    /// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
468    pub fn dma_handle_with_offset(&self, offset: usize) -> Result<DmaAddress> {
469        if offset >= self.count {
470            Err(EINVAL)
471        } else {
472            // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
473            // into a `usize`, and `offset` is inferior to `count`.
474            Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as DmaAddress)
475        }
476    }
477
478    /// Common helper to validate a range applied from the allocated region in the CPU's virtual
479    /// address space.
480    fn validate_range(&self, offset: usize, count: usize) -> Result {
481        if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
482            return Err(EINVAL);
483        }
484        Ok(())
485    }
486
487    /// Returns the data from the region starting from `offset` as a slice.
488    /// `offset` and `count` are in units of `T`, not the number of bytes.
489    ///
490    /// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
491    /// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
492    /// instead.
493    ///
494    /// # Safety
495    ///
496    /// * Callers must ensure that the device does not read/write to/from memory while the returned
497    ///   slice is live.
498    /// * Callers must ensure that this call does not race with a write to the same region while
499    ///   the returned slice is live.
500    pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
501        self.validate_range(offset, count)?;
502        // SAFETY:
503        // - The pointer is valid due to type invariant on `CoherentAllocation`,
504        //   we've just checked that the range and index is within bounds. The immutability of the
505        //   data is also guaranteed by the safety requirements of the function.
506        // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
507        //   that `self.count` won't overflow early in the constructor.
508        Ok(unsafe { core::slice::from_raw_parts(self.start_ptr().add(offset), count) })
509    }
510
511    /// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
512    /// slice is returned.
513    ///
514    /// # Safety
515    ///
516    /// * Callers must ensure that the device does not read/write to/from memory while the returned
517    ///   slice is live.
518    /// * Callers must ensure that this call does not race with a read or write to the same region
519    ///   while the returned slice is live.
520    pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
521        self.validate_range(offset, count)?;
522        // SAFETY:
523        // - The pointer is valid due to type invariant on `CoherentAllocation`,
524        //   we've just checked that the range and index is within bounds. The immutability of the
525        //   data is also guaranteed by the safety requirements of the function.
526        // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
527        //   that `self.count` won't overflow early in the constructor.
528        Ok(unsafe { core::slice::from_raw_parts_mut(self.start_ptr_mut().add(offset), count) })
529    }
530
531    /// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
532    /// number of bytes.
533    ///
534    /// # Safety
535    ///
536    /// * Callers must ensure that this call does not race with a read or write to the same region
537    ///   that overlaps with this write.
538    ///
539    /// # Examples
540    ///
541    /// ```
542    /// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
543    /// let somedata: [u8; 4] = [0xf; 4];
544    /// let buf: &[u8] = &somedata;
545    /// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
546    /// // region.
547    /// unsafe { alloc.write(buf, 0)?; }
548    /// # Ok::<(), Error>(()) }
549    /// ```
550    pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
551        self.validate_range(offset, src.len())?;
552        // SAFETY:
553        // - The pointer is valid due to type invariant on `CoherentAllocation`
554        //   and we've just checked that the range and index is within bounds.
555        // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
556        //   that `self.count` won't overflow early in the constructor.
557        unsafe {
558            core::ptr::copy_nonoverlapping(
559                src.as_ptr(),
560                self.start_ptr_mut().add(offset),
561                src.len(),
562            )
563        };
564        Ok(())
565    }
566
567    /// Returns a pointer to an element from the region with bounds checking. `offset` is in
568    /// units of `T`, not the number of bytes.
569    ///
570    /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
571    #[doc(hidden)]
572    pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
573        if offset >= self.count {
574            return Err(EINVAL);
575        }
576        // SAFETY:
577        // - The pointer is valid due to type invariant on `CoherentAllocation`
578        // and we've just checked that the range and index is within bounds.
579        // - `offset` can't overflow since it is smaller than `self.count` and we've checked
580        // that `self.count` won't overflow early in the constructor.
581        Ok(unsafe { self.cpu_addr.as_ptr().add(offset) })
582    }
583
584    /// Reads the value of `field` and ensures that its type is [`FromBytes`].
585    ///
586    /// # Safety
587    ///
588    /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
589    /// validated beforehand.
590    ///
591    /// Public but hidden since it should only be used from [`dma_read`] macro.
592    #[doc(hidden)]
593    pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
594        // SAFETY:
595        // - By the safety requirements field is valid.
596        // - Using read_volatile() here is not sound as per the usual rules, the usage here is
597        // a special exception with the following notes in place. When dealing with a potential
598        // race from a hardware or code outside kernel (e.g. user-space program), we need that
599        // read on a valid memory is not UB. Currently read_volatile() is used for this, and the
600        // rationale behind is that it should generate the same code as READ_ONCE() which the
601        // kernel already relies on to avoid UB on data races. Note that the usage of
602        // read_volatile() is limited to this particular case, it cannot be used to prevent
603        // the UB caused by racing between two kernel functions nor do they provide atomicity.
604        unsafe { field.read_volatile() }
605    }
606
607    /// Writes a value to `field` and ensures that its type is [`AsBytes`].
608    ///
609    /// # Safety
610    ///
611    /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
612    /// validated beforehand.
613    ///
614    /// Public but hidden since it should only be used from [`dma_write`] macro.
615    #[doc(hidden)]
616    pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
617        // SAFETY:
618        // - By the safety requirements field is valid.
619        // - Using write_volatile() here is not sound as per the usual rules, the usage here is
620        // a special exception with the following notes in place. When dealing with a potential
621        // race from a hardware or code outside kernel (e.g. user-space program), we need that
622        // write on a valid memory is not UB. Currently write_volatile() is used for this, and the
623        // rationale behind is that it should generate the same code as WRITE_ONCE() which the
624        // kernel already relies on to avoid UB on data races. Note that the usage of
625        // write_volatile() is limited to this particular case, it cannot be used to prevent
626        // the UB caused by racing between two kernel functions nor do they provide atomicity.
627        unsafe { field.write_volatile(val) }
628    }
629}
630
631/// Note that the device configured to do DMA must be halted before this object is dropped.
632impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
633    fn drop(&mut self) {
634        let size = self.count * core::mem::size_of::<T>();
635        // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
636        // The cpu address, and the dma handle are valid due to the type invariants on
637        // `CoherentAllocation`.
638        unsafe {
639            bindings::dma_free_attrs(
640                self.dev.as_raw(),
641                size,
642                self.start_ptr_mut().cast(),
643                self.dma_handle,
644                self.dma_attrs.as_raw(),
645            )
646        }
647    }
648}
649
650// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
651// can be sent to another thread.
652unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
653
654/// Reads a field of an item from an allocated region of structs.
655///
656/// # Examples
657///
658/// ```
659/// use kernel::device::Device;
660/// use kernel::dma::{attrs::*, CoherentAllocation};
661///
662/// struct MyStruct { field: u32, }
663///
664/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
665/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
666/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
667/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
668///
669/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
670/// let whole = kernel::dma_read!(alloc[2]);
671/// let field = kernel::dma_read!(alloc[1].field);
672/// # Ok::<(), Error>(()) }
673/// ```
674#[macro_export]
675macro_rules! dma_read {
676    ($dma:expr, $idx: expr, $($field:tt)*) => {{
677        (|| -> ::core::result::Result<_, $crate::error::Error> {
678            let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
679            // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
680            // dereferenced. The compiler also further validates the expression on whether `field`
681            // is a member of `item` when expanded by the macro.
682            unsafe {
683                let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
684                ::core::result::Result::Ok(
685                    $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
686                )
687            }
688        })()
689    }};
690    ($dma:ident [ $idx:expr ] $($field:tt)* ) => {
691        $crate::dma_read!($dma, $idx, $($field)*)
692    };
693    ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
694        $crate::dma_read!($($dma).*, $idx, $($field)*)
695    };
696}
697
698/// Writes to a field of an item from an allocated region of structs.
699///
700/// # Examples
701///
702/// ```
703/// use kernel::device::Device;
704/// use kernel::dma::{attrs::*, CoherentAllocation};
705///
706/// struct MyStruct { member: u32, }
707///
708/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
709/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
710/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
711/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
712///
713/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
714/// kernel::dma_write!(alloc[2].member = 0xf);
715/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
716/// # Ok::<(), Error>(()) }
717/// ```
718#[macro_export]
719macro_rules! dma_write {
720    ($dma:ident [ $idx:expr ] $($field:tt)*) => {{
721        $crate::dma_write!($dma, $idx, $($field)*)
722    }};
723    ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
724        $crate::dma_write!($($dma).*, $idx, $($field)*)
725    }};
726    ($dma:expr, $idx: expr, = $val:expr) => {
727        (|| -> ::core::result::Result<_, $crate::error::Error> {
728            let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
729            // SAFETY: `item_from_index` ensures that `item` is always a valid item.
730            unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
731            ::core::result::Result::Ok(())
732        })()
733    };
734    ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
735        (|| -> ::core::result::Result<_, $crate::error::Error> {
736            let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
737            // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
738            // dereferenced. The compiler also further validates the expression on whether `field`
739            // is a member of `item` when expanded by the macro.
740            unsafe {
741                let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
742                $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
743            }
744            ::core::result::Result::Ok(())
745        })()
746    };
747}