aboutsummaryrefslogtreecommitdiffstats
path: root/fs/btrfs/scrub.c
blob: c4bd0e60db59253f280236740d23ed1c5b7b92f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 */

#include <linux/blkdev.h>
#include <linux/ratelimit.h>
#include <linux/sched/mm.h>
#include <crypto/hash.h>
#include "ctree.h"
#include "discard.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
#include "transaction.h"
#include "backref.h"
#include "extent_io.h"
#include "dev-replace.h"
#include "raid56.h"
#include "block-group.h"
#include "zoned.h"
#include "fs.h"
#include "accessors.h"
#include "file-item.h"
#include "scrub.h"
#include "raid-stripe-tree.h"

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

struct scrub_ctx;

/*
 * The following value only influences the performance.
 *
 * This determines how many stripes would be submitted in one go,
 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
 */
#define SCRUB_STRIPES_PER_GROUP		8

/*
 * How many groups we have for each sctx.
 *
 * This would be 8M per device, the same value as the old scrub in-flight bios
 * size limit.
 */
#define SCRUB_GROUPS_PER_SCTX		16

#define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)

/*
 * The following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 */
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)

/* Represent one sector and its needed info to verify the content. */
struct scrub_sector_verification {
	bool is_metadata;

	union {
		/*
		 * Csum pointer for data csum verification.  Should point to a
		 * sector csum inside scrub_stripe::csums.
		 *
		 * NULL if this data sector has no csum.
		 */
		u8 *csum;

		/*
		 * Extra info for metadata verification.  All sectors inside a
		 * tree block share the same generation.
		 */
		u64 generation;
	};
};

enum scrub_stripe_flags {
	/* Set when @mirror_num, @dev, @physical and @logical are set. */
	SCRUB_STRIPE_FLAG_INITIALIZED,

	/* Set when the read-repair is finished. */
	SCRUB_STRIPE_FLAG_REPAIR_DONE,

	/*
	 * Set for data stripes if it's triggered from P/Q stripe.
	 * During such scrub, we should not report errors in data stripes, nor
	 * update the accounting.
	 */
	SCRUB_STRIPE_FLAG_NO_REPORT,
};

#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)

/*
 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 */
struct scrub_stripe {
	struct scrub_ctx *sctx;
	struct btrfs_block_group *bg;

	struct page *pages[SCRUB_STRIPE_PAGES];
	struct scrub_sector_verification *sectors;

	struct btrfs_device *dev;
	u64 logical;
	u64 physical;

	u16 mirror_num;

	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
	u16 nr_sectors;

	/*
	 * How many data/meta extents are in this stripe.  Only for scrub status
	 * reporting purposes.
	 */
	u16 nr_data_extents;
	u16 nr_meta_extents;

	atomic_t pending_io;
	wait_queue_head_t io_wait;
	wait_queue_head_t repair_wait;

	/*
	 * Indicate the states of the stripe.  Bits are defined in
	 * scrub_stripe_flags enum.
	 */
	unsigned long state;

	/* Indicate which sectors are covered by extent items. */
	unsigned long extent_sector_bitmap;

	/*
	 * The errors hit during the initial read of the stripe.
	 *
	 * Would be utilized for error reporting and repair.
	 *
	 * The remaining init_nr_* records the number of errors hit, only used
	 * by error reporting.
	 */
	unsigned long init_error_bitmap;
	unsigned int init_nr_io_errors;
	unsigned int init_nr_csum_errors;
	unsigned int init_nr_meta_errors;

	/*
	 * The following error bitmaps are all for the current status.
	 * Every time we submit a new read, these bitmaps may be updated.
	 *
	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
	 *
	 * IO and csum errors can happen for both metadata and data.
	 */
	unsigned long error_bitmap;
	unsigned long io_error_bitmap;
	unsigned long csum_error_bitmap;
	unsigned long meta_error_bitmap;

	/* For writeback (repair or replace) error reporting. */
	unsigned long write_error_bitmap;

	/* Writeback can be concurrent, thus we need to protect the bitmap. */
	spinlock_t write_error_lock;

	/*
	 * Checksum for the whole stripe if this stripe is inside a data block
	 * group.
	 */
	u8 *csums;

	struct work_struct work;
};

struct scrub_ctx {
	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
	struct scrub_stripe	*raid56_data_stripes;
	struct btrfs_fs_info	*fs_info;
	struct btrfs_path	extent_path;
	struct btrfs_path	csum_path;
	int			first_free;
	int			cur_stripe;
	atomic_t		cancel_req;
	int			readonly;

	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

	int			is_dev_replace;
	u64			write_pointer;

	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;

	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
	refcount_t              refs;
};

struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	u64			physical;
	u64			logical;
	struct btrfs_device	*dev;
};

static void release_scrub_stripe(struct scrub_stripe *stripe)
{
	if (!stripe)
		return;

	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
		if (stripe->pages[i])
			__free_page(stripe->pages[i]);
		stripe->pages[i] = NULL;
	}
	kfree(stripe->sectors);
	kfree(stripe->csums);
	stripe->sectors = NULL;
	stripe->csums = NULL;
	stripe->sctx = NULL;
	stripe->state = 0;
}

static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
			     struct scrub_stripe *stripe)
{
	int ret;

	memset(stripe, 0, sizeof(*stripe));

	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
	stripe->state = 0;

	init_waitqueue_head(&stripe->io_wait);
	init_waitqueue_head(&stripe->repair_wait);
	atomic_set(&stripe->pending_io, 0);
	spin_lock_init(&stripe->write_error_lock);

	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
	if (ret < 0)
		goto error;

	stripe->sectors = kcalloc(stripe->nr_sectors,
				  sizeof(struct scrub_sector_verification),
				  GFP_KERNEL);
	if (!stripe->sectors)
		goto error;

	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
				fs_info->csum_size, GFP_KERNEL);
	if (!stripe->csums)
		goto error;
	return 0;
error:
	release_scrub_stripe(stripe);
	return -ENOMEM;
}

static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
{
	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
}

static void scrub_put_ctx(struct scrub_ctx *sctx);

static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

static void scrub_pause_on(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
}

static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
{
	int i;

	if (!sctx)
		return;

	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
		release_scrub_stripe(&sctx->stripes[i]);

	kvfree(sctx);
}

static void scrub_put_ctx(struct scrub_ctx *sctx)
{
	if (refcount_dec_and_test(&sctx->refs))
		scrub_free_ctx(sctx);
}

static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
{
	struct scrub_ctx *sctx;
	int		i;

	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
	 * kvzalloc().
	 */
	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
	if (!sctx)
		goto nomem;
	refcount_set(&sctx->refs, 1);
	sctx->is_dev_replace = is_dev_replace;
	sctx->fs_info = fs_info;
	sctx->extent_path.search_commit_root = 1;
	sctx->extent_path.skip_locking = 1;
	sctx->csum_path.search_commit_root = 1;
	sctx->csum_path.skip_locking = 1;
	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
		int ret;

		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
		if (ret < 0)
			goto nomem;
		sctx->stripes[i].sctx = sctx;
	}
	sctx->first_free = 0;
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->stat_lock);
	sctx->throttle_deadline = 0;

	mutex_init(&sctx->wr_lock);
	if (is_dev_replace) {
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
	}

	return sctx;

nomem:
	scrub_free_ctx(sctx);
	return ERR_PTR(-ENOMEM);
}

static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
				     u64 root, void *warn_ctx)
{
	u32 nlink;
	int ret;
	int i;
	unsigned nofs_flag;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
	struct scrub_warning *swarn = warn_ctx;
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key key;

	local_root = btrfs_get_fs_root(fs_info, root, true);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
	if (ret) {
		btrfs_put_root(local_root);
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
	ipath = init_ipath(4096, local_root, swarn->path);
	memalloc_nofs_restore(nofs_flag);
	if (IS_ERR(ipath)) {
		btrfs_put_root(local_root);
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
		btrfs_warn_in_rcu(fs_info,
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
				  swarn->errstr, swarn->logical,
				  btrfs_dev_name(swarn->dev),
				  swarn->physical,
				  root, inum, offset,
				  fs_info->sectorsize, nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);

	btrfs_put_root(local_root);
	free_ipath(ipath);
	return 0;

err:
	btrfs_warn_in_rcu(fs_info,
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
			  swarn->errstr, swarn->logical,
			  btrfs_dev_name(swarn->dev),
			  swarn->physical,
			  root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
				       bool is_super, u64 logical, u64 physical)
{
	struct btrfs_fs_info *fs_info = dev->fs_info;
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
	u64 flags = 0;
	u32 item_size;
	int ret;

	/* Super block error, no need to search extent tree. */
	if (is_super) {
		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
				  errstr, btrfs_dev_name(dev), physical);
		return;
	}
	path = btrfs_alloc_path();
	if (!path)
		return;

	swarn.physical = physical;
	swarn.logical = logical;
	swarn.errstr = errstr;
	swarn.dev = NULL;

	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
	if (ret < 0)
		goto out;

	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size(eb, path->slots[0]);

	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		unsigned long ptr = 0;
		u8 ref_level;
		u64 ref_root;

		while (true) {
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
			if (ret < 0) {
				btrfs_warn(fs_info,
				"failed to resolve tree backref for logical %llu: %d",
						  swarn.logical, ret);
				break;
			}
			if (ret > 0)
				break;
			btrfs_warn_in_rcu(fs_info,
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
				errstr, swarn.logical, btrfs_dev_name(dev),
				swarn.physical, (ref_level ? "node" : "leaf"),
				ref_level, ref_root);
		}
		btrfs_release_path(path);
	} else {
		struct btrfs_backref_walk_ctx ctx = { 0 };

		btrfs_release_path(path);

		ctx.bytenr = found_key.objectid;
		ctx.extent_item_pos = swarn.logical - found_key.objectid;
		ctx.fs_info = fs_info;

		swarn.path = path;
		swarn.dev = dev;

		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;

	return stripe->pages[page_index];
}

static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
						 int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;

	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
}

static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	struct btrfs_header *header;

	/*
	 * Here we don't have a good way to attach the pages (and subpages)
	 * to a dummy extent buffer, thus we have to directly grab the members
	 * from pages.
	 */
	header = (struct btrfs_header *)(page_address(first_page) + first_off);
	memcpy(on_disk_csum, header->csum, fs_info->csum_size);

	if (logical != btrfs_stack_header_bytenr(header)) {
		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
			      logical, stripe->mirror_num,
			      btrfs_stack_header_bytenr(header), logical);
		return;
	}
	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
		   BTRFS_FSID_SIZE) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
			      logical, stripe->mirror_num,
			      header->fsid, fs_info->fs_devices->fsid);
		return;
	}
	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
			      logical, stripe->mirror_num,
			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
		return;
	}

	/* Now check tree block csum. */
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, page_address(first_page) + first_off +
			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);

	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
		struct page *page = scrub_stripe_get_page(stripe, i);
		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);

		crypto_shash_update(shash, page_address(page) + page_off,
				    fs_info->sectorsize);
	}

	crypto_shash_final(shash, calculated_csum);
	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
			      logical, stripe->mirror_num,
			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
		return;
	}
	if (stripe->sectors[sector_nr].generation !=
	    btrfs_stack_header_generation(header)) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad generation, has %llu want %llu",
			      logical, stripe->mirror_num,
			      btrfs_stack_header_generation(header),
			      stripe->sectors[sector_nr].generation);
		return;
	}
	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
}

static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
	u8 csum_buf[BTRFS_CSUM_SIZE];
	int ret;

	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);

	/* Sector not utilized, skip it. */
	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
		return;

	/* IO error, no need to check. */
	if (test_bit(sector_nr, &stripe->io_error_bitmap))
		return;

	/* Metadata, verify the full tree block. */
	if (sector->is_metadata) {
		/*
		 * Check if the tree block crosses the stripe boundary.  If
		 * crossed the boundary, we cannot verify it but only give a
		 * warning.
		 *
		 * This can only happen on a very old filesystem where chunks
		 * are not ensured to be stripe aligned.
		 */
		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
			btrfs_warn_rl(fs_info,
			"tree block at %llu crosses stripe boundary %llu",
				      stripe->logical +
				      (sector_nr << fs_info->sectorsize_bits),
				      stripe->logical);
			return;
		}
		scrub_verify_one_metadata(stripe, sector_nr);
		return;
	}

	/*
	 * Data is easier, we just verify the data csum (if we have it).  For
	 * cases without csum, we have no other choice but to trust it.
	 */
	if (!sector->csum) {
		clear_bit(sector_nr, &stripe->error_bitmap);
		return;
	}

	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
	if (ret < 0) {
		set_bit(sector_nr, &stripe->csum_error_bitmap);
		set_bit(sector_nr, &stripe->error_bitmap);
	} else {
		clear_bit(sector_nr, &stripe->csum_error_bitmap);
		clear_bit(sector_nr, &stripe->error_bitmap);
	}
}

/* Verify specified sectors of a stripe. */
static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
	int sector_nr;

	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
		scrub_verify_one_sector(stripe, sector_nr);
		if (stripe->sectors[sector_nr].is_metadata)
			sector_nr += sectors_per_tree - 1;
	}
}

static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
{
	int i;

	for (i = 0; i < stripe->nr_sectors; i++) {
		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
			break;
	}
	ASSERT(i < stripe->nr_sectors);
	return i;
}

/*
 * Repair read is different to the regular read:
 *
 * - Only reads the failed sectors
 * - May have extra blocksize limits
 */
static void scrub_repair_read_endio(struct btrfs_bio *bbio)
{
	struct scrub_stripe *stripe = bbio->private;
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct bio_vec *bvec;
	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
	u32 bio_size = 0;
	int i;

	ASSERT(sector_nr < stripe->nr_sectors);

	bio_for_each_bvec_all(bvec, &bbio->bio, i)
		bio_size += bvec->bv_len;

	if (bbio->bio.bi_status) {
		bitmap_set(&stripe->io_error_bitmap, sector_nr,
			   bio_size >> fs_info->sectorsize_bits);
		bitmap_set(&stripe->error_bitmap, sector_nr,
			   bio_size >> fs_info->sectorsize_bits);
	} else {
		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
			     bio_size >> fs_info->sectorsize_bits);
	}
	bio_put(&bbio->bio);
	if (atomic_dec_and_test(&stripe->pending_io))
		wake_up(&stripe->io_wait);
}

static int calc_next_mirror(int mirror, int num_copies)
{
	ASSERT(mirror <= num_copies);
	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
}

static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
					    int mirror, int blocksize, bool wait)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct btrfs_bio *bbio = NULL;
	const unsigned long old_error_bitmap = stripe->error_bitmap;
	int i;

	ASSERT(stripe->mirror_num >= 1);
	ASSERT(atomic_read(&stripe->pending_io) == 0);

	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
		struct page *page;
		int pgoff;
		int ret;

		page = scrub_stripe_get_page(stripe, i);
		pgoff = scrub_stripe_get_page_offset(stripe, i);

		/* The current sector cannot be merged, submit the bio. */
		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
			     bbio->bio.bi_iter.bi_size >= blocksize)) {
			ASSERT(bbio->bio.bi_iter.bi_size);
			atomic_inc(&stripe->pending_io);
			btrfs_submit_bio(bbio, mirror);
			if (wait)
				wait_scrub_stripe_io(stripe);
			bbio = NULL;
		}

		if (!bbio) {
			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
				fs_info, scrub_repair_read_endio, stripe);
			bbio->bio.bi_iter.bi_sector = (stripe->logical +
				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
		}

		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
		ASSERT(ret == fs_info->sectorsize);
	}
	if (bbio) {
		ASSERT(bbio->bio.bi_iter.bi_size);
		atomic_inc(&stripe->pending_io);
		btrfs_submit_bio(bbio, mirror);
		if (wait)
			wait_scrub_stripe_io(stripe);
	}
}

static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
				       struct scrub_stripe *stripe)
{
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_device *dev = NULL;
	u64 physical = 0;
	int nr_data_sectors = 0;
	int nr_meta_sectors = 0;
	int nr_nodatacsum_sectors = 0;
	int nr_repaired_sectors = 0;
	int sector_nr;

	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
		return;

	/*
	 * Init needed infos for error reporting.
	 *
	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
	 * thus no need for dev/physical, error reporting still needs dev and physical.
	 */
	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
		u64 mapped_len = fs_info->sectorsize;
		struct btrfs_io_context *bioc = NULL;
		int stripe_index = stripe->mirror_num - 1;
		int ret;

		/* For scrub, our mirror_num should always start at 1. */
		ASSERT(stripe->mirror_num >= 1);
		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
				      stripe->logical, &mapped_len, &bioc,
				      NULL, NULL);
		/*
		 * If we failed, dev will be NULL, and later detailed reports
		 * will just be skipped.
		 */
		if (ret < 0)
			goto skip;
		physical = bioc->stripes[stripe_index].physical;
		dev = bioc->stripes[stripe_index].dev;
		btrfs_put_bioc(bioc);
	}

skip:
	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
		bool repaired = false;

		if (stripe->sectors[sector_nr].is_metadata) {
			nr_meta_sectors++;
		} else {
			nr_data_sectors++;
			if (!stripe->sectors[sector_nr].csum)
				nr_nodatacsum_sectors++;
		}

		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
		    !test_bit(sector_nr, &stripe->error_bitmap)) {
			nr_repaired_sectors++;
			repaired = true;
		}

		/* Good sector from the beginning, nothing need to be done. */
		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
			continue;

		/*
		 * Report error for the corrupted sectors.  If repaired, just
		 * output the message of repaired message.
		 */
		if (repaired) {
			if (dev) {
				btrfs_err_rl_in_rcu(fs_info,
			"fixed up error at logical %llu on dev %s physical %llu",
					    stripe->logical, btrfs_dev_name(dev),
					    physical);
			} else {
				btrfs_err_rl_in_rcu(fs_info,
			"fixed up error at logical %llu on mirror %u",
					    stripe->logical, stripe->mirror_num);
			}
			continue;
		}

		/* The remaining are all for unrepaired. */
		if (dev) {
			btrfs_err_rl_in_rcu(fs_info,
	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
					    stripe->logical, btrfs_dev_name(dev),
					    physical);
		} else {
			btrfs_err_rl_in_rcu(fs_info,
	"unable to fixup (regular) error at logical %llu on mirror %u",
					    stripe->logical, stripe->mirror_num);
		}

		if (test_bit(sector_nr, &stripe->io_error_bitmap))
			if (__ratelimit(&rs) && dev)
				scrub_print_common_warning("i/o error", dev, false,
						     stripe->logical, physical);
		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
			if (__ratelimit(&rs) && dev)
				scrub_print_common_warning("checksum error", dev, false,
						     stripe->logical, physical);
		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
			if (__ratelimit(&rs) && dev)
				scrub_print_common_warning("header error", dev, false,
						     stripe->logical, physical);
	}

	spin_lock(&sctx->stat_lock);
	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
	sctx->stat.no_csum += nr_nodatacsum_sectors;
	sctx->stat.read_errors += stripe->init_nr_io_errors;
	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
	sctx->stat.uncorrectable_errors +=
		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
	sctx->stat.corrected_errors += nr_repaired_sectors;
	spin_unlock(&sctx->stat_lock);
}

static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
				unsigned long write_bitmap, bool dev_replace);

/*
 * The main entrance for all read related scrub work, including:
 *
 * - Wait for the initial read to finish
 * - Verify and locate any bad sectors
 * - Go through the remaining mirrors and try to read as large blocksize as
 *   possible
 * - Go through all mirrors (including the failed mirror) sector-by-sector
 * - Submit writeback for repaired sectors
 *
 * Writeback for dev-replace does not happen here, it needs extra
 * synchronization for zoned devices.
 */
static void scrub_stripe_read_repair_worker(struct work_struct *work)
{
	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
	struct scrub_ctx *sctx = stripe->sctx;
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
					  stripe->bg->length);
	int mirror;
	int i;

	ASSERT(stripe->mirror_num > 0);

	wait_scrub_stripe_io(stripe);
	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
	/* Save the initial failed bitmap for later repair and report usage. */
	stripe->init_error_bitmap = stripe->error_bitmap;
	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
						  stripe->nr_sectors);
	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
						    stripe->nr_sectors);
	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
						    stripe->nr_sectors);

	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
		goto out;

	/*
	 * Try all remaining mirrors.
	 *
	 * Here we still try to read as large block as possible, as this is
	 * faster and we have extra safety nets to rely on.
	 */
	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
	     mirror != stripe->mirror_num;
	     mirror = calc_next_mirror(mirror, num_copies)) {
		const unsigned long old_error_bitmap = stripe->error_bitmap;

		scrub_stripe_submit_repair_read(stripe, mirror,
						BTRFS_STRIPE_LEN, false);
		wait_scrub_stripe_io(stripe);
		scrub_verify_one_stripe(stripe, old_error_bitmap);
		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
			goto out;
	}

	/*
	 * Last safety net, try re-checking all mirrors, including the failed
	 * one, sector-by-sector.
	 *
	 * As if one sector failed the drive's internal csum, the whole read
	 * containing the offending sector would be marked as error.
	 * Thus here we do sector-by-sector read.
	 *
	 * This can be slow, thus we only try it as the last resort.
	 */

	for (i = 0, mirror = stripe->mirror_num;
	     i < num_copies;
	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
		const unsigned long old_error_bitmap = stripe->error_bitmap;

		scrub_stripe_submit_repair_read(stripe, mirror,
						fs_info->sectorsize, true);
		wait_scrub_stripe_io(stripe);
		scrub_verify_one_stripe(stripe, old_error_bitmap);
		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
			goto out;
	}
out:
	/*
	 * Submit the repaired sectors.  For zoned case, we cannot do repair
	 * in-place, but queue the bg to be relocated.
	 */
	if (btrfs_is_zoned(fs_info)) {
		if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
	} else if (!sctx->readonly) {
		unsigned long repaired;

		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
			      &stripe->error_bitmap, stripe->nr_sectors);
		scrub_write_sectors(sctx, stripe, repaired, false);
		wait_scrub_stripe_io(stripe);
	}

	scrub_stripe_report_errors(sctx, stripe);
	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
	wake_up(&stripe->repair_wait);
}

static void scrub_read_endio(struct btrfs_bio *bbio)
{
	struct scrub_stripe *stripe = bbio->private;
	struct bio_vec *bvec;
	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
	int num_sectors;
	u32 bio_size = 0;
	int i;

	ASSERT(sector_nr < stripe->nr_sectors);
	bio_for_each_bvec_all(bvec, &bbio->bio, i)
		bio_size += bvec->bv_len;
	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;

	if (bbio->bio.bi_status) {
		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
	} else {
		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
	}
	bio_put(&bbio->bio);
	if (atomic_dec_and_test(&stripe->pending_io)) {
		wake_up(&stripe->io_wait);
		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
	}
}

static void scrub_write_endio(struct btrfs_bio *bbio)
{
	struct scrub_stripe *stripe = bbio->private;
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct bio_vec *bvec;
	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
	u32 bio_size = 0;
	int i;

	bio_for_each_bvec_all(bvec, &bbio->bio, i)
		bio_size += bvec->bv_len;

	if (bbio->bio.bi_status) {
		unsigned long flags;

		spin_lock_irqsave(&stripe->write_error_lock, flags);
		bitmap_set(&stripe->write_error_bitmap, sector_nr,
			   bio_size >> fs_info->sectorsize_bits);
		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
	}
	bio_put(&bbio->bio);

	if (atomic_dec_and_test(&stripe->pending_io))
		wake_up(&stripe->io_wait);
}

static void scrub_submit_write_bio(struct scrub_ctx *sctx,
				   struct scrub_stripe *stripe,
				   struct btrfs_bio *bbio, bool dev_replace)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	u32 bio_len = bbio->bio.bi_iter.bi_size;
	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
		      stripe->logical;

	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
	atomic_inc(&stripe->pending_io);
	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
	if (!btrfs_is_zoned(fs_info))
		return;
	/*
	 * For zoned writeback, queue depth must be 1, thus we must wait for
	 * the write to finish before the next write.
	 */
	wait_scrub_stripe_io(stripe);

	/*
	 * And also need to update the write pointer if write finished
	 * successfully.
	 */
	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
		      &stripe->write_error_bitmap))
		sctx->write_pointer += bio_len;
}

/*
 * Submit the write bio(s) for the sectors specified by @write_bitmap.
 *
 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
 *
 * - Only needs logical bytenr and mirror_num
 *   Just like the scrub read path
 *
 * - Would only result in writes to the specified mirror
 *   Unlike the regular writeback path, which would write back to all stripes
 *
 * - Handle dev-replace and read-repair writeback differently
 */
static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
				unsigned long write_bitmap, bool dev_replace)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct btrfs_bio *bbio = NULL;
	int sector_nr;

	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
		int ret;

		/* We should only writeback sectors covered by an extent. */
		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));

		/* Cannot merge with previous sector, submit the current one. */
		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
			bbio = NULL;
		}
		if (!bbio) {
			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
					       fs_info, scrub_write_endio, stripe);
			bbio->bio.bi_iter.bi_sector = (stripe->logical +
				(sector_nr << fs_info->sectorsize_bits)) >>
				SECTOR_SHIFT;
		}
		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
		ASSERT(ret == fs_info->sectorsize);
	}
	if (bbio)
		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
}

/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
				  unsigned int bio_size)
{
	const int time_slice = 1000;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += bio_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
				   struct btrfs_chunk_map *map, u64 *offset,
				   u64 *stripe_start)
{
	int i;
	int j = 0;
	u64 last_offset;
	const int data_stripes = nr_data_stripes(map);

	last_offset = (physical - map->stripes[num].physical) * data_stripes;
	if (stripe_start)
		*stripe_start = last_offset;

	*offset = last_offset;
	for (i = 0; i < data_stripes; i++) {
		u32 stripe_nr;
		u32 stripe_index;
		u32 rot;

		*offset = last_offset + btrfs_stripe_nr_to_offset(i);

		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;

		/* Work out the disk rotation on this stripe-set */
		rot = stripe_nr % map->num_stripes;
		/* calculate which stripe this data locates */
		rot += i;
		stripe_index = rot % map->num_stripes;
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
	return 1;
}

/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		/*
		 * Key with offset -1 found, there would have to exist an extent
		 * item with such offset, but this is out of the valid range.
		 */
		btrfs_release_path(path);
		return -EUCLEAN;
	}

	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		ret = btrfs_next_item(extent_root, path);
		if (ret) {
			/* Either no more items or a fatal error. */
			btrfs_release_path(path);
			return ret;
		}
	}
	btrfs_release_path(path);
	return 1;
}

static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
				 struct scrub_stripe *stripe,
				 u64 extent_start, u64 extent_len,
				 u64 extent_flags, u64 extent_gen)
{
	for (u64 cur_logical = max(stripe->logical, extent_start);
	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
			       extent_start + extent_len);
	     cur_logical += fs_info->sectorsize) {
		const int nr_sector = (cur_logical - stripe->logical) >>
				      fs_info->sectorsize_bits;
		struct scrub_sector_verification *sector =
						&stripe->sectors[nr_sector];

		set_bit(nr_sector, &stripe->extent_sector_bitmap);
		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			sector->is_metadata = true;
			sector->generation = extent_gen;
		}
	}
}

static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
{
	stripe->extent_sector_bitmap = 0;
	stripe->init_error_bitmap = 0;
	stripe->init_nr_io_errors = 0;
	stripe->init_nr_csum_errors = 0;
	stripe->init_nr_meta_errors = 0;
	stripe->error_bitmap = 0;
	stripe->io_error_bitmap = 0;
	stripe->csum_error_bitmap = 0;
	stripe->meta_error_bitmap = 0;
}

/*
 * Locate one stripe which has at least one extent in its range.
 *
 * Return 0 if found such stripe, and store its info into @stripe.
 * Return >0 if there is no such stripe in the specified range.
 * Return <0 for error.
 */
static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
					struct btrfs_path *extent_path,
					struct btrfs_path *csum_path,
					struct btrfs_device *dev, u64 physical,
					int mirror_num, u64 logical_start,
					u32 logical_len,
					struct scrub_stripe *stripe)
{
	struct btrfs_fs_info *fs_info = bg->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
	const u64 logical_end = logical_start + logical_len;
	u64 cur_logical = logical_start;
	u64 stripe_end;
	u64 extent_start;
	u64 extent_len;
	u64 extent_flags;
	u64 extent_gen;
	int ret;

	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
				   stripe->nr_sectors);
	scrub_stripe_reset_bitmaps(stripe);

	/* The range must be inside the bg. */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	ret = find_first_extent_item(extent_root, extent_path, logical_start,
				     logical_len);
	/* Either error or not found. */
	if (ret)
		goto out;
	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
			&extent_gen);
	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		stripe->nr_meta_extents++;
	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
		stripe->nr_data_extents++;
	cur_logical = max(extent_start, cur_logical);

	/*
	 * Round down to stripe boundary.
	 *
	 * The extra calculation against bg->start is to handle block groups
	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
	 */
	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
			  bg->start;
	stripe->physical = physical + stripe->logical - logical_start;
	stripe->dev = dev;
	stripe->bg = bg;
	stripe->mirror_num = mirror_num;
	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;

	/* Fill the first extent info into stripe->sectors[] array. */
	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
			     extent_flags, extent_gen);
	cur_logical = extent_start + extent_len;

	/* Fill the extent info for the remaining sectors. */
	while (cur_logical <= stripe_end) {
		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
					     stripe_end - cur_logical + 1);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			break;
		}
		get_extent_info(extent_path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			stripe->nr_meta_extents++;
		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
			stripe->nr_data_extents++;
		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
				     extent_flags, extent_gen);
		cur_logical = extent_start + extent_len;
	}

	/* Now fill the data csum. */
	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
		int sector_nr;
		unsigned long csum_bitmap = 0;

		/* Csum space should have already been allocated. */
		ASSERT(stripe->csums);

		/*
		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
		 * should contain at most 16 sectors.
		 */
		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);

		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
						stripe->logical, stripe_end,
						stripe->csums, &csum_bitmap);
		if (ret < 0)
			goto out;
		if (ret > 0)
			ret = 0;

		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
			stripe->sectors[sector_nr].csum = stripe->csums +
				sector_nr * fs_info->csum_size;
		}
	}
	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
out:
	return ret;
}

static void scrub_reset_stripe(struct scrub_stripe *stripe)
{
	scrub_stripe_reset_bitmaps(stripe);

	stripe->nr_meta_extents = 0;
	stripe->nr_data_extents = 0;
	stripe->state = 0;

	for (int i = 0; i < stripe->nr_sectors; i++) {
		stripe->sectors[i].is_metadata = false;
		stripe->sectors[i].csum = NULL;
		stripe->sectors[i].generation = 0;
	}
}

static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
					    struct scrub_stripe *stripe)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct btrfs_bio *bbio = NULL;
	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
				      stripe->bg->length - stripe->logical) >>
				  fs_info->sectorsize_bits;
	u64 stripe_len = BTRFS_STRIPE_LEN;
	int mirror = stripe->mirror_num;
	int i;

	atomic_inc(&stripe->pending_io);

	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
		struct page *page = scrub_stripe_get_page(stripe, i);
		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);

		/* We're beyond the chunk boundary, no need to read anymore. */
		if (i >= nr_sectors)
			break;

		/* The current sector cannot be merged, submit the bio. */
		if (bbio &&
		    ((i > 0 &&
		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
			ASSERT(bbio->bio.bi_iter.bi_size);
			atomic_inc(&stripe->pending_io);
			btrfs_submit_bio(bbio, mirror);
			bbio = NULL;
		}

		if (!bbio) {
			struct btrfs_io_stripe io_stripe = {};
			struct btrfs_io_context *bioc = NULL;
			const u64 logical = stripe->logical +
					    (i << fs_info->sectorsize_bits);
			int err;

			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
					       fs_info, scrub_read_endio, stripe);
			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;

			io_stripe.is_scrub = true;
			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
					      &stripe_len, &bioc, &io_stripe,
					      &mirror);
			btrfs_put_bioc(bioc);
			if (err) {
				btrfs_bio_end_io(bbio,
						 errno_to_blk_status(err));
				return;
			}
		}

		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
	}

	if (bbio) {
		ASSERT(bbio->bio.bi_iter.bi_size);
		atomic_inc(&stripe->pending_io);
		btrfs_submit_bio(bbio, mirror);
	}

	if (atomic_dec_and_test(&stripe->pending_io)) {
		wake_up(&stripe->io_wait);
		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
	}
}

static void scrub_submit_initial_read(struct scrub_ctx *sctx,
				      struct scrub_stripe *stripe)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_bio *bbio;
	unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
				      stripe->bg->length - stripe->logical) >>
				  fs_info->sectorsize_bits;
	int mirror = stripe->mirror_num;

	ASSERT(stripe->bg);
	ASSERT(stripe->mirror_num > 0);
	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));

	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
		scrub_submit_extent_sector_read(sctx, stripe);
		return;
	}

	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
			       scrub_read_endio, stripe);

	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
	/* Read the whole range inside the chunk boundary. */
	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
		struct page *page = scrub_stripe_get_page(stripe, cur);
		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
		int ret;

		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
		/* We should have allocated enough bio vectors. */
		ASSERT(ret == fs_info->sectorsize);
	}
	atomic_inc(&stripe->pending_io);

	/*
	 * For dev-replace, either user asks to avoid the source dev, or
	 * the device is missing, we try the next mirror instead.
	 */
	if (sctx->is_dev_replace &&
	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
	     !stripe->dev->bdev)) {
		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
						  stripe->bg->length);

		mirror = calc_next_mirror(mirror, num_copies);
	}
	btrfs_submit_bio(bbio, mirror);
}

static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
{
	int i;

	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
		if (stripe->sectors[i].is_metadata) {
			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;

			btrfs_err(fs_info,
			"stripe %llu has unrepaired metadata sector at %llu",
				  stripe->logical,
				  stripe->logical + (i << fs_info->sectorsize_bits));
			return true;
		}
	}
	return false;
}

static void submit_initial_group_read(struct scrub_ctx *sctx,
				      unsigned int first_slot,
				      unsigned int nr_stripes)
{
	struct blk_plug plug;

	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);

	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
			      btrfs_stripe_nr_to_offset(nr_stripes));
	blk_start_plug(&plug);
	for (int i = 0; i < nr_stripes; i++) {
		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];

		/* Those stripes should be initialized. */
		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
		scrub_submit_initial_read(sctx, stripe);
	}
	blk_finish_plug(&plug);
}

static int flush_scrub_stripes(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct scrub_stripe *stripe;
	const int nr_stripes = sctx->cur_stripe;
	int ret = 0;

	if (!nr_stripes)
		return 0;

	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));

	/* Submit the stripes which are populated but not submitted. */
	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);

		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
	}

	for (int i = 0; i < nr_stripes; i++) {
		stripe = &sctx->stripes[i];

		wait_event(stripe->repair_wait,
			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
	}

	/* Submit for dev-replace. */
	if (sctx->is_dev_replace) {
		/*
		 * For dev-replace, if we know there is something wrong with
		 * metadata, we should immediately abort.
		 */
		for (int i = 0; i < nr_stripes; i++) {
			if (stripe_has_metadata_error(&sctx->stripes[i])) {
				ret = -EIO;
				goto out;
			}
		}
		for (int i = 0; i < nr_stripes; i++) {
			unsigned long good;

			stripe = &sctx->stripes[i];

			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);

			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
				      &stripe->error_bitmap, stripe->nr_sectors);
			scrub_write_sectors(sctx, stripe, good, true);
		}
	}

	/* Wait for the above writebacks to finish. */
	for (int i = 0; i < nr_stripes; i++) {
		stripe = &sctx->stripes[i];

		wait_scrub_stripe_io(stripe);
		scrub_reset_stripe(stripe);
	}
out:
	sctx->cur_stripe = 0;
	return ret;
}

static void raid56_scrub_wait_endio(struct bio *bio)
{
	complete(bio->bi_private);
}

static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
			      struct btrfs_device *dev, int mirror_num,
			      u64 logical, u32 length, u64 physical,
			      u64 *found_logical_ret)
{
	struct scrub_stripe *stripe;
	int ret;

	/*
	 * There should always be one slot left, as caller filling the last
	 * slot should flush them all.
	 */
	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);

	/* @found_logical_ret must be specified. */
	ASSERT(found_logical_ret);

	stripe = &sctx->stripes[sctx->cur_stripe];
	scrub_reset_stripe(stripe);
	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
					   &sctx->csum_path, dev, physical,
					   mirror_num, logical, length, stripe);
	/* Either >0 as no more extents or <0 for error. */
	if (ret)
		return ret;
	*found_logical_ret = stripe->logical;
	sctx->cur_stripe++;

	/* We filled one group, submit it. */
	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;

		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
	}

	/* Last slot used, flush them all. */
	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
		return flush_scrub_stripes(sctx);
	return 0;
}

static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
				      struct btrfs_device *scrub_dev,
				      struct btrfs_block_group *bg,
				      struct btrfs_chunk_map *map,
				      u64 full_stripe_start)
{
	DECLARE_COMPLETION_ONSTACK(io_done);
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_raid_bio *rbio;
	struct btrfs_io_context *bioc = NULL;
	struct btrfs_path extent_path = { 0 };
	struct btrfs_path csum_path = { 0 };
	struct bio *bio;
	struct scrub_stripe *stripe;
	bool all_empty = true;
	const int data_stripes = nr_data_stripes(map);
	unsigned long extent_bitmap = 0;
	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
	int ret;

	ASSERT(sctx->raid56_data_stripes);

	/*
	 * For data stripe search, we cannot re-use the same extent/csum paths,
	 * as the data stripe bytenr may be smaller than previous extent.  Thus
	 * we have to use our own extent/csum paths.
	 */
	extent_path.search_commit_root = 1;
	extent_path.skip_locking = 1;
	csum_path.search_commit_root = 1;
	csum_path.skip_locking = 1;

	for (int i = 0; i < data_stripes; i++) {
		int stripe_index;
		int rot;
		u64 physical;

		stripe = &sctx->raid56_data_stripes[i];
		rot = div_u64(full_stripe_start - bg->start,
			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
		stripe_index = (i + rot) % map->num_stripes;
		physical = map->stripes[stripe_index].physical +
			   btrfs_stripe_nr_to_offset(rot);

		scrub_reset_stripe(stripe);
		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
				map->stripes[stripe_index].dev, physical, 1,
				full_stripe_start + btrfs_stripe_nr_to_offset(i),
				BTRFS_STRIPE_LEN, stripe);
		if (ret < 0)
			goto out;
		/*
		 * No extent in this data stripe, need to manually mark them
		 * initialized to make later read submission happy.
		 */
		if (ret > 0) {
			stripe->logical = full_stripe_start +
					  btrfs_stripe_nr_to_offset(i);
			stripe->dev = map->stripes[stripe_index].dev;
			stripe->mirror_num = 1;
			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
		}
	}

	/* Check if all data stripes are empty. */
	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];
		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
			all_empty = false;
			break;
		}
	}
	if (all_empty) {
		ret = 0;
		goto out;
	}

	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];
		scrub_submit_initial_read(sctx, stripe);
	}
	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];

		wait_event(stripe->repair_wait,
			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
	}
	/* For now, no zoned support for RAID56. */
	ASSERT(!btrfs_is_zoned(sctx->fs_info));

	/*
	 * Now all data stripes are properly verified. Check if we have any
	 * unrepaired, if so abort immediately or we could further corrupt the
	 * P/Q stripes.
	 *
	 * During the loop, also populate extent_bitmap.
	 */
	for (int i = 0; i < data_stripes; i++) {
		unsigned long error;

		stripe = &sctx->raid56_data_stripes[i];

		/*
		 * We should only check the errors where there is an extent.
		 * As we may hit an empty data stripe while it's missing.
		 */
		bitmap_and(&error, &stripe->error_bitmap,
			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
		if (!bitmap_empty(&error, stripe->nr_sectors)) {
			btrfs_err(fs_info,
"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
				  full_stripe_start, i, stripe->nr_sectors,
				  &error);
			ret = -EIO;
			goto out;
		}
		bitmap_or(&extent_bitmap, &extent_bitmap,
			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
	}

	/* Now we can check and regenerate the P/Q stripe. */
	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
	bio->bi_private = &io_done;
	bio->bi_end_io = raid56_scrub_wait_endio;

	btrfs_bio_counter_inc_blocked(fs_info);
	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
			      &length, &bioc, NULL, NULL);
	if (ret < 0) {
		btrfs_put_bioc(bioc);
		btrfs_bio_counter_dec(fs_info);
		goto out;
	}
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
	btrfs_put_bioc(bioc);
	if (!rbio) {
		ret = -ENOMEM;
		btrfs_bio_counter_dec(fs_info);
		goto out;
	}
	/* Use the recovered stripes as cache to avoid read them from disk again. */
	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];

		raid56_parity_cache_data_pages(rbio, stripe->pages,
				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
	}
	raid56_parity_submit_scrub_rbio(rbio);
	wait_for_completion_io(&io_done);
	ret = blk_status_to_errno(bio->bi_status);
	bio_put(bio);
	btrfs_bio_counter_dec(fs_info);

	btrfs_release_path(&extent_path);
	btrfs_release_path(&csum_path);
out:
	return ret;
}

/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_block_group *bg,
			       struct btrfs_chunk_map *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	const u64 logical_end = logical_start + logical_length;
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
		u64 found_logical = U64_MAX;
		u64 cur_physical = physical + cur_logical - logical_start;

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
					 cur_logical, logical_end - cur_logical,
					 cur_physical, &found_logical);
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;

		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
		ASSERT(found_logical != U64_MAX);
		cur_logical = found_logical + BTRFS_STRIPE_LEN;

		/* Don't hold CPU for too long time */
		cond_resched();
	}
	return ret;
}

/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
	       bg->start;
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_block_group *bg,
			       struct btrfs_chunk_map *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
					  BTRFS_STRIPE_LEN, device, cur_physical,
					  mirror_num);
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
		cur_physical += BTRFS_STRIPE_LEN;
	}
	return ret;
}

static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
					   struct btrfs_block_group *bg,
					   struct btrfs_chunk_map *map,
					   struct btrfs_device *scrub_dev,
					   int stripe_index)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
	const u64 chunk_logical = bg->start;
	int ret;
	int ret2;
	u64 physical = map->stripes[stripe_index].physical;
	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
	const u64 physical_end = physical + dev_stripe_len;
	u64 logical;
	u64 logic_end;
	/* The logical increment after finishing one stripe */
	u64 increment;
	/* Offset inside the chunk */
	u64 offset;
	u64 stripe_logical;
	int stop_loop = 0;

	/* Extent_path should be released by now. */
	ASSERT(sctx->extent_path.nodes[0] == NULL);

	scrub_blocked_if_needed(fs_info);

	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
	}

	/* Prepare the extra data stripes used by RAID56. */
	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ASSERT(sctx->raid56_data_stripes == NULL);

		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
						    sizeof(struct scrub_stripe),
						    GFP_KERNEL);
		if (!sctx->raid56_data_stripes) {
			ret = -ENOMEM;
			goto out;
		}
		for (int i = 0; i < nr_data_stripes(map); i++) {
			ret = init_scrub_stripe(fs_info,
						&sctx->raid56_data_stripes[i]);
			if (ret < 0)
				goto out;
			sctx->raid56_data_stripes[i].bg = bg;
			sctx->raid56_data_stripes[i].sctx = sctx;
		}
	}
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
				scrub_dev, map->stripes[stripe_index].physical,
				stripe_index + 1);
		offset = 0;
		goto out;
	}
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
	ret = 0;

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));

	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
	while (physical < physical_end) {
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
							 map, stripe_logical);
			if (ret)
				goto out;
			goto next;
		}

		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
					  scrub_dev, physical, 1);
		if (ret < 0)
			goto out;
next:
		logical += increment;
		physical += BTRFS_STRIPE_LEN;
		spin_lock(&sctx->stat_lock);
		if (stop_loop)
			sctx->stat.last_physical =
				map->stripes[stripe_index].physical + dev_stripe_len;
		else
			sctx->stat.last_physical = physical;
		spin_unlock(&sctx->stat_lock);
		if (stop_loop)
			break;
	}
out:
	ret2 = flush_scrub_stripes(sctx);
	if (!ret)
		ret = ret2;
	btrfs_release_path(&sctx->extent_path);
	btrfs_release_path(&sctx->csum_path);

	if (sctx->raid56_data_stripes) {
		for (int i = 0; i < nr_data_stripes(map); i++)
			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
		kfree(sctx->raid56_data_stripes);
		sctx->raid56_data_stripes = NULL;
	}

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
		if (ret2)
			ret = ret2;
	}

	return ret < 0 ? ret : 0;
}

static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
					  struct btrfs_block_group *bg,
					  struct btrfs_device *scrub_dev,
					  u64 dev_offset,
					  u64 dev_extent_len)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_chunk_map *map;
	int i;
	int ret = 0;

	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
	if (!map) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&bg->lock);
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
			ret = -EINVAL;
		spin_unlock(&bg->lock);

		return ret;
	}
	if (map->start != bg->start)
		goto out;
	if (map->chunk_len < dev_extent_len)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
		    map->stripes[i].physical == dev_offset) {
			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
			if (ret)
				goto out;
		}
	}
out:
	btrfs_free_chunk_map(map);

	return ret;
}

static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

static noinline_for_stack
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
	u64 chunk_offset;
	int ret = 0;
	int ro_set;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group *cache;
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = READA_FORWARD;
	path->search_commit_root = 1;
	path->skip_locking = 1;

	key.objectid = scrub_dev->devid;
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		u64 dev_extent_len;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
					break;
				}
			} else {
				ret = 0;
			}
		}

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

		if (found_key.objectid != scrub_dev->devid)
			break;

		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);

		if (found_key.offset + dev_extent_len <= start)
			goto skip;

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
				btrfs_put_block_group(cache);
				goto skip;
			}
		}

		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
		btrfs_freeze_block_group(cache);
		spin_unlock(&cache->lock);

		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
		 */
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 *
			 * For RAID56 chunks, we have to mark them read-only
			 * for scrub, as later we would use our own cache
			 * out of RAID56 realm.
			 * Thus we want the RAID56 bg to be marked RO to
			 * prevent RMW from screwing up out cache.
			 */
			ro_set = 0;
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
		} else {
			btrfs_warn(fs_info,
				   "failed setting block group ro: %d", ret);
			btrfs_unfreeze_block_group(cache);
			btrfs_put_block_group(cache);
			scrub_pause_off(fs_info);
			break;
		}

		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
		down_write(&dev_replace->rwsem);
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
		up_write(&dev_replace->rwsem);

		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

		down_write(&dev_replace->rwsem);
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
		up_write(&dev_replace->rwsem);

		if (ro_set)
			btrfs_dec_block_group_ro(cache);

		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
			spin_unlock(&cache->lock);
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
		} else {
			spin_unlock(&cache->lock);
		}
skip_unfreeze:
		btrfs_unfreeze_block_group(cache);
		btrfs_put_block_group(cache);
		if (ret)
			break;
		if (sctx->is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
skip:
		key.offset = found_key.offset + dev_extent_len;
		btrfs_release_path(path);
	}

	btrfs_free_path(path);

	return ret;
}

static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
			   struct page *page, u64 physical, u64 generation)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct bio_vec bvec;
	struct bio bio;
	struct btrfs_super_block *sb = page_address(page);
	int ret;

	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
	ret = submit_bio_wait(&bio);
	bio_uninit(&bio);

	if (ret < 0)
		return ret;
	ret = btrfs_check_super_csum(fs_info, sb);
	if (ret != 0) {
		btrfs_err_rl(fs_info,
			"super block at physical %llu devid %llu has bad csum",
			physical, dev->devid);
		return -EIO;
	}
	if (btrfs_super_generation(sb) != generation) {
		btrfs_err_rl(fs_info,
"super block at physical %llu devid %llu has bad generation %llu expect %llu",
			     physical, dev->devid,
			     btrfs_super_generation(sb), generation);
		return -EUCLEAN;
	}

	return btrfs_validate_super(fs_info, sb, -1);
}

static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
{
	int	i;
	u64	bytenr;
	u64	gen;
	int ret = 0;
	struct page *page;
	struct btrfs_fs_info *fs_info = sctx->fs_info;

	if (BTRFS_FS_ERROR(fs_info))
		return -EROFS;

	page = alloc_page(GFP_KERNEL);
	if (!page) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = btrfs_get_last_trans_committed(fs_info);

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
			break;
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;

		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
		if (ret) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.super_errors++;
			spin_unlock(&sctx->stat_lock);
		}
	}
	__free_page(page);
	return 0;
}

static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;

		fs_info->scrub_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

		if (scrub_workers)
			destroy_workqueue(scrub_workers);
	}
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
{
	struct workqueue_struct *scrub_workers = NULL;
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
	int ret = -ENOMEM;

	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;

	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
	if (!scrub_workers)
		return -ENOMEM;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
	}
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);

	ret = 0;

	destroy_workqueue(scrub_workers);
	return ret;
}

int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
		    int readonly, int is_dev_replace)
{
	struct btrfs_dev_lookup_args args = { .devid = devid };
	struct scrub_ctx *sctx;
	int ret;
	struct btrfs_device *dev;
	unsigned int nofs_flag;
	bool need_commit = false;

	if (btrfs_fs_closing(fs_info))
		return -EAGAIN;

	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);

	/*
	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
	 * value (max nodesize / min sectorsize), thus nodesize should always
	 * be fine.
	 */
	ASSERT(fs_info->nodesize <=
	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);

	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);

	ret = scrub_workers_get(fs_info);
	if (ret)
		goto out_free_ctx;

	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info->fs_devices, &args);
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		ret = -ENODEV;
		goto out;
	}

	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, btrfs_dev_name(dev));
		ret = -EROFS;
		goto out;
	}

	mutex_lock(&fs_info->scrub_lock);
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		ret = -EIO;
		goto out;
	}

	down_read(&fs_info->dev_replace.rwsem);
	if (dev->scrub_ctx ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		up_read(&fs_info->dev_replace.rwsem);
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		ret = -EINPROGRESS;
		goto out;
	}
	up_read(&fs_info->dev_replace.rwsem);

	sctx->readonly = readonly;
	dev->scrub_ctx = sctx;
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);

	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
	__scrub_blocked_if_needed(fs_info);
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
	if (!is_dev_replace) {
		u64 old_super_errors;

		spin_lock(&sctx->stat_lock);
		old_super_errors = sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);

		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
		ret = scrub_supers(sctx, dev);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);

		spin_lock(&sctx->stat_lock);
		/*
		 * Super block errors found, but we can not commit transaction
		 * at current context, since btrfs_commit_transaction() needs
		 * to pause the current running scrub (hold by ourselves).
		 */
		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
			need_commit = true;
		spin_unlock(&sctx->stat_lock);
	}

	if (!ret)
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
	memalloc_nofs_restore(nofs_flag);

	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

	if (progress)
		memcpy(progress, &sctx->stat, sizeof(*progress));

	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_ctx = NULL;
	mutex_unlock(&fs_info->scrub_lock);

	scrub_workers_put(fs_info);
	scrub_put_ctx(sctx);

	/*
	 * We found some super block errors before, now try to force a
	 * transaction commit, as scrub has finished.
	 */
	if (need_commit) {
		struct btrfs_trans_handle *trans;

		trans = btrfs_start_transaction(fs_info->tree_root, 0);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			btrfs_err(fs_info,
	"scrub: failed to start transaction to fix super block errors: %d", ret);
			return ret;
		}
		ret = btrfs_commit_transaction(trans);
		if (ret < 0)
			btrfs_err(fs_info,
	"scrub: failed to commit transaction to fix super block errors: %d", ret);
	}
	return ret;
out:
	scrub_workers_put(fs_info);
out_free_ctx:
	scrub_free_ctx(sctx);

	return ret;
}

void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
{
	struct btrfs_fs_info *fs_info = dev->fs_info;
	struct scrub_ctx *sctx;

	mutex_lock(&fs_info->scrub_lock);
	sctx = dev->scrub_ctx;
	if (!sctx) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
	atomic_inc(&sctx->cancel_req);
	while (dev->scrub_ctx) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_ctx == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_dev_lookup_args args = { .devid = devid };
	struct btrfs_device *dev;
	struct scrub_ctx *sctx = NULL;

	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info->fs_devices, &args);
	if (dev)
		sctx = dev->scrub_ctx;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);

	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
}