aboutsummaryrefslogtreecommitdiffstats
path: root/arch
diff options
context:
space:
mode:
authorAndi Kleen <ak@suse.de>2006-04-20 02:36:45 +0200
committerLinus Torvalds <torvalds@g5.osdl.org>2006-04-20 07:58:11 -0700
commit18bd057b1408cd110ed23281533430cfc2d52091 (patch)
tree09d8c44ebdb45763173fe54f6962921f4268cf9f /arch
parent5dc5cf7dd2723430b6df3d91c5b22af49e063622 (diff)
downloadlinux-18bd057b1408cd110ed23281533430cfc2d52091.tar.gz
[PATCH] i386/x86-64: Fix x87 information leak between processes
AMD K7/K8 CPUs only save/restore the FOP/FIP/FDP x87 registers in FXSAVE when an exception is pending. This means the value leak through context switches and allow processes to observe some x87 instruction state of other processes. This was actually documented by AMD, but nobody recognized it as being different from Intel before. The fix first adds an optimization: instead of unconditionally calling FNCLEX after each FXSAVE test if ES is pending and skip it when not needed. Then do a x87 load from a kernel variable to clear FOP/FIP/FDP. This means other processes always will only see a constant value defined by the kernel in their FP state. I took some pain to make sure to chose a variable that's already in L1 during context switch to make the overhead of this low. Also alternative() is used to patch away the new code on CPUs who don't need it. Patch for both i386/x86-64. The problem was discovered originally by Jan Beulich. Richard Brunner provided the basic code for the workarounds, with contribution from Jan. This is CVE-2006-1056 Cc: richard.brunner@amd.com Cc: jbeulich@novell.com Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'arch')
-rw-r--r--arch/i386/kernel/cpu/amd.c2
-rw-r--r--arch/x86_64/kernel/process.c4
-rw-r--r--arch/x86_64/kernel/setup.c4
3 files changed, 9 insertions, 1 deletions
diff --git a/arch/i386/kernel/cpu/amd.c b/arch/i386/kernel/cpu/amd.c
index ff2b2154ac1b6..786d1a57048b9 100644
--- a/arch/i386/kernel/cpu/amd.c
+++ b/arch/i386/kernel/cpu/amd.c
@@ -207,6 +207,8 @@ static void __init init_amd(struct cpuinfo_x86 *c)
set_bit(X86_FEATURE_K7, c->x86_capability);
break;
}
+ if (c->x86 >= 6)
+ set_bit(X86_FEATURE_FXSAVE_LEAK, c->x86_capability);
display_cacheinfo(c);
diff --git a/arch/x86_64/kernel/process.c b/arch/x86_64/kernel/process.c
index 1c44b53cb15bb..fb903e65e079a 100644
--- a/arch/x86_64/kernel/process.c
+++ b/arch/x86_64/kernel/process.c
@@ -575,8 +575,10 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
prev->userrsp = read_pda(oldrsp);
write_pda(oldrsp, next->userrsp);
write_pda(pcurrent, next_p);
+
/* This must be here to ensure both math_state_restore() and
- kernel_fpu_begin() work consistently. */
+ kernel_fpu_begin() work consistently.
+ And the AMD workaround requires it to be after DS reload. */
unlazy_fpu(prev_p);
write_pda(kernelstack,
task_stack_page(next_p) + THREAD_SIZE - PDA_STACKOFFSET);
diff --git a/arch/x86_64/kernel/setup.c b/arch/x86_64/kernel/setup.c
index c50b06765a80d..759070c827511 100644
--- a/arch/x86_64/kernel/setup.c
+++ b/arch/x86_64/kernel/setup.c
@@ -930,6 +930,10 @@ static int __init init_amd(struct cpuinfo_x86 *c)
if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
+ /* Enable workaround for FXSAVE leak */
+ if (c->x86 >= 6)
+ set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
+
r = get_model_name(c);
if (!r) {
switch (c->x86) {