summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorjdike <jdike>2003-02-02 18:06:43 +0000
committerjdike <jdike>2003-02-02 18:06:43 +0000
commitba81700c566db3e5785b452a2857708ee84d3e38 (patch)
tree844c6037129aae7f9ecc71175db70934b01042be
parent99e81372bf4f5d9514814ca3c3f2113957641bf8 (diff)
downloaduml-history-ba81700c566db3e5785b452a2857708ee84d3e38.tar.gz
Fixed the /proc/slabinfo bug.
-rw-r--r--mm/slab.c2068
1 files changed, 2068 insertions, 0 deletions
diff --git a/mm/slab.c b/mm/slab.c
new file mode 100644
index 0000000..6afc358
--- /dev/null
+++ b/mm/slab.c
@@ -0,0 +1,2068 @@
+/*
+ * linux/mm/slab.c
+ * Written by Mark Hemment, 1996/97.
+ * (markhe@nextd.demon.co.uk)
+ *
+ * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
+ *
+ * Major cleanup, different bufctl logic, per-cpu arrays
+ * (c) 2000 Manfred Spraul
+ *
+ * An implementation of the Slab Allocator as described in outline in;
+ * UNIX Internals: The New Frontiers by Uresh Vahalia
+ * Pub: Prentice Hall ISBN 0-13-101908-2
+ * or with a little more detail in;
+ * The Slab Allocator: An Object-Caching Kernel Memory Allocator
+ * Jeff Bonwick (Sun Microsystems).
+ * Presented at: USENIX Summer 1994 Technical Conference
+ *
+ *
+ * The memory is organized in caches, one cache for each object type.
+ * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
+ * Each cache consists out of many slabs (they are small (usually one
+ * page long) and always contiguous), and each slab contains multiple
+ * initialized objects.
+ *
+ * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
+ * normal). If you need a special memory type, then must create a new
+ * cache for that memory type.
+ *
+ * In order to reduce fragmentation, the slabs are sorted in 3 groups:
+ * full slabs with 0 free objects
+ * partial slabs
+ * empty slabs with no allocated objects
+ *
+ * If partial slabs exist, then new allocations come from these slabs,
+ * otherwise from empty slabs or new slabs are allocated.
+ *
+ * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
+ * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
+ *
+ * On SMP systems, each cache has a short per-cpu head array, most allocs
+ * and frees go into that array, and if that array overflows, then 1/2
+ * of the entries in the array are given back into the global cache.
+ * This reduces the number of spinlock operations.
+ *
+ * The c_cpuarray may not be read with enabled local interrupts.
+ *
+ * SMP synchronization:
+ * constructors and destructors are called without any locking.
+ * Several members in kmem_cache_t and slab_t never change, they
+ * are accessed without any locking.
+ * The per-cpu arrays are never accessed from the wrong cpu, no locking.
+ * The non-constant members are protected with a per-cache irq spinlock.
+ *
+ * Further notes from the original documentation:
+ *
+ * 11 April '97. Started multi-threading - markhe
+ * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
+ * The sem is only needed when accessing/extending the cache-chain, which
+ * can never happen inside an interrupt (kmem_cache_create(),
+ * kmem_cache_shrink() and kmem_cache_reap()).
+ *
+ * To prevent kmem_cache_shrink() trying to shrink a 'growing' cache (which
+ * maybe be sleeping and therefore not holding the semaphore/lock), the
+ * growing field is used. This also prevents reaping from a cache.
+ *
+ * At present, each engine can be growing a cache. This should be blocked.
+ *
+ */
+
+#include <linux/config.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/init.h>
+#include <linux/compiler.h>
+#include <linux/seq_file.h>
+#include <asm/uaccess.h>
+
+/*
+ * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
+ * SLAB_RED_ZONE & SLAB_POISON.
+ * 0 for faster, smaller code (especially in the critical paths).
+ *
+ * STATS - 1 to collect stats for /proc/slabinfo.
+ * 0 for faster, smaller code (especially in the critical paths).
+ *
+ * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
+ */
+
+#ifdef CONFIG_DEBUG_SLAB
+#define DEBUG 1
+#define STATS 1
+#define FORCED_DEBUG 1
+#else
+#define DEBUG 0
+#define STATS 0
+#define FORCED_DEBUG 0
+#endif
+
+/*
+ * Parameters for kmem_cache_reap
+ */
+#define REAP_SCANLEN 10
+#define REAP_PERFECT 10
+
+/* Shouldn't this be in a header file somewhere? */
+#define BYTES_PER_WORD sizeof(void *)
+
+/* Legal flag mask for kmem_cache_create(). */
+#if DEBUG
+# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
+ SLAB_POISON | SLAB_HWCACHE_ALIGN | \
+ SLAB_NO_REAP | SLAB_CACHE_DMA | \
+ SLAB_MUST_HWCACHE_ALIGN)
+#else
+# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
+ SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN)
+#endif
+
+/*
+ * kmem_bufctl_t:
+ *
+ * Bufctl's are used for linking objs within a slab
+ * linked offsets.
+ *
+ * This implementaion relies on "struct page" for locating the cache &
+ * slab an object belongs to.
+ * This allows the bufctl structure to be small (one int), but limits
+ * the number of objects a slab (not a cache) can contain when off-slab
+ * bufctls are used. The limit is the size of the largest general cache
+ * that does not use off-slab slabs.
+ * For 32bit archs with 4 kB pages, is this 56.
+ * This is not serious, as it is only for large objects, when it is unwise
+ * to have too many per slab.
+ * Note: This limit can be raised by introducing a general cache whose size
+ * is less than 512 (PAGE_SIZE<<3), but greater than 256.
+ */
+
+#define BUFCTL_END 0xffffFFFF
+#define SLAB_LIMIT 0xffffFFFE
+typedef unsigned int kmem_bufctl_t;
+
+/* Max number of objs-per-slab for caches which use off-slab slabs.
+ * Needed to avoid a possible looping condition in kmem_cache_grow().
+ */
+static unsigned long offslab_limit;
+
+/*
+ * slab_t
+ *
+ * Manages the objs in a slab. Placed either at the beginning of mem allocated
+ * for a slab, or allocated from an general cache.
+ * Slabs are chained into three list: fully used, partial, fully free slabs.
+ */
+typedef struct slab_s {
+ struct list_head list;
+ unsigned long colouroff;
+ void *s_mem; /* including colour offset */
+ unsigned int inuse; /* num of objs active in slab */
+ kmem_bufctl_t free;
+} slab_t;
+
+#define slab_bufctl(slabp) \
+ ((kmem_bufctl_t *)(((slab_t*)slabp)+1))
+
+/*
+ * cpucache_t
+ *
+ * Per cpu structures
+ * The limit is stored in the per-cpu structure to reduce the data cache
+ * footprint.
+ */
+typedef struct cpucache_s {
+ unsigned int avail;
+ unsigned int limit;
+} cpucache_t;
+
+#define cc_entry(cpucache) \
+ ((void **)(((cpucache_t*)(cpucache))+1))
+#define cc_data(cachep) \
+ ((cachep)->cpudata[smp_processor_id()])
+/*
+ * kmem_cache_t
+ *
+ * manages a cache.
+ */
+
+#define CACHE_NAMELEN 20 /* max name length for a slab cache */
+
+struct kmem_cache_s {
+/* 1) each alloc & free */
+ /* full, partial first, then free */
+ struct list_head slabs_full;
+ struct list_head slabs_partial;
+ struct list_head slabs_free;
+ unsigned int objsize;
+ unsigned int flags; /* constant flags */
+ unsigned int num; /* # of objs per slab */
+ spinlock_t spinlock;
+#ifdef CONFIG_SMP
+ unsigned int batchcount;
+#endif
+
+/* 2) slab additions /removals */
+ /* order of pgs per slab (2^n) */
+ unsigned int gfporder;
+
+ /* force GFP flags, e.g. GFP_DMA */
+ unsigned int gfpflags;
+
+ size_t colour; /* cache colouring range */
+ unsigned int colour_off; /* colour offset */
+ unsigned int colour_next; /* cache colouring */
+ kmem_cache_t *slabp_cache;
+ unsigned int growing;
+ unsigned int dflags; /* dynamic flags */
+
+ /* constructor func */
+ void (*ctor)(void *, kmem_cache_t *, unsigned long);
+
+ /* de-constructor func */
+ void (*dtor)(void *, kmem_cache_t *, unsigned long);
+
+ unsigned long failures;
+
+/* 3) cache creation/removal */
+ char name[CACHE_NAMELEN];
+ struct list_head next;
+#ifdef CONFIG_SMP
+/* 4) per-cpu data */
+ cpucache_t *cpudata[NR_CPUS];
+#endif
+#if STATS
+ unsigned long num_active;
+ unsigned long num_allocations;
+ unsigned long high_mark;
+ unsigned long grown;
+ unsigned long reaped;
+ unsigned long errors;
+#ifdef CONFIG_SMP
+ atomic_t allochit;
+ atomic_t allocmiss;
+ atomic_t freehit;
+ atomic_t freemiss;
+#endif
+#endif
+};
+
+/* internal c_flags */
+#define CFLGS_OFF_SLAB 0x010000UL /* slab management in own cache */
+#define CFLGS_OPTIMIZE 0x020000UL /* optimized slab lookup */
+
+/* c_dflags (dynamic flags). Need to hold the spinlock to access this member */
+#define DFLGS_GROWN 0x000001UL /* don't reap a recently grown */
+
+#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
+#define OPTIMIZE(x) ((x)->flags & CFLGS_OPTIMIZE)
+#define GROWN(x) ((x)->dlags & DFLGS_GROWN)
+
+#if STATS
+#define STATS_INC_ACTIVE(x) ((x)->num_active++)
+#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
+#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
+#define STATS_INC_GROWN(x) ((x)->grown++)
+#define STATS_INC_REAPED(x) ((x)->reaped++)
+#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
+ (x)->high_mark = (x)->num_active; \
+ } while (0)
+#define STATS_INC_ERR(x) ((x)->errors++)
+#else
+#define STATS_INC_ACTIVE(x) do { } while (0)
+#define STATS_DEC_ACTIVE(x) do { } while (0)
+#define STATS_INC_ALLOCED(x) do { } while (0)
+#define STATS_INC_GROWN(x) do { } while (0)
+#define STATS_INC_REAPED(x) do { } while (0)
+#define STATS_SET_HIGH(x) do { } while (0)
+#define STATS_INC_ERR(x) do { } while (0)
+#endif
+
+#if STATS && defined(CONFIG_SMP)
+#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
+#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
+#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
+#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
+#else
+#define STATS_INC_ALLOCHIT(x) do { } while (0)
+#define STATS_INC_ALLOCMISS(x) do { } while (0)
+#define STATS_INC_FREEHIT(x) do { } while (0)
+#define STATS_INC_FREEMISS(x) do { } while (0)
+#endif
+
+#if DEBUG
+/* Magic nums for obj red zoning.
+ * Placed in the first word before and the first word after an obj.
+ */
+#define RED_MAGIC1 0x5A2CF071UL /* when obj is active */
+#define RED_MAGIC2 0x170FC2A5UL /* when obj is inactive */
+
+/* ...and for poisoning */
+#define POISON_BYTE 0x5a /* byte value for poisoning */
+#define POISON_END 0xa5 /* end-byte of poisoning */
+
+#endif
+
+/* maximum size of an obj (in 2^order pages) */
+#define MAX_OBJ_ORDER 5 /* 32 pages */
+
+/*
+ * Do not go above this order unless 0 objects fit into the slab.
+ */
+#define BREAK_GFP_ORDER_HI 2
+#define BREAK_GFP_ORDER_LO 1
+static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
+
+/*
+ * Absolute limit for the gfp order
+ */
+#define MAX_GFP_ORDER 5 /* 32 pages */
+
+
+/* Macros for storing/retrieving the cachep and or slab from the
+ * global 'mem_map'. These are used to find the slab an obj belongs to.
+ * With kfree(), these are used to find the cache which an obj belongs to.
+ */
+#define SET_PAGE_CACHE(pg,x) ((pg)->list.next = (struct list_head *)(x))
+#define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->list.next)
+#define SET_PAGE_SLAB(pg,x) ((pg)->list.prev = (struct list_head *)(x))
+#define GET_PAGE_SLAB(pg) ((slab_t *)(pg)->list.prev)
+
+/* Size description struct for general caches. */
+typedef struct cache_sizes {
+ size_t cs_size;
+ kmem_cache_t *cs_cachep;
+ kmem_cache_t *cs_dmacachep;
+} cache_sizes_t;
+
+static cache_sizes_t cache_sizes[] = {
+#if PAGE_SIZE == 4096
+ { 32, NULL, NULL},
+#endif
+ { 64, NULL, NULL},
+ { 128, NULL, NULL},
+ { 256, NULL, NULL},
+ { 512, NULL, NULL},
+ { 1024, NULL, NULL},
+ { 2048, NULL, NULL},
+ { 4096, NULL, NULL},
+ { 8192, NULL, NULL},
+ { 16384, NULL, NULL},
+ { 32768, NULL, NULL},
+ { 65536, NULL, NULL},
+ {131072, NULL, NULL},
+ { 0, NULL, NULL}
+};
+
+/* internal cache of cache description objs */
+static kmem_cache_t cache_cache = {
+ slabs_full: LIST_HEAD_INIT(cache_cache.slabs_full),
+ slabs_partial: LIST_HEAD_INIT(cache_cache.slabs_partial),
+ slabs_free: LIST_HEAD_INIT(cache_cache.slabs_free),
+ objsize: sizeof(kmem_cache_t),
+ flags: SLAB_NO_REAP,
+ spinlock: SPIN_LOCK_UNLOCKED,
+ colour_off: L1_CACHE_BYTES,
+ name: "kmem_cache",
+};
+
+/* Guard access to the cache-chain. */
+static struct semaphore cache_chain_sem;
+
+/* Place maintainer for reaping. */
+static kmem_cache_t *clock_searchp = &cache_cache;
+
+#define cache_chain (cache_cache.next)
+
+#ifdef CONFIG_SMP
+/*
+ * chicken and egg problem: delay the per-cpu array allocation
+ * until the general caches are up.
+ */
+static int g_cpucache_up;
+
+static void enable_cpucache (kmem_cache_t *cachep);
+static void enable_all_cpucaches (void);
+#endif
+
+/* Cal the num objs, wastage, and bytes left over for a given slab size. */
+static void kmem_cache_estimate (unsigned long gfporder, size_t size,
+ int flags, size_t *left_over, unsigned int *num)
+{
+ int i;
+ size_t wastage = PAGE_SIZE<<gfporder;
+ size_t extra = 0;
+ size_t base = 0;
+
+ if (!(flags & CFLGS_OFF_SLAB)) {
+ base = sizeof(slab_t);
+ extra = sizeof(kmem_bufctl_t);
+ }
+ i = 0;
+ while (i*size + L1_CACHE_ALIGN(base+i*extra) <= wastage)
+ i++;
+ if (i > 0)
+ i--;
+
+ if (i > SLAB_LIMIT)
+ i = SLAB_LIMIT;
+
+ *num = i;
+ wastage -= i*size;
+ wastage -= L1_CACHE_ALIGN(base+i*extra);
+ *left_over = wastage;
+}
+
+/* Initialisation - setup the `cache' cache. */
+void __init kmem_cache_init(void)
+{
+ size_t left_over;
+
+ init_MUTEX(&cache_chain_sem);
+ INIT_LIST_HEAD(&cache_chain);
+
+ kmem_cache_estimate(0, cache_cache.objsize, 0,
+ &left_over, &cache_cache.num);
+ if (!cache_cache.num)
+ BUG();
+
+ cache_cache.colour = left_over/cache_cache.colour_off;
+ cache_cache.colour_next = 0;
+}
+
+
+/* Initialisation - setup remaining internal and general caches.
+ * Called after the gfp() functions have been enabled, and before smp_init().
+ */
+void __init kmem_cache_sizes_init(void)
+{
+ cache_sizes_t *sizes = cache_sizes;
+ char name[20];
+ /*
+ * Fragmentation resistance on low memory - only use bigger
+ * page orders on machines with more than 32MB of memory.
+ */
+ if (num_physpages > (32 << 20) >> PAGE_SHIFT)
+ slab_break_gfp_order = BREAK_GFP_ORDER_HI;
+ do {
+ /* For performance, all the general caches are L1 aligned.
+ * This should be particularly beneficial on SMP boxes, as it
+ * eliminates "false sharing".
+ * Note for systems short on memory removing the alignment will
+ * allow tighter packing of the smaller caches. */
+ snprintf(name, sizeof(name), "size-%Zd",sizes->cs_size);
+ if (!(sizes->cs_cachep =
+ kmem_cache_create(name, sizes->cs_size,
+ 0, SLAB_HWCACHE_ALIGN, NULL, NULL))) {
+ BUG();
+ }
+
+ /* Inc off-slab bufctl limit until the ceiling is hit. */
+ if (!(OFF_SLAB(sizes->cs_cachep))) {
+ offslab_limit = sizes->cs_size-sizeof(slab_t);
+ offslab_limit /= 2;
+ }
+ snprintf(name, sizeof(name), "size-%Zd(DMA)",sizes->cs_size);
+ sizes->cs_dmacachep = kmem_cache_create(name, sizes->cs_size, 0,
+ SLAB_CACHE_DMA|SLAB_HWCACHE_ALIGN, NULL, NULL);
+ if (!sizes->cs_dmacachep)
+ BUG();
+ sizes++;
+ } while (sizes->cs_size);
+}
+
+int __init kmem_cpucache_init(void)
+{
+#ifdef CONFIG_SMP
+ g_cpucache_up = 1;
+ enable_all_cpucaches();
+#endif
+ return 0;
+}
+
+__initcall(kmem_cpucache_init);
+
+/* Interface to system's page allocator. No need to hold the cache-lock.
+ */
+static inline void * kmem_getpages (kmem_cache_t *cachep, unsigned long flags)
+{
+ void *addr;
+
+ /*
+ * If we requested dmaable memory, we will get it. Even if we
+ * did not request dmaable memory, we might get it, but that
+ * would be relatively rare and ignorable.
+ */
+ flags |= cachep->gfpflags;
+ addr = (void*) __get_free_pages(flags, cachep->gfporder);
+ /* Assume that now we have the pages no one else can legally
+ * messes with the 'struct page's.
+ * However vm_scan() might try to test the structure to see if
+ * it is a named-page or buffer-page. The members it tests are
+ * of no interest here.....
+ */
+ return addr;
+}
+
+/* Interface to system's page release. */
+static inline void kmem_freepages (kmem_cache_t *cachep, void *addr)
+{
+ unsigned long i = (1<<cachep->gfporder);
+ struct page *page = virt_to_page(addr);
+
+ /* free_pages() does not clear the type bit - we do that.
+ * The pages have been unlinked from their cache-slab,
+ * but their 'struct page's might be accessed in
+ * vm_scan(). Shouldn't be a worry.
+ */
+ while (i--) {
+ PageClearSlab(page);
+ page++;
+ }
+ free_pages((unsigned long)addr, cachep->gfporder);
+}
+
+#if DEBUG
+static inline void kmem_poison_obj (kmem_cache_t *cachep, void *addr)
+{
+ int size = cachep->objsize;
+ if (cachep->flags & SLAB_RED_ZONE) {
+ addr += BYTES_PER_WORD;
+ size -= 2*BYTES_PER_WORD;
+ }
+ memset(addr, POISON_BYTE, size);
+ *(unsigned char *)(addr+size-1) = POISON_END;
+}
+
+static inline int kmem_check_poison_obj (kmem_cache_t *cachep, void *addr)
+{
+ int size = cachep->objsize;
+ void *end;
+ if (cachep->flags & SLAB_RED_ZONE) {
+ addr += BYTES_PER_WORD;
+ size -= 2*BYTES_PER_WORD;
+ }
+ end = memchr(addr, POISON_END, size);
+ if (end != (addr+size-1))
+ return 1;
+ return 0;
+}
+#endif
+
+/* Destroy all the objs in a slab, and release the mem back to the system.
+ * Before calling the slab must have been unlinked from the cache.
+ * The cache-lock is not held/needed.
+ */
+static void kmem_slab_destroy (kmem_cache_t *cachep, slab_t *slabp)
+{
+ if (cachep->dtor
+#if DEBUG
+ || cachep->flags & (SLAB_POISON | SLAB_RED_ZONE)
+#endif
+ ) {
+ int i;
+ for (i = 0; i < cachep->num; i++) {
+ void* objp = slabp->s_mem+cachep->objsize*i;
+#if DEBUG
+ if (cachep->flags & SLAB_RED_ZONE) {
+ if (*((unsigned long*)(objp)) != RED_MAGIC1)
+ BUG();
+ if (*((unsigned long*)(objp + cachep->objsize
+ -BYTES_PER_WORD)) != RED_MAGIC1)
+ BUG();
+ objp += BYTES_PER_WORD;
+ }
+#endif
+ if (cachep->dtor)
+ (cachep->dtor)(objp, cachep, 0);
+#if DEBUG
+ if (cachep->flags & SLAB_RED_ZONE) {
+ objp -= BYTES_PER_WORD;
+ }
+ if ((cachep->flags & SLAB_POISON) &&
+ kmem_check_poison_obj(cachep, objp))
+ BUG();
+#endif
+ }
+ }
+
+ kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);
+ if (OFF_SLAB(cachep))
+ kmem_cache_free(cachep->slabp_cache, slabp);
+}
+
+/**
+ * kmem_cache_create - Create a cache.
+ * @name: A string which is used in /proc/slabinfo to identify this cache.
+ * @size: The size of objects to be created in this cache.
+ * @offset: The offset to use within the page.
+ * @flags: SLAB flags
+ * @ctor: A constructor for the objects.
+ * @dtor: A destructor for the objects.
+ *
+ * Returns a ptr to the cache on success, NULL on failure.
+ * Cannot be called within a int, but can be interrupted.
+ * The @ctor is run when new pages are allocated by the cache
+ * and the @dtor is run before the pages are handed back.
+ * The flags are
+ *
+ * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
+ * to catch references to uninitialised memory.
+ *
+ * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
+ * for buffer overruns.
+ *
+ * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
+ * memory pressure.
+ *
+ * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
+ * cacheline. This can be beneficial if you're counting cycles as closely
+ * as davem.
+ */
+kmem_cache_t *
+kmem_cache_create (const char *name, size_t size, size_t offset,
+ unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
+ void (*dtor)(void*, kmem_cache_t *, unsigned long))
+{
+ const char *func_nm = KERN_ERR "kmem_create: ";
+ size_t left_over, align, slab_size;
+ kmem_cache_t *cachep = NULL;
+
+ /*
+ * Sanity checks... these are all serious usage bugs.
+ */
+ if ((!name) ||
+ ((strlen(name) >= CACHE_NAMELEN - 1)) ||
+ in_interrupt() ||
+ (size < BYTES_PER_WORD) ||
+ (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
+ (dtor && !ctor) ||
+ (offset < 0 || offset > size))
+ BUG();
+
+#if DEBUG
+ if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
+ /* No constructor, but inital state check requested */
+ printk("%sNo con, but init state check requested - %s\n", func_nm, name);
+ flags &= ~SLAB_DEBUG_INITIAL;
+ }
+
+ if ((flags & SLAB_POISON) && ctor) {
+ /* request for poisoning, but we can't do that with a constructor */
+ printk("%sPoisoning requested, but con given - %s\n", func_nm, name);
+ flags &= ~SLAB_POISON;
+ }
+#if FORCED_DEBUG
+ if ((size < (PAGE_SIZE>>3)) && !(flags & SLAB_MUST_HWCACHE_ALIGN))
+ /*
+ * do not red zone large object, causes severe
+ * fragmentation.
+ */
+ flags |= SLAB_RED_ZONE;
+ if (!ctor)
+ flags |= SLAB_POISON;
+#endif
+#endif
+
+ /*
+ * Always checks flags, a caller might be expecting debug
+ * support which isn't available.
+ */
+ BUG_ON(flags & ~CREATE_MASK);
+
+ /* Get cache's description obj. */
+ cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
+ if (!cachep)
+ goto opps;
+ memset(cachep, 0, sizeof(kmem_cache_t));
+
+ /* Check that size is in terms of words. This is needed to avoid
+ * unaligned accesses for some archs when redzoning is used, and makes
+ * sure any on-slab bufctl's are also correctly aligned.
+ */
+ if (size & (BYTES_PER_WORD-1)) {
+ size += (BYTES_PER_WORD-1);
+ size &= ~(BYTES_PER_WORD-1);
+ printk("%sForcing size word alignment - %s\n", func_nm, name);
+ }
+
+#if DEBUG
+ if (flags & SLAB_RED_ZONE) {
+ /*
+ * There is no point trying to honour cache alignment
+ * when redzoning.
+ */
+ flags &= ~SLAB_HWCACHE_ALIGN;
+ size += 2*BYTES_PER_WORD; /* words for redzone */
+ }
+#endif
+ align = BYTES_PER_WORD;
+ if (flags & SLAB_HWCACHE_ALIGN)
+ align = L1_CACHE_BYTES;
+
+ /* Determine if the slab management is 'on' or 'off' slab. */
+ if (size >= (PAGE_SIZE>>3))
+ /*
+ * Size is large, assume best to place the slab management obj
+ * off-slab (should allow better packing of objs).
+ */
+ flags |= CFLGS_OFF_SLAB;
+
+ if (flags & SLAB_HWCACHE_ALIGN) {
+ /* Need to adjust size so that objs are cache aligned. */
+ /* Small obj size, can get at least two per cache line. */
+ /* FIXME: only power of 2 supported, was better */
+ while (size < align/2)
+ align /= 2;
+ size = (size+align-1)&(~(align-1));
+ }
+
+ /* Cal size (in pages) of slabs, and the num of objs per slab.
+ * This could be made much more intelligent. For now, try to avoid
+ * using high page-orders for slabs. When the gfp() funcs are more
+ * friendly towards high-order requests, this should be changed.
+ */
+ do {
+ unsigned int break_flag = 0;
+cal_wastage:
+ kmem_cache_estimate(cachep->gfporder, size, flags,
+ &left_over, &cachep->num);
+ if (break_flag)
+ break;
+ if (cachep->gfporder >= MAX_GFP_ORDER)
+ break;
+ if (!cachep->num)
+ goto next;
+ if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit) {
+ /* Oops, this num of objs will cause problems. */
+ cachep->gfporder--;
+ break_flag++;
+ goto cal_wastage;
+ }
+
+ /*
+ * Large num of objs is good, but v. large slabs are currently
+ * bad for the gfp()s.
+ */
+ if (cachep->gfporder >= slab_break_gfp_order)
+ break;
+
+ if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
+ break; /* Acceptable internal fragmentation. */
+next:
+ cachep->gfporder++;
+ } while (1);
+
+ if (!cachep->num) {
+ printk("kmem_cache_create: couldn't create cache %s.\n", name);
+ kmem_cache_free(&cache_cache, cachep);
+ cachep = NULL;
+ goto opps;
+ }
+ slab_size = L1_CACHE_ALIGN(cachep->num*sizeof(kmem_bufctl_t)+sizeof(slab_t));
+
+ /*
+ * If the slab has been placed off-slab, and we have enough space then
+ * move it on-slab. This is at the expense of any extra colouring.
+ */
+ if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
+ flags &= ~CFLGS_OFF_SLAB;
+ left_over -= slab_size;
+ }
+
+ /* Offset must be a multiple of the alignment. */
+ offset += (align-1);
+ offset &= ~(align-1);
+ if (!offset)
+ offset = L1_CACHE_BYTES;
+ cachep->colour_off = offset;
+ cachep->colour = left_over/offset;
+
+ /* init remaining fields */
+ if (!cachep->gfporder && !(flags & CFLGS_OFF_SLAB))
+ flags |= CFLGS_OPTIMIZE;
+
+ cachep->flags = flags;
+ cachep->gfpflags = 0;
+ if (flags & SLAB_CACHE_DMA)
+ cachep->gfpflags |= GFP_DMA;
+ spin_lock_init(&cachep->spinlock);
+ cachep->objsize = size;
+ INIT_LIST_HEAD(&cachep->slabs_full);
+ INIT_LIST_HEAD(&cachep->slabs_partial);
+ INIT_LIST_HEAD(&cachep->slabs_free);
+
+ if (flags & CFLGS_OFF_SLAB)
+ cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
+ cachep->ctor = ctor;
+ cachep->dtor = dtor;
+ /* Copy name over so we don't have problems with unloaded modules */
+ strcpy(cachep->name, name);
+
+#ifdef CONFIG_SMP
+ if (g_cpucache_up)
+ enable_cpucache(cachep);
+#endif
+ /* Need the semaphore to access the chain. */
+ down(&cache_chain_sem);
+ {
+ struct list_head *p;
+
+ list_for_each(p, &cache_chain) {
+ kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
+
+ /* The name field is constant - no lock needed. */
+ if (!strcmp(pc->name, name))
+ BUG();
+ }
+ }
+
+ /* There is no reason to lock our new cache before we
+ * link it in - no one knows about it yet...
+ */
+ list_add(&cachep->next, &cache_chain);
+ up(&cache_chain_sem);
+opps:
+ return cachep;
+}
+
+
+#if DEBUG
+/*
+ * This check if the kmem_cache_t pointer is chained in the cache_cache
+ * list. -arca
+ */
+static int is_chained_kmem_cache(kmem_cache_t * cachep)
+{
+ struct list_head *p;
+ int ret = 0;
+
+ /* Find the cache in the chain of caches. */
+ down(&cache_chain_sem);
+ list_for_each(p, &cache_chain) {
+ if (p == &cachep->next) {
+ ret = 1;
+ break;
+ }
+ }
+ up(&cache_chain_sem);
+
+ return ret;
+}
+#else
+#define is_chained_kmem_cache(x) 1
+#endif
+
+#ifdef CONFIG_SMP
+/*
+ * Waits for all CPUs to execute func().
+ */
+static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
+{
+ local_irq_disable();
+ func(arg);
+ local_irq_enable();
+
+ if (smp_call_function(func, arg, 1, 1))
+ BUG();
+}
+typedef struct ccupdate_struct_s
+{
+ kmem_cache_t *cachep;
+ cpucache_t *new[NR_CPUS];
+} ccupdate_struct_t;
+
+static void do_ccupdate_local(void *info)
+{
+ ccupdate_struct_t *new = (ccupdate_struct_t *)info;
+ cpucache_t *old = cc_data(new->cachep);
+
+ cc_data(new->cachep) = new->new[smp_processor_id()];
+ new->new[smp_processor_id()] = old;
+}
+
+static void free_block (kmem_cache_t* cachep, void** objpp, int len);
+
+static void drain_cpu_caches(kmem_cache_t *cachep)
+{
+ ccupdate_struct_t new;
+ int i;
+
+ memset(&new.new,0,sizeof(new.new));
+
+ new.cachep = cachep;
+
+ down(&cache_chain_sem);
+ smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
+
+ for (i = 0; i < smp_num_cpus; i++) {
+ cpucache_t* ccold = new.new[cpu_logical_map(i)];
+ if (!ccold || (ccold->avail == 0))
+ continue;
+ local_irq_disable();
+ free_block(cachep, cc_entry(ccold), ccold->avail);
+ local_irq_enable();
+ ccold->avail = 0;
+ }
+ smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
+ up(&cache_chain_sem);
+}
+
+#else
+#define drain_cpu_caches(cachep) do { } while (0)
+#endif
+
+/*
+ * Called with the &cachep->spinlock held, returns number of slabs released
+ */
+static int __kmem_cache_shrink_locked(kmem_cache_t *cachep)
+{
+ slab_t *slabp;
+ int ret = 0;
+
+ /* If the cache is growing, stop shrinking. */
+ while (!cachep->growing) {
+ struct list_head *p;
+
+ p = cachep->slabs_free.prev;
+ if (p == &cachep->slabs_free)
+ break;
+
+ slabp = list_entry(cachep->slabs_free.prev, slab_t, list);
+#if DEBUG
+ if (slabp->inuse)
+ BUG();
+#endif
+ list_del(&slabp->list);
+
+ spin_unlock_irq(&cachep->spinlock);
+ kmem_slab_destroy(cachep, slabp);
+ ret++;
+ spin_lock_irq(&cachep->spinlock);
+ }
+ return ret;
+}
+
+static int __kmem_cache_shrink(kmem_cache_t *cachep)
+{
+ int ret;
+
+ drain_cpu_caches(cachep);
+
+ spin_lock_irq(&cachep->spinlock);
+ __kmem_cache_shrink_locked(cachep);
+ ret = !list_empty(&cachep->slabs_full) ||
+ !list_empty(&cachep->slabs_partial);
+ spin_unlock_irq(&cachep->spinlock);
+ return ret;
+}
+
+/**
+ * kmem_cache_shrink - Shrink a cache.
+ * @cachep: The cache to shrink.
+ *
+ * Releases as many slabs as possible for a cache.
+ * Returns number of pages released.
+ */
+int kmem_cache_shrink(kmem_cache_t *cachep)
+{
+ int ret;
+
+ if (!cachep || in_interrupt() || !is_chained_kmem_cache(cachep))
+ BUG();
+
+ drain_cpu_caches(cachep);
+
+ spin_lock_irq(&cachep->spinlock);
+ ret = __kmem_cache_shrink_locked(cachep);
+ spin_unlock_irq(&cachep->spinlock);
+
+ return ret << cachep->gfporder;
+}
+
+/**
+ * kmem_cache_destroy - delete a cache
+ * @cachep: the cache to destroy
+ *
+ * Remove a kmem_cache_t object from the slab cache.
+ * Returns 0 on success.
+ *
+ * It is expected this function will be called by a module when it is
+ * unloaded. This will remove the cache completely, and avoid a duplicate
+ * cache being allocated each time a module is loaded and unloaded, if the
+ * module doesn't have persistent in-kernel storage across loads and unloads.
+ *
+ * The caller must guarantee that noone will allocate memory from the cache
+ * during the kmem_cache_destroy().
+ */
+int kmem_cache_destroy (kmem_cache_t * cachep)
+{
+ if (!cachep || in_interrupt() || cachep->growing)
+ BUG();
+
+ /* Find the cache in the chain of caches. */
+ down(&cache_chain_sem);
+ /* the chain is never empty, cache_cache is never destroyed */
+ if (clock_searchp == cachep)
+ clock_searchp = list_entry(cachep->next.next,
+ kmem_cache_t, next);
+ list_del(&cachep->next);
+ up(&cache_chain_sem);
+
+ if (__kmem_cache_shrink(cachep)) {
+ printk(KERN_ERR "kmem_cache_destroy: Can't free all objects %p\n",
+ cachep);
+ down(&cache_chain_sem);
+ list_add(&cachep->next,&cache_chain);
+ up(&cache_chain_sem);
+ return 1;
+ }
+#ifdef CONFIG_SMP
+ {
+ int i;
+ for (i = 0; i < NR_CPUS; i++)
+ kfree(cachep->cpudata[i]);
+ }
+#endif
+ kmem_cache_free(&cache_cache, cachep);
+
+ return 0;
+}
+
+/* Get the memory for a slab management obj. */
+static inline slab_t * kmem_cache_slabmgmt (kmem_cache_t *cachep,
+ void *objp, int colour_off, int local_flags)
+{
+ slab_t *slabp;
+
+ if (OFF_SLAB(cachep)) {
+ /* Slab management obj is off-slab. */
+ slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
+ if (!slabp)
+ return NULL;
+ } else {
+ /* FIXME: change to
+ slabp = objp
+ * if you enable OPTIMIZE
+ */
+ slabp = objp+colour_off;
+ colour_off += L1_CACHE_ALIGN(cachep->num *
+ sizeof(kmem_bufctl_t) + sizeof(slab_t));
+ }
+ slabp->inuse = 0;
+ slabp->colouroff = colour_off;
+ slabp->s_mem = objp+colour_off;
+
+ return slabp;
+}
+
+static inline void kmem_cache_init_objs (kmem_cache_t * cachep,
+ slab_t * slabp, unsigned long ctor_flags)
+{
+ int i;
+
+ for (i = 0; i < cachep->num; i++) {
+ void* objp = slabp->s_mem+cachep->objsize*i;
+#if DEBUG
+ if (cachep->flags & SLAB_RED_ZONE) {
+ *((unsigned long*)(objp)) = RED_MAGIC1;
+ *((unsigned long*)(objp + cachep->objsize -
+ BYTES_PER_WORD)) = RED_MAGIC1;
+ objp += BYTES_PER_WORD;
+ }
+#endif
+
+ /*
+ * Constructors are not allowed to allocate memory from
+ * the same cache which they are a constructor for.
+ * Otherwise, deadlock. They must also be threaded.
+ */
+ if (cachep->ctor)
+ cachep->ctor(objp, cachep, ctor_flags);
+#if DEBUG
+ if (cachep->flags & SLAB_RED_ZONE)
+ objp -= BYTES_PER_WORD;
+ if (cachep->flags & SLAB_POISON)
+ /* need to poison the objs */
+ kmem_poison_obj(cachep, objp);
+ if (cachep->flags & SLAB_RED_ZONE) {
+ if (*((unsigned long*)(objp)) != RED_MAGIC1)
+ BUG();
+ if (*((unsigned long*)(objp + cachep->objsize -
+ BYTES_PER_WORD)) != RED_MAGIC1)
+ BUG();
+ }
+#endif
+ slab_bufctl(slabp)[i] = i+1;
+ }
+ slab_bufctl(slabp)[i-1] = BUFCTL_END;
+ slabp->free = 0;
+}
+
+/*
+ * Grow (by 1) the number of slabs within a cache. This is called by
+ * kmem_cache_alloc() when there are no active objs left in a cache.
+ */
+static int kmem_cache_grow (kmem_cache_t * cachep, int flags)
+{
+ slab_t *slabp;
+ struct page *page;
+ void *objp;
+ size_t offset;
+ unsigned int i, local_flags;
+ unsigned long ctor_flags;
+ unsigned long save_flags;
+
+ /* Be lazy and only check for valid flags here,
+ * keeping it out of the critical path in kmem_cache_alloc().
+ */
+ if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
+ BUG();
+ if (flags & SLAB_NO_GROW)
+ return 0;
+
+ /*
+ * The test for missing atomic flag is performed here, rather than
+ * the more obvious place, simply to reduce the critical path length
+ * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
+ * will eventually be caught here (where it matters).
+ */
+ if (in_interrupt() && (flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC)
+ BUG();
+
+ ctor_flags = SLAB_CTOR_CONSTRUCTOR;
+ local_flags = (flags & SLAB_LEVEL_MASK);
+ if (local_flags == SLAB_ATOMIC)
+ /*
+ * Not allowed to sleep. Need to tell a constructor about
+ * this - it might need to know...
+ */
+ ctor_flags |= SLAB_CTOR_ATOMIC;
+
+ /* About to mess with non-constant members - lock. */
+ spin_lock_irqsave(&cachep->spinlock, save_flags);
+
+ /* Get colour for the slab, and cal the next value. */
+ offset = cachep->colour_next;
+ cachep->colour_next++;
+ if (cachep->colour_next >= cachep->colour)
+ cachep->colour_next = 0;
+ offset *= cachep->colour_off;
+ cachep->dflags |= DFLGS_GROWN;
+
+ cachep->growing++;
+ spin_unlock_irqrestore(&cachep->spinlock, save_flags);
+
+ /* A series of memory allocations for a new slab.
+ * Neither the cache-chain semaphore, or cache-lock, are
+ * held, but the incrementing c_growing prevents this
+ * cache from being reaped or shrunk.
+ * Note: The cache could be selected in for reaping in
+ * kmem_cache_reap(), but when the final test is made the
+ * growing value will be seen.
+ */
+
+ /* Get mem for the objs. */
+ if (!(objp = kmem_getpages(cachep, flags)))
+ goto failed;
+
+ /* Get slab management. */
+ if (!(slabp = kmem_cache_slabmgmt(cachep, objp, offset, local_flags)))
+ goto opps1;
+
+ /* Nasty!!!!!! I hope this is OK. */
+ i = 1 << cachep->gfporder;
+ page = virt_to_page(objp);
+ do {
+ SET_PAGE_CACHE(page, cachep);
+ SET_PAGE_SLAB(page, slabp);
+ PageSetSlab(page);
+ page++;
+ } while (--i);
+
+ kmem_cache_init_objs(cachep, slabp, ctor_flags);
+
+ spin_lock_irqsave(&cachep->spinlock, save_flags);
+ cachep->growing--;
+
+ /* Make slab active. */
+ list_add_tail(&slabp->list, &cachep->slabs_free);
+ STATS_INC_GROWN(cachep);
+ cachep->failures = 0;
+
+ spin_unlock_irqrestore(&cachep->spinlock, save_flags);
+ return 1;
+opps1:
+ kmem_freepages(cachep, objp);
+failed:
+ spin_lock_irqsave(&cachep->spinlock, save_flags);
+ cachep->growing--;
+ spin_unlock_irqrestore(&cachep->spinlock, save_flags);
+ return 0;
+}
+
+/*
+ * Perform extra freeing checks:
+ * - detect double free
+ * - detect bad pointers.
+ * Called with the cache-lock held.
+ */
+
+#if DEBUG
+static int kmem_extra_free_checks (kmem_cache_t * cachep,
+ slab_t *slabp, void * objp)
+{
+ int i;
+ unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
+
+ if (objnr >= cachep->num)
+ BUG();
+ if (objp != slabp->s_mem + objnr*cachep->objsize)
+ BUG();
+
+ /* Check slab's freelist to see if this obj is there. */
+ for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
+ if (i == objnr)
+ BUG();
+ }
+ return 0;
+}
+#endif
+
+static inline void kmem_cache_alloc_head(kmem_cache_t *cachep, int flags)
+{
+ if (flags & SLAB_DMA) {
+ if (!(cachep->gfpflags & GFP_DMA))
+ BUG();
+ } else {
+ if (cachep->gfpflags & GFP_DMA)
+ BUG();
+ }
+}
+
+static inline void * kmem_cache_alloc_one_tail (kmem_cache_t *cachep,
+ slab_t *slabp)
+{
+ void *objp;
+
+ STATS_INC_ALLOCED(cachep);
+ STATS_INC_ACTIVE(cachep);
+ STATS_SET_HIGH(cachep);
+
+ /* get obj pointer */
+ slabp->inuse++;
+ objp = slabp->s_mem + slabp->free*cachep->objsize;
+ slabp->free=slab_bufctl(slabp)[slabp->free];
+
+ if (unlikely(slabp->free == BUFCTL_END)) {
+ list_del(&slabp->list);
+ list_add(&slabp->list, &cachep->slabs_full);
+ }
+#if DEBUG
+ if (cachep->flags & SLAB_POISON)
+ if (kmem_check_poison_obj(cachep, objp))
+ BUG();
+ if (cachep->flags & SLAB_RED_ZONE) {
+ /* Set alloc red-zone, and check old one. */
+ if (xchg((unsigned long *)objp, RED_MAGIC2) !=
+ RED_MAGIC1)
+ BUG();
+ if (xchg((unsigned long *)(objp+cachep->objsize -
+ BYTES_PER_WORD), RED_MAGIC2) != RED_MAGIC1)
+ BUG();
+ objp += BYTES_PER_WORD;
+ }
+#endif
+ return objp;
+}
+
+/*
+ * Returns a ptr to an obj in the given cache.
+ * caller must guarantee synchronization
+ * #define for the goto optimization 8-)
+ */
+#define kmem_cache_alloc_one(cachep) \
+({ \
+ struct list_head * slabs_partial, * entry; \
+ slab_t *slabp; \
+ \
+ slabs_partial = &(cachep)->slabs_partial; \
+ entry = slabs_partial->next; \
+ if (unlikely(entry == slabs_partial)) { \
+ struct list_head * slabs_free; \
+ slabs_free = &(cachep)->slabs_free; \
+ entry = slabs_free->next; \
+ if (unlikely(entry == slabs_free)) \
+ goto alloc_new_slab; \
+ list_del(entry); \
+ list_add(entry, slabs_partial); \
+ } \
+ \
+ slabp = list_entry(entry, slab_t, list); \
+ kmem_cache_alloc_one_tail(cachep, slabp); \
+})
+
+#ifdef CONFIG_SMP
+void* kmem_cache_alloc_batch(kmem_cache_t* cachep, cpucache_t* cc, int flags)
+{
+ int batchcount = cachep->batchcount;
+
+ spin_lock(&cachep->spinlock);
+ while (batchcount--) {
+ struct list_head * slabs_partial, * entry;
+ slab_t *slabp;
+ /* Get slab alloc is to come from. */
+ slabs_partial = &(cachep)->slabs_partial;
+ entry = slabs_partial->next;
+ if (unlikely(entry == slabs_partial)) {
+ struct list_head * slabs_free;
+ slabs_free = &(cachep)->slabs_free;
+ entry = slabs_free->next;
+ if (unlikely(entry == slabs_free))
+ break;
+ list_del(entry);
+ list_add(entry, slabs_partial);
+ }
+
+ slabp = list_entry(entry, slab_t, list);
+ cc_entry(cc)[cc->avail++] =
+ kmem_cache_alloc_one_tail(cachep, slabp);
+ }
+ spin_unlock(&cachep->spinlock);
+
+ if (cc->avail)
+ return cc_entry(cc)[--cc->avail];
+ return NULL;
+}
+#endif
+
+static inline void * __kmem_cache_alloc (kmem_cache_t *cachep, int flags)
+{
+ unsigned long save_flags;
+ void* objp;
+
+ kmem_cache_alloc_head(cachep, flags);
+try_again:
+ local_irq_save(save_flags);
+#ifdef CONFIG_SMP
+ {
+ cpucache_t *cc = cc_data(cachep);
+
+ if (cc) {
+ if (cc->avail) {
+ STATS_INC_ALLOCHIT(cachep);
+ objp = cc_entry(cc)[--cc->avail];
+ } else {
+ STATS_INC_ALLOCMISS(cachep);
+ objp = kmem_cache_alloc_batch(cachep,cc,flags);
+ if (!objp)
+ goto alloc_new_slab_nolock;
+ }
+ } else {
+ spin_lock(&cachep->spinlock);
+ objp = kmem_cache_alloc_one(cachep);
+ spin_unlock(&cachep->spinlock);
+ }
+ }
+#else
+ objp = kmem_cache_alloc_one(cachep);
+#endif
+ local_irq_restore(save_flags);
+ return objp;
+alloc_new_slab:
+#ifdef CONFIG_SMP
+ spin_unlock(&cachep->spinlock);
+alloc_new_slab_nolock:
+#endif
+ local_irq_restore(save_flags);
+ if (kmem_cache_grow(cachep, flags))
+ /* Someone may have stolen our objs. Doesn't matter, we'll
+ * just come back here again.
+ */
+ goto try_again;
+ return NULL;
+}
+
+/*
+ * Release an obj back to its cache. If the obj has a constructed
+ * state, it should be in this state _before_ it is released.
+ * - caller is responsible for the synchronization
+ */
+
+#if DEBUG
+# define CHECK_NR(pg) \
+ do { \
+ if (!VALID_PAGE(pg)) { \
+ printk(KERN_ERR "kfree: out of range ptr %lxh.\n", \
+ (unsigned long)objp); \
+ BUG(); \
+ } \
+ } while (0)
+# define CHECK_PAGE(page) \
+ do { \
+ CHECK_NR(page); \
+ if (!PageSlab(page)) { \
+ printk(KERN_ERR "kfree: bad ptr %lxh.\n", \
+ (unsigned long)objp); \
+ BUG(); \
+ } \
+ } while (0)
+
+#else
+# define CHECK_PAGE(pg) do { } while (0)
+#endif
+
+static inline void kmem_cache_free_one(kmem_cache_t *cachep, void *objp)
+{
+ slab_t* slabp;
+
+ CHECK_PAGE(virt_to_page(objp));
+ /* reduces memory footprint
+ *
+ if (OPTIMIZE(cachep))
+ slabp = (void*)((unsigned long)objp&(~(PAGE_SIZE-1)));
+ else
+ */
+ slabp = GET_PAGE_SLAB(virt_to_page(objp));
+
+#if DEBUG
+ if (cachep->flags & SLAB_DEBUG_INITIAL)
+ /* Need to call the slab's constructor so the
+ * caller can perform a verify of its state (debugging).
+ * Called without the cache-lock held.
+ */
+ cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
+
+ if (cachep->flags & SLAB_RED_ZONE) {
+ objp -= BYTES_PER_WORD;
+ if (xchg((unsigned long *)objp, RED_MAGIC1) != RED_MAGIC2)
+ /* Either write before start, or a double free. */
+ BUG();
+ if (xchg((unsigned long *)(objp+cachep->objsize -
+ BYTES_PER_WORD), RED_MAGIC1) != RED_MAGIC2)
+ /* Either write past end, or a double free. */
+ BUG();
+ }
+ if (cachep->flags & SLAB_POISON)
+ kmem_poison_obj(cachep, objp);
+ if (kmem_extra_free_checks(cachep, slabp, objp))
+ return;
+#endif
+ {
+ unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
+
+ slab_bufctl(slabp)[objnr] = slabp->free;
+ slabp->free = objnr;
+ }
+ STATS_DEC_ACTIVE(cachep);
+
+ /* fixup slab chains */
+ {
+ int inuse = slabp->inuse;
+ if (unlikely(!--slabp->inuse)) {
+ /* Was partial or full, now empty. */
+ list_del(&slabp->list);
+ list_add(&slabp->list, &cachep->slabs_free);
+ } else if (unlikely(inuse == cachep->num)) {
+ /* Was full. */
+ list_del(&slabp->list);
+ list_add(&slabp->list, &cachep->slabs_partial);
+ }
+ }
+}
+
+#ifdef CONFIG_SMP
+static inline void __free_block (kmem_cache_t* cachep,
+ void** objpp, int len)
+{
+ for ( ; len > 0; len--, objpp++)
+ kmem_cache_free_one(cachep, *objpp);
+}
+
+static void free_block (kmem_cache_t* cachep, void** objpp, int len)
+{
+ spin_lock(&cachep->spinlock);
+ __free_block(cachep, objpp, len);
+ spin_unlock(&cachep->spinlock);
+}
+#endif
+
+/*
+ * __kmem_cache_free
+ * called with disabled ints
+ */
+static inline void __kmem_cache_free (kmem_cache_t *cachep, void* objp)
+{
+#ifdef CONFIG_SMP
+ cpucache_t *cc = cc_data(cachep);
+
+ CHECK_PAGE(virt_to_page(objp));
+ if (cc) {
+ int batchcount;
+ if (cc->avail < cc->limit) {
+ STATS_INC_FREEHIT(cachep);
+ cc_entry(cc)[cc->avail++] = objp;
+ return;
+ }
+ STATS_INC_FREEMISS(cachep);
+ batchcount = cachep->batchcount;
+ cc->avail -= batchcount;
+ free_block(cachep,
+ &cc_entry(cc)[cc->avail],batchcount);
+ cc_entry(cc)[cc->avail++] = objp;
+ return;
+ } else {
+ free_block(cachep, &objp, 1);
+ }
+#else
+ kmem_cache_free_one(cachep, objp);
+#endif
+}
+
+/**
+ * kmem_cache_alloc - Allocate an object
+ * @cachep: The cache to allocate from.
+ * @flags: See kmalloc().
+ *
+ * Allocate an object from this cache. The flags are only relevant
+ * if the cache has no available objects.
+ */
+void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)
+{
+ return __kmem_cache_alloc(cachep, flags);
+}
+
+/**
+ * kmalloc - allocate memory
+ * @size: how many bytes of memory are required.
+ * @flags: the type of memory to allocate.
+ *
+ * kmalloc is the normal method of allocating memory
+ * in the kernel.
+ *
+ * The @flags argument may be one of:
+ *
+ * %GFP_USER - Allocate memory on behalf of user. May sleep.
+ *
+ * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
+ *
+ * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
+ *
+ * Additionally, the %GFP_DMA flag may be set to indicate the memory
+ * must be suitable for DMA. This can mean different things on different
+ * platforms. For example, on i386, it means that the memory must come
+ * from the first 16MB.
+ */
+void * kmalloc (size_t size, int flags)
+{
+ cache_sizes_t *csizep = cache_sizes;
+
+ for (; csizep->cs_size; csizep++) {
+ if (size > csizep->cs_size)
+ continue;
+ return __kmem_cache_alloc(flags & GFP_DMA ?
+ csizep->cs_dmacachep : csizep->cs_cachep, flags);
+ }
+ return NULL;
+}
+
+/**
+ * kmem_cache_free - Deallocate an object
+ * @cachep: The cache the allocation was from.
+ * @objp: The previously allocated object.
+ *
+ * Free an object which was previously allocated from this
+ * cache.
+ */
+void kmem_cache_free (kmem_cache_t *cachep, void *objp)
+{
+ unsigned long flags;
+#if DEBUG
+ CHECK_PAGE(virt_to_page(objp));
+ if (cachep != GET_PAGE_CACHE(virt_to_page(objp)))
+ BUG();
+#endif
+
+ local_irq_save(flags);
+ __kmem_cache_free(cachep, objp);
+ local_irq_restore(flags);
+}
+
+/**
+ * kfree - free previously allocated memory
+ * @objp: pointer returned by kmalloc.
+ *
+ * Don't free memory not originally allocated by kmalloc()
+ * or you will run into trouble.
+ */
+void kfree (const void *objp)
+{
+ kmem_cache_t *c;
+ unsigned long flags;
+
+ if (!objp)
+ return;
+ local_irq_save(flags);
+ CHECK_PAGE(virt_to_page(objp));
+ c = GET_PAGE_CACHE(virt_to_page(objp));
+ __kmem_cache_free(c, (void*)objp);
+ local_irq_restore(flags);
+}
+
+kmem_cache_t * kmem_find_general_cachep (size_t size, int gfpflags)
+{
+ cache_sizes_t *csizep = cache_sizes;
+
+ /* This function could be moved to the header file, and
+ * made inline so consumers can quickly determine what
+ * cache pointer they require.
+ */
+ for ( ; csizep->cs_size; csizep++) {
+ if (size > csizep->cs_size)
+ continue;
+ break;
+ }
+ return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep : csizep->cs_cachep;
+}
+
+#ifdef CONFIG_SMP
+
+/* called with cache_chain_sem acquired. */
+static int kmem_tune_cpucache (kmem_cache_t* cachep, int limit, int batchcount)
+{
+ ccupdate_struct_t new;
+ int i;
+
+ /*
+ * These are admin-provided, so we are more graceful.
+ */
+ if (limit < 0)
+ return -EINVAL;
+ if (batchcount < 0)
+ return -EINVAL;
+ if (batchcount > limit)
+ return -EINVAL;
+ if (limit != 0 && !batchcount)
+ return -EINVAL;
+
+ memset(&new.new,0,sizeof(new.new));
+ if (limit) {
+ for (i = 0; i< smp_num_cpus; i++) {
+ cpucache_t* ccnew;
+
+ ccnew = kmalloc(sizeof(void*)*limit+
+ sizeof(cpucache_t), GFP_KERNEL);
+ if (!ccnew)
+ goto oom;
+ ccnew->limit = limit;
+ ccnew->avail = 0;
+ new.new[cpu_logical_map(i)] = ccnew;
+ }
+ }
+ new.cachep = cachep;
+ spin_lock_irq(&cachep->spinlock);
+ cachep->batchcount = batchcount;
+ spin_unlock_irq(&cachep->spinlock);
+
+ smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
+
+ for (i = 0; i < smp_num_cpus; i++) {
+ cpucache_t* ccold = new.new[cpu_logical_map(i)];
+ if (!ccold)
+ continue;
+ local_irq_disable();
+ free_block(cachep, cc_entry(ccold), ccold->avail);
+ local_irq_enable();
+ kfree(ccold);
+ }
+ return 0;
+oom:
+ for (i--; i >= 0; i--)
+ kfree(new.new[cpu_logical_map(i)]);
+ return -ENOMEM;
+}
+
+static void enable_cpucache (kmem_cache_t *cachep)
+{
+ int err;
+ int limit;
+
+ /* FIXME: optimize */
+ if (cachep->objsize > PAGE_SIZE)
+ return;
+ if (cachep->objsize > 1024)
+ limit = 60;
+ else if (cachep->objsize > 256)
+ limit = 124;
+ else
+ limit = 252;
+
+ err = kmem_tune_cpucache(cachep, limit, limit/2);
+ if (err)
+ printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
+ cachep->name, -err);
+}
+
+static void enable_all_cpucaches (void)
+{
+ struct list_head* p;
+
+ down(&cache_chain_sem);
+
+ p = &cache_cache.next;
+ do {
+ kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
+
+ enable_cpucache(cachep);
+ p = cachep->next.next;
+ } while (p != &cache_cache.next);
+
+ up(&cache_chain_sem);
+}
+#endif
+
+/**
+ * kmem_cache_reap - Reclaim memory from caches.
+ * @gfp_mask: the type of memory required.
+ *
+ * Called from do_try_to_free_pages() and __alloc_pages()
+ */
+int kmem_cache_reap (int gfp_mask)
+{
+ slab_t *slabp;
+ kmem_cache_t *searchp;
+ kmem_cache_t *best_cachep;
+ unsigned int best_pages;
+ unsigned int best_len;
+ unsigned int scan;
+ int ret = 0;
+
+ if (gfp_mask & __GFP_WAIT)
+ down(&cache_chain_sem);
+ else
+ if (down_trylock(&cache_chain_sem))
+ return 0;
+
+ scan = REAP_SCANLEN;
+ best_len = 0;
+ best_pages = 0;
+ best_cachep = NULL;
+ searchp = clock_searchp;
+ do {
+ unsigned int pages;
+ struct list_head* p;
+ unsigned int full_free;
+
+ /* It's safe to test this without holding the cache-lock. */
+ if (searchp->flags & SLAB_NO_REAP)
+ goto next;
+ spin_lock_irq(&searchp->spinlock);
+ if (searchp->growing)
+ goto next_unlock;
+ if (searchp->dflags & DFLGS_GROWN) {
+ searchp->dflags &= ~DFLGS_GROWN;
+ goto next_unlock;
+ }
+#ifdef CONFIG_SMP
+ {
+ cpucache_t *cc = cc_data(searchp);
+ if (cc && cc->avail) {
+ __free_block(searchp, cc_entry(cc), cc->avail);
+ cc->avail = 0;
+ }
+ }
+#endif
+
+ full_free = 0;
+ p = searchp->slabs_free.next;
+ while (p != &searchp->slabs_free) {
+ slabp = list_entry(p, slab_t, list);
+#if DEBUG
+ if (slabp->inuse)
+ BUG();
+#endif
+ full_free++;
+ p = p->next;
+ }
+
+ /*
+ * Try to avoid slabs with constructors and/or
+ * more than one page per slab (as it can be difficult
+ * to get high orders from gfp()).
+ */
+ pages = full_free * (1<<searchp->gfporder);
+ if (searchp->ctor)
+ pages = (pages*4+1)/5;
+ if (searchp->gfporder)
+ pages = (pages*4+1)/5;
+ if (pages > best_pages) {
+ best_cachep = searchp;
+ best_len = full_free;
+ best_pages = pages;
+ if (pages >= REAP_PERFECT) {
+ clock_searchp = list_entry(searchp->next.next,
+ kmem_cache_t,next);
+ goto perfect;
+ }
+ }
+next_unlock:
+ spin_unlock_irq(&searchp->spinlock);
+next:
+ searchp = list_entry(searchp->next.next,kmem_cache_t,next);
+ } while (--scan && searchp != clock_searchp);
+
+ clock_searchp = searchp;
+
+ if (!best_cachep)
+ /* couldn't find anything to reap */
+ goto out;
+
+ spin_lock_irq(&best_cachep->spinlock);
+perfect:
+ /* free only 50% of the free slabs */
+ best_len = (best_len + 1)/2;
+ for (scan = 0; scan < best_len; scan++) {
+ struct list_head *p;
+
+ if (best_cachep->growing)
+ break;
+ p = best_cachep->slabs_free.prev;
+ if (p == &best_cachep->slabs_free)
+ break;
+ slabp = list_entry(p,slab_t,list);
+#if DEBUG
+ if (slabp->inuse)
+ BUG();
+#endif
+ list_del(&slabp->list);
+ STATS_INC_REAPED(best_cachep);
+
+ /* Safe to drop the lock. The slab is no longer linked to the
+ * cache.
+ */
+ spin_unlock_irq(&best_cachep->spinlock);
+ kmem_slab_destroy(best_cachep, slabp);
+ spin_lock_irq(&best_cachep->spinlock);
+ }
+ spin_unlock_irq(&best_cachep->spinlock);
+ ret = scan * (1 << best_cachep->gfporder);
+out:
+ up(&cache_chain_sem);
+ return ret;
+}
+
+#ifdef CONFIG_PROC_FS
+
+static void *s_start(struct seq_file *m, loff_t *pos)
+{
+ loff_t n = *pos;
+ struct list_head *p;
+
+ down(&cache_chain_sem);
+ if (!n)
+ return (void *)1;
+ p = &cache_cache.next;
+ while (--n) {
+ p = p->next;
+ if (p == &cache_cache.next)
+ return NULL;
+ }
+ return list_entry(p, kmem_cache_t, next);
+}
+
+static void *s_next(struct seq_file *m, void *p, loff_t *pos)
+{
+ kmem_cache_t *cachep = p;
+ ++*pos;
+ if (p == (void *)1)
+ return &cache_cache;
+ cachep = list_entry(cachep->next.next, kmem_cache_t, next);
+ return cachep == &cache_cache ? NULL : cachep;
+}
+
+static void s_stop(struct seq_file *m, void *p)
+{
+ up(&cache_chain_sem);
+}
+
+static int s_show(struct seq_file *m, void *p)
+{
+ kmem_cache_t *cachep = p;
+ struct list_head *q;
+ slab_t *slabp;
+ unsigned long active_objs;
+ unsigned long num_objs;
+ unsigned long active_slabs = 0;
+ unsigned long num_slabs;
+ const char *name;
+
+ if (p == (void*)1) {
+ /*
+ * Output format version, so at least we can change it
+ * without _too_ many complaints.
+ */
+ seq_puts(m, "slabinfo - version: 1.1"
+#if STATS
+ " (statistics)"
+#endif
+#ifdef CONFIG_SMP
+ " (SMP)"
+#endif
+ "\n");
+ return 0;
+ }
+
+ spin_lock_irq(&cachep->spinlock);
+ active_objs = 0;
+ num_slabs = 0;
+ list_for_each(q,&cachep->slabs_full) {
+ slabp = list_entry(q, slab_t, list);
+ if (slabp->inuse != cachep->num)
+ BUG();
+ active_objs += cachep->num;
+ active_slabs++;
+ }
+ list_for_each(q,&cachep->slabs_partial) {
+ slabp = list_entry(q, slab_t, list);
+ if (slabp->inuse == cachep->num || !slabp->inuse)
+ BUG();
+ active_objs += slabp->inuse;
+ active_slabs++;
+ }
+ list_for_each(q,&cachep->slabs_free) {
+ slabp = list_entry(q, slab_t, list);
+ if (slabp->inuse)
+ BUG();
+ num_slabs++;
+ }
+ num_slabs+=active_slabs;
+ num_objs = num_slabs*cachep->num;
+
+ name = cachep->name;
+ {
+ mm_segment_t fs;
+ char tmp;
+ fs = get_fs();
+ set_fs(KERNEL_DS);
+ if (__get_user(tmp, name))
+ name = "broken";
+ set_fs(fs);
+ }
+
+ seq_printf(m, "%-17s %6lu %6lu %6u %4lu %4lu %4u",
+ name, active_objs, num_objs, cachep->objsize,
+ active_slabs, num_slabs, (1<<cachep->gfporder));
+
+#if STATS
+ {
+ unsigned long errors = cachep->errors;
+ unsigned long high = cachep->high_mark;
+ unsigned long grown = cachep->grown;
+ unsigned long reaped = cachep->reaped;
+ unsigned long allocs = cachep->num_allocations;
+
+ seq_printf(m, " : %6lu %7lu %5lu %4lu %4lu",
+ high, allocs, grown, reaped, errors);
+ }
+#endif
+#ifdef CONFIG_SMP
+ {
+ cpucache_t *cc = cc_data(cachep);
+ unsigned int batchcount = cachep->batchcount;
+ unsigned int limit;
+
+ if (cc)
+ limit = cc->limit;
+ else
+ limit = 0;
+ seq_printf(m, " : %4u %4u",
+ limit, batchcount);
+ }
+#endif
+#if STATS && defined(CONFIG_SMP)
+ {
+ unsigned long allochit = atomic_read(&cachep->allochit);
+ unsigned long allocmiss = atomic_read(&cachep->allocmiss);
+ unsigned long freehit = atomic_read(&cachep->freehit);
+ unsigned long freemiss = atomic_read(&cachep->freemiss);
+ seq_printf(m, " : %6lu %6lu %6lu %6lu",
+ allochit, allocmiss, freehit, freemiss);
+ }
+#endif
+ spin_unlock_irq(&cachep->spinlock);
+ seq_putc(m, '\n');
+ return 0;
+}
+
+/**
+ * slabinfo_op - iterator that generates /proc/slabinfo
+ *
+ * Output layout:
+ * cache-name
+ * num-active-objs
+ * total-objs
+ * object size
+ * num-active-slabs
+ * total-slabs
+ * num-pages-per-slab
+ * + further values on SMP and with statistics enabled
+ */
+
+struct seq_operations slabinfo_op = {
+ start: s_start,
+ next: s_next,
+ stop: s_stop,
+ show: s_show
+};
+
+#define MAX_SLABINFO_WRITE 128
+/**
+ * slabinfo_write - SMP tuning for the slab allocator
+ * @file: unused
+ * @buffer: user buffer
+ * @count: data len
+ * @data: unused
+ */
+ssize_t slabinfo_write(struct file *file, const char *buffer,
+ size_t count, loff_t *ppos)
+{
+#ifdef CONFIG_SMP
+ char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
+ int limit, batchcount, res;
+ struct list_head *p;
+
+ if (count > MAX_SLABINFO_WRITE)
+ return -EINVAL;
+ if (copy_from_user(&kbuf, buffer, count))
+ return -EFAULT;
+ kbuf[MAX_SLABINFO_WRITE] = '\0';
+
+ tmp = strchr(kbuf, ' ');
+ if (!tmp)
+ return -EINVAL;
+ *tmp = '\0';
+ tmp++;
+ limit = simple_strtol(tmp, &tmp, 10);
+ while (*tmp == ' ')
+ tmp++;
+ batchcount = simple_strtol(tmp, &tmp, 10);
+
+ /* Find the cache in the chain of caches. */
+ down(&cache_chain_sem);
+ res = -EINVAL;
+ list_for_each(p,&cache_chain) {
+ kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
+
+ if (!strcmp(cachep->name, kbuf)) {
+ res = kmem_tune_cpucache(cachep, limit, batchcount);
+ break;
+ }
+ }
+ up(&cache_chain_sem);
+ if (res >= 0)
+ res = count;
+ return res;
+#else
+ return -EINVAL;
+#endif
+}
+#endif