kernel/dma.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Direct memory access (DMA).
4//!
5//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
6
7use crate::{
8 bindings, build_assert, device,
9 device::{Bound, Core},
10 error::{to_result, Result},
11 prelude::*,
12 sync::aref::ARef,
13 transmute::{AsBytes, FromBytes},
14};
15use core::ptr::NonNull;
16
17/// DMA address type.
18///
19/// Represents a bus address used for Direct Memory Access (DMA) operations.
20///
21/// This is an alias of the kernel's `dma_addr_t`, which may be `u32` or `u64` depending on
22/// `CONFIG_ARCH_DMA_ADDR_T_64BIT`.
23///
24/// Note that this may be `u64` even on 32-bit architectures.
25pub type DmaAddress = bindings::dma_addr_t;
26
27/// Trait to be implemented by DMA capable bus devices.
28///
29/// The [`dma::Device`](Device) trait should be implemented by bus specific device representations,
30/// where the underlying bus is DMA capable, such as:
31#[cfg_attr(CONFIG_PCI, doc = "* [`pci::Device`](kernel::pci::Device)")]
32/// * [`platform::Device`](::kernel::platform::Device)
33pub trait Device: AsRef<device::Device<Core>> {
34 /// Set up the device's DMA streaming addressing capabilities.
35 ///
36 /// This method is usually called once from `probe()` as soon as the device capabilities are
37 /// known.
38 ///
39 /// # Safety
40 ///
41 /// This method must not be called concurrently with any DMA allocation or mapping primitives,
42 /// such as [`CoherentAllocation::alloc_attrs`].
43 unsafe fn dma_set_mask(&self, mask: DmaMask) -> Result {
44 // SAFETY:
45 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
46 // - The safety requirement of this function guarantees that there are no concurrent calls
47 // to DMA allocation and mapping primitives using this mask.
48 to_result(unsafe { bindings::dma_set_mask(self.as_ref().as_raw(), mask.value()) })
49 }
50
51 /// Set up the device's DMA coherent addressing capabilities.
52 ///
53 /// This method is usually called once from `probe()` as soon as the device capabilities are
54 /// known.
55 ///
56 /// # Safety
57 ///
58 /// This method must not be called concurrently with any DMA allocation or mapping primitives,
59 /// such as [`CoherentAllocation::alloc_attrs`].
60 unsafe fn dma_set_coherent_mask(&self, mask: DmaMask) -> Result {
61 // SAFETY:
62 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
63 // - The safety requirement of this function guarantees that there are no concurrent calls
64 // to DMA allocation and mapping primitives using this mask.
65 to_result(unsafe { bindings::dma_set_coherent_mask(self.as_ref().as_raw(), mask.value()) })
66 }
67
68 /// Set up the device's DMA addressing capabilities.
69 ///
70 /// This is a combination of [`Device::dma_set_mask`] and [`Device::dma_set_coherent_mask`].
71 ///
72 /// This method is usually called once from `probe()` as soon as the device capabilities are
73 /// known.
74 ///
75 /// # Safety
76 ///
77 /// This method must not be called concurrently with any DMA allocation or mapping primitives,
78 /// such as [`CoherentAllocation::alloc_attrs`].
79 unsafe fn dma_set_mask_and_coherent(&self, mask: DmaMask) -> Result {
80 // SAFETY:
81 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
82 // - The safety requirement of this function guarantees that there are no concurrent calls
83 // to DMA allocation and mapping primitives using this mask.
84 to_result(unsafe {
85 bindings::dma_set_mask_and_coherent(self.as_ref().as_raw(), mask.value())
86 })
87 }
88
89 /// Set the maximum size of a single DMA segment the device may request.
90 ///
91 /// This method is usually called once from `probe()` as soon as the device capabilities are
92 /// known.
93 ///
94 /// # Safety
95 ///
96 /// This method must not be called concurrently with any DMA allocation or mapping primitives,
97 /// such as [`CoherentAllocation::alloc_attrs`].
98 unsafe fn dma_set_max_seg_size(&self, size: u32) {
99 // SAFETY:
100 // - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
101 // - The safety requirement of this function guarantees that there are no concurrent calls
102 // to DMA allocation and mapping primitives using this parameter.
103 unsafe { bindings::dma_set_max_seg_size(self.as_ref().as_raw(), size) }
104 }
105}
106
107/// A DMA mask that holds a bitmask with the lowest `n` bits set.
108///
109/// Use [`DmaMask::new`] or [`DmaMask::try_new`] to construct a value. Values
110/// are guaranteed to never exceed the bit width of `u64`.
111///
112/// This is the Rust equivalent of the C macro `DMA_BIT_MASK()`.
113#[derive(Debug, Clone, Copy, PartialEq, Eq)]
114pub struct DmaMask(u64);
115
116impl DmaMask {
117 /// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
118 ///
119 /// For `n <= 64`, sets exactly the lowest `n` bits.
120 /// For `n > 64`, results in a build error.
121 ///
122 /// # Examples
123 ///
124 /// ```
125 /// use kernel::dma::DmaMask;
126 ///
127 /// let mask0 = DmaMask::new::<0>();
128 /// assert_eq!(mask0.value(), 0);
129 ///
130 /// let mask1 = DmaMask::new::<1>();
131 /// assert_eq!(mask1.value(), 0b1);
132 ///
133 /// let mask64 = DmaMask::new::<64>();
134 /// assert_eq!(mask64.value(), u64::MAX);
135 ///
136 /// // Build failure.
137 /// // let mask_overflow = DmaMask::new::<100>();
138 /// ```
139 #[inline]
140 pub const fn new<const N: u32>() -> Self {
141 let Ok(mask) = Self::try_new(N) else {
142 build_error!("Invalid DMA Mask.");
143 };
144
145 mask
146 }
147
148 /// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
149 ///
150 /// For `n <= 64`, sets exactly the lowest `n` bits.
151 /// For `n > 64`, returns [`EINVAL`].
152 ///
153 /// # Examples
154 ///
155 /// ```
156 /// use kernel::dma::DmaMask;
157 ///
158 /// let mask0 = DmaMask::try_new(0)?;
159 /// assert_eq!(mask0.value(), 0);
160 ///
161 /// let mask1 = DmaMask::try_new(1)?;
162 /// assert_eq!(mask1.value(), 0b1);
163 ///
164 /// let mask64 = DmaMask::try_new(64)?;
165 /// assert_eq!(mask64.value(), u64::MAX);
166 ///
167 /// let mask_overflow = DmaMask::try_new(100);
168 /// assert!(mask_overflow.is_err());
169 /// # Ok::<(), Error>(())
170 /// ```
171 #[inline]
172 pub const fn try_new(n: u32) -> Result<Self> {
173 Ok(Self(match n {
174 0 => 0,
175 1..=64 => u64::MAX >> (64 - n),
176 _ => return Err(EINVAL),
177 }))
178 }
179
180 /// Returns the underlying `u64` bitmask value.
181 #[inline]
182 pub const fn value(&self) -> u64 {
183 self.0
184 }
185}
186
187/// Possible attributes associated with a DMA mapping.
188///
189/// They can be combined with the operators `|`, `&`, and `!`.
190///
191/// Values can be used from the [`attrs`] module.
192///
193/// # Examples
194///
195/// ```
196/// # use kernel::device::{Bound, Device};
197/// use kernel::dma::{attrs::*, CoherentAllocation};
198///
199/// # fn test(dev: &Device<Bound>) -> Result {
200/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
201/// let c: CoherentAllocation<u64> =
202/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
203/// # Ok::<(), Error>(()) }
204/// ```
205#[derive(Clone, Copy, PartialEq)]
206#[repr(transparent)]
207pub struct Attrs(u32);
208
209impl Attrs {
210 /// Get the raw representation of this attribute.
211 pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
212 self.0 as crate::ffi::c_ulong
213 }
214
215 /// Check whether `flags` is contained in `self`.
216 pub fn contains(self, flags: Attrs) -> bool {
217 (self & flags) == flags
218 }
219}
220
221impl core::ops::BitOr for Attrs {
222 type Output = Self;
223 fn bitor(self, rhs: Self) -> Self::Output {
224 Self(self.0 | rhs.0)
225 }
226}
227
228impl core::ops::BitAnd for Attrs {
229 type Output = Self;
230 fn bitand(self, rhs: Self) -> Self::Output {
231 Self(self.0 & rhs.0)
232 }
233}
234
235impl core::ops::Not for Attrs {
236 type Output = Self;
237 fn not(self) -> Self::Output {
238 Self(!self.0)
239 }
240}
241
242/// DMA mapping attributes.
243pub mod attrs {
244 use super::Attrs;
245
246 /// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
247 /// and writes may pass each other.
248 pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
249
250 /// Specifies that writes to the mapping may be buffered to improve performance.
251 pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
252
253 /// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
254 pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
255
256 /// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
257 /// that it has been already transferred to 'device' domain.
258 pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
259
260 /// Forces contiguous allocation of the buffer in physical memory.
261 pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
262
263 /// Hints DMA-mapping subsystem that it's probably not worth the time to try
264 /// to allocate memory to in a way that gives better TLB efficiency.
265 pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
266
267 /// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
268 /// `__GFP_NOWARN`).
269 pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
270
271 /// Indicates that the buffer is fully accessible at an elevated privilege level (and
272 /// ideally inaccessible or at least read-only at lesser-privileged levels).
273 pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
274
275 /// Indicates that the buffer is MMIO memory.
276 pub const DMA_ATTR_MMIO: Attrs = Attrs(bindings::DMA_ATTR_MMIO);
277}
278
279/// DMA data direction.
280///
281/// Corresponds to the C [`enum dma_data_direction`].
282///
283/// [`enum dma_data_direction`]: srctree/include/linux/dma-direction.h
284#[derive(Copy, Clone, PartialEq, Eq, Debug)]
285#[repr(u32)]
286pub enum DataDirection {
287 /// The DMA mapping is for bidirectional data transfer.
288 ///
289 /// This is used when the buffer can be both read from and written to by the device.
290 /// The cache for the corresponding memory region is both flushed and invalidated.
291 Bidirectional = Self::const_cast(bindings::dma_data_direction_DMA_BIDIRECTIONAL),
292
293 /// The DMA mapping is for data transfer from memory to the device (write).
294 ///
295 /// The CPU has prepared data in the buffer, and the device will read it.
296 /// The cache for the corresponding memory region is flushed before device access.
297 ToDevice = Self::const_cast(bindings::dma_data_direction_DMA_TO_DEVICE),
298
299 /// The DMA mapping is for data transfer from the device to memory (read).
300 ///
301 /// The device will write data into the buffer for the CPU to read.
302 /// The cache for the corresponding memory region is invalidated before CPU access.
303 FromDevice = Self::const_cast(bindings::dma_data_direction_DMA_FROM_DEVICE),
304
305 /// The DMA mapping is not for data transfer.
306 ///
307 /// This is primarily for debugging purposes. With this direction, the DMA mapping API
308 /// will not perform any cache coherency operations.
309 None = Self::const_cast(bindings::dma_data_direction_DMA_NONE),
310}
311
312impl DataDirection {
313 /// Casts the bindgen-generated enum type to a `u32` at compile time.
314 ///
315 /// This function will cause a compile-time error if the underlying value of the
316 /// C enum is out of bounds for `u32`.
317 const fn const_cast(val: bindings::dma_data_direction) -> u32 {
318 // CAST: The C standard allows compilers to choose different integer types for enums.
319 // To safely check the value, we cast it to a wide signed integer type (`i128`)
320 // which can hold any standard C integer enum type without truncation.
321 let wide_val = val as i128;
322
323 // Check if the value is outside the valid range for the target type `u32`.
324 // CAST: `u32::MAX` is cast to `i128` to match the type of `wide_val` for the comparison.
325 if wide_val < 0 || wide_val > u32::MAX as i128 {
326 // Trigger a compile-time error in a const context.
327 build_error!("C enum value is out of bounds for the target type `u32`.");
328 }
329
330 // CAST: This cast is valid because the check above guarantees that `wide_val`
331 // is within the representable range of `u32`.
332 wide_val as u32
333 }
334}
335
336impl From<DataDirection> for bindings::dma_data_direction {
337 /// Returns the raw representation of [`enum dma_data_direction`].
338 fn from(direction: DataDirection) -> Self {
339 // CAST: `direction as u32` gets the underlying representation of our `#[repr(u32)]` enum.
340 // The subsequent cast to `Self` (the bindgen type) assumes the C enum is compatible
341 // with the enum variants of `DataDirection`, which is a valid assumption given our
342 // compile-time checks.
343 direction as u32 as Self
344 }
345}
346
347/// An abstraction of the `dma_alloc_coherent` API.
348///
349/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
350/// large coherent DMA regions.
351///
352/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
353/// processor's virtual address space) and the device address which can be given to the device
354/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
355/// is dropped.
356///
357/// # Invariants
358///
359/// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
360/// to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
361/// region.
362/// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
363/// - `size_of::<T> * count` fits into a `usize`.
364// TODO
365//
366// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
367// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
368// that device resources can never survive device unbind.
369//
370// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
371// allocation from surviving device unbind; it would require RCU read side critical sections to
372// access the memory, which may require subsequent unnecessary copies.
373//
374// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
375// entire `CoherentAllocation` including the allocated memory itself.
376pub struct CoherentAllocation<T: AsBytes + FromBytes> {
377 dev: ARef<device::Device>,
378 dma_handle: DmaAddress,
379 count: usize,
380 cpu_addr: NonNull<T>,
381 dma_attrs: Attrs,
382}
383
384impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
385 /// Allocates a region of `size_of::<T> * count` of coherent memory.
386 ///
387 /// # Examples
388 ///
389 /// ```
390 /// # use kernel::device::{Bound, Device};
391 /// use kernel::dma::{attrs::*, CoherentAllocation};
392 ///
393 /// # fn test(dev: &Device<Bound>) -> Result {
394 /// let c: CoherentAllocation<u64> =
395 /// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
396 /// # Ok::<(), Error>(()) }
397 /// ```
398 pub fn alloc_attrs(
399 dev: &device::Device<Bound>,
400 count: usize,
401 gfp_flags: kernel::alloc::Flags,
402 dma_attrs: Attrs,
403 ) -> Result<CoherentAllocation<T>> {
404 build_assert!(
405 core::mem::size_of::<T>() > 0,
406 "It doesn't make sense for the allocated type to be a ZST"
407 );
408
409 let size = count
410 .checked_mul(core::mem::size_of::<T>())
411 .ok_or(EOVERFLOW)?;
412 let mut dma_handle = 0;
413 // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
414 let addr = unsafe {
415 bindings::dma_alloc_attrs(
416 dev.as_raw(),
417 size,
418 &mut dma_handle,
419 gfp_flags.as_raw(),
420 dma_attrs.as_raw(),
421 )
422 };
423 let addr = NonNull::new(addr).ok_or(ENOMEM)?;
424 // INVARIANT:
425 // - We just successfully allocated a coherent region which is accessible for
426 // `count` elements, hence the cpu address is valid. We also hold a refcounted reference
427 // to the device.
428 // - The allocated `size` is equal to `size_of::<T> * count`.
429 // - The allocated `size` fits into a `usize`.
430 Ok(Self {
431 dev: dev.into(),
432 dma_handle,
433 count,
434 cpu_addr: addr.cast(),
435 dma_attrs,
436 })
437 }
438
439 /// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
440 /// `dma_attrs` is 0 by default.
441 pub fn alloc_coherent(
442 dev: &device::Device<Bound>,
443 count: usize,
444 gfp_flags: kernel::alloc::Flags,
445 ) -> Result<CoherentAllocation<T>> {
446 CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
447 }
448
449 /// Returns the number of elements `T` in this allocation.
450 ///
451 /// Note that this is not the size of the allocation in bytes, which is provided by
452 /// [`Self::size`].
453 pub fn count(&self) -> usize {
454 self.count
455 }
456
457 /// Returns the size in bytes of this allocation.
458 pub fn size(&self) -> usize {
459 // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
460 // a `usize`.
461 self.count * core::mem::size_of::<T>()
462 }
463
464 /// Returns the base address to the allocated region in the CPU's virtual address space.
465 pub fn start_ptr(&self) -> *const T {
466 self.cpu_addr.as_ptr()
467 }
468
469 /// Returns the base address to the allocated region in the CPU's virtual address space as
470 /// a mutable pointer.
471 pub fn start_ptr_mut(&mut self) -> *mut T {
472 self.cpu_addr.as_ptr()
473 }
474
475 /// Returns a DMA handle which may be given to the device as the DMA address base of
476 /// the region.
477 pub fn dma_handle(&self) -> DmaAddress {
478 self.dma_handle
479 }
480
481 /// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
482 /// device as the DMA address base of the region.
483 ///
484 /// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
485 pub fn dma_handle_with_offset(&self, offset: usize) -> Result<DmaAddress> {
486 if offset >= self.count {
487 Err(EINVAL)
488 } else {
489 // INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
490 // into a `usize`, and `offset` is inferior to `count`.
491 Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as DmaAddress)
492 }
493 }
494
495 /// Common helper to validate a range applied from the allocated region in the CPU's virtual
496 /// address space.
497 fn validate_range(&self, offset: usize, count: usize) -> Result {
498 if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
499 return Err(EINVAL);
500 }
501 Ok(())
502 }
503
504 /// Returns the data from the region starting from `offset` as a slice.
505 /// `offset` and `count` are in units of `T`, not the number of bytes.
506 ///
507 /// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
508 /// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
509 /// instead.
510 ///
511 /// # Safety
512 ///
513 /// * Callers must ensure that the device does not read/write to/from memory while the returned
514 /// slice is live.
515 /// * Callers must ensure that this call does not race with a write to the same region while
516 /// the returned slice is live.
517 pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
518 self.validate_range(offset, count)?;
519 // SAFETY:
520 // - The pointer is valid due to type invariant on `CoherentAllocation`,
521 // we've just checked that the range and index is within bounds. The immutability of the
522 // data is also guaranteed by the safety requirements of the function.
523 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
524 // that `self.count` won't overflow early in the constructor.
525 Ok(unsafe { core::slice::from_raw_parts(self.start_ptr().add(offset), count) })
526 }
527
528 /// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
529 /// slice is returned.
530 ///
531 /// # Safety
532 ///
533 /// * Callers must ensure that the device does not read/write to/from memory while the returned
534 /// slice is live.
535 /// * Callers must ensure that this call does not race with a read or write to the same region
536 /// while the returned slice is live.
537 pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
538 self.validate_range(offset, count)?;
539 // SAFETY:
540 // - The pointer is valid due to type invariant on `CoherentAllocation`,
541 // we've just checked that the range and index is within bounds. The immutability of the
542 // data is also guaranteed by the safety requirements of the function.
543 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
544 // that `self.count` won't overflow early in the constructor.
545 Ok(unsafe { core::slice::from_raw_parts_mut(self.start_ptr_mut().add(offset), count) })
546 }
547
548 /// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
549 /// number of bytes.
550 ///
551 /// # Safety
552 ///
553 /// * Callers must ensure that this call does not race with a read or write to the same region
554 /// that overlaps with this write.
555 ///
556 /// # Examples
557 ///
558 /// ```
559 /// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
560 /// let somedata: [u8; 4] = [0xf; 4];
561 /// let buf: &[u8] = &somedata;
562 /// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
563 /// // region.
564 /// unsafe { alloc.write(buf, 0)?; }
565 /// # Ok::<(), Error>(()) }
566 /// ```
567 pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
568 self.validate_range(offset, src.len())?;
569 // SAFETY:
570 // - The pointer is valid due to type invariant on `CoherentAllocation`
571 // and we've just checked that the range and index is within bounds.
572 // - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
573 // that `self.count` won't overflow early in the constructor.
574 unsafe {
575 core::ptr::copy_nonoverlapping(
576 src.as_ptr(),
577 self.start_ptr_mut().add(offset),
578 src.len(),
579 )
580 };
581 Ok(())
582 }
583
584 /// Returns a pointer to an element from the region with bounds checking. `offset` is in
585 /// units of `T`, not the number of bytes.
586 ///
587 /// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
588 #[doc(hidden)]
589 pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
590 if offset >= self.count {
591 return Err(EINVAL);
592 }
593 // SAFETY:
594 // - The pointer is valid due to type invariant on `CoherentAllocation`
595 // and we've just checked that the range and index is within bounds.
596 // - `offset` can't overflow since it is smaller than `self.count` and we've checked
597 // that `self.count` won't overflow early in the constructor.
598 Ok(unsafe { self.cpu_addr.as_ptr().add(offset) })
599 }
600
601 /// Reads the value of `field` and ensures that its type is [`FromBytes`].
602 ///
603 /// # Safety
604 ///
605 /// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
606 /// validated beforehand.
607 ///
608 /// Public but hidden since it should only be used from [`dma_read`] macro.
609 #[doc(hidden)]
610 pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
611 // SAFETY:
612 // - By the safety requirements field is valid.
613 // - Using read_volatile() here is not sound as per the usual rules, the usage here is
614 // a special exception with the following notes in place. When dealing with a potential
615 // race from a hardware or code outside kernel (e.g. user-space program), we need that
616 // read on a valid memory is not UB. Currently read_volatile() is used for this, and the
617 // rationale behind is that it should generate the same code as READ_ONCE() which the
618 // kernel already relies on to avoid UB on data races. Note that the usage of
619 // read_volatile() is limited to this particular case, it cannot be used to prevent
620 // the UB caused by racing between two kernel functions nor do they provide atomicity.
621 unsafe { field.read_volatile() }
622 }
623
624 /// Writes a value to `field` and ensures that its type is [`AsBytes`].
625 ///
626 /// # Safety
627 ///
628 /// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
629 /// validated beforehand.
630 ///
631 /// Public but hidden since it should only be used from [`dma_write`] macro.
632 #[doc(hidden)]
633 pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
634 // SAFETY:
635 // - By the safety requirements field is valid.
636 // - Using write_volatile() here is not sound as per the usual rules, the usage here is
637 // a special exception with the following notes in place. When dealing with a potential
638 // race from a hardware or code outside kernel (e.g. user-space program), we need that
639 // write on a valid memory is not UB. Currently write_volatile() is used for this, and the
640 // rationale behind is that it should generate the same code as WRITE_ONCE() which the
641 // kernel already relies on to avoid UB on data races. Note that the usage of
642 // write_volatile() is limited to this particular case, it cannot be used to prevent
643 // the UB caused by racing between two kernel functions nor do they provide atomicity.
644 unsafe { field.write_volatile(val) }
645 }
646}
647
648/// Note that the device configured to do DMA must be halted before this object is dropped.
649impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
650 fn drop(&mut self) {
651 let size = self.count * core::mem::size_of::<T>();
652 // SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
653 // The cpu address, and the dma handle are valid due to the type invariants on
654 // `CoherentAllocation`.
655 unsafe {
656 bindings::dma_free_attrs(
657 self.dev.as_raw(),
658 size,
659 self.start_ptr_mut().cast(),
660 self.dma_handle,
661 self.dma_attrs.as_raw(),
662 )
663 }
664 }
665}
666
667// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
668// can be sent to another thread.
669unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
670
671/// Reads a field of an item from an allocated region of structs.
672///
673/// # Examples
674///
675/// ```
676/// use kernel::device::Device;
677/// use kernel::dma::{attrs::*, CoherentAllocation};
678///
679/// struct MyStruct { field: u32, }
680///
681/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
682/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
683/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
684/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
685///
686/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
687/// let whole = kernel::dma_read!(alloc[2]);
688/// let field = kernel::dma_read!(alloc[1].field);
689/// # Ok::<(), Error>(()) }
690/// ```
691#[macro_export]
692macro_rules! dma_read {
693 ($dma:expr, $idx: expr, $($field:tt)*) => {{
694 (|| -> ::core::result::Result<_, $crate::error::Error> {
695 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
696 // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
697 // dereferenced. The compiler also further validates the expression on whether `field`
698 // is a member of `item` when expanded by the macro.
699 unsafe {
700 let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
701 ::core::result::Result::Ok(
702 $crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
703 )
704 }
705 })()
706 }};
707 ($dma:ident [ $idx:expr ] $($field:tt)* ) => {
708 $crate::dma_read!($dma, $idx, $($field)*)
709 };
710 ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
711 $crate::dma_read!($($dma).*, $idx, $($field)*)
712 };
713}
714
715/// Writes to a field of an item from an allocated region of structs.
716///
717/// # Examples
718///
719/// ```
720/// use kernel::device::Device;
721/// use kernel::dma::{attrs::*, CoherentAllocation};
722///
723/// struct MyStruct { member: u32, }
724///
725/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
726/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
727/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
728/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
729///
730/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
731/// kernel::dma_write!(alloc[2].member = 0xf);
732/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
733/// # Ok::<(), Error>(()) }
734/// ```
735#[macro_export]
736macro_rules! dma_write {
737 ($dma:ident [ $idx:expr ] $($field:tt)*) => {{
738 $crate::dma_write!($dma, $idx, $($field)*)
739 }};
740 ($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
741 $crate::dma_write!($($dma).*, $idx, $($field)*)
742 }};
743 ($dma:expr, $idx: expr, = $val:expr) => {
744 (|| -> ::core::result::Result<_, $crate::error::Error> {
745 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
746 // SAFETY: `item_from_index` ensures that `item` is always a valid item.
747 unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
748 ::core::result::Result::Ok(())
749 })()
750 };
751 ($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
752 (|| -> ::core::result::Result<_, $crate::error::Error> {
753 let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
754 // SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
755 // dereferenced. The compiler also further validates the expression on whether `field`
756 // is a member of `item` when expanded by the macro.
757 unsafe {
758 let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
759 $crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
760 }
761 ::core::result::Result::Ok(())
762 })()
763 };
764}