aboutsummaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2022-05-24 11:58:10 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2022-05-24 11:58:10 -0700
commitac2ab99072cce553c78f326ea22d72856f570d88 (patch)
tree6c3e9edca79ae971f89c598105212434e3946fb7 /include
parenteadb2f47a3ced5c64b23b90fd2a3463f63726066 (diff)
parent1ce6c8d68f8ac587f54d0a271ac594d3d51f3efb (diff)
downloadnf-ac2ab99072cce553c78f326ea22d72856f570d88.tar.gz
Merge tag 'random-5.19-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld: "These updates continue to refine the work began in 5.17 and 5.18 of modernizing the RNG's crypto and streamlining and documenting its code. New for 5.19, the updates aim to improve entropy collection methods and make some initial decisions regarding the "premature next" problem and our threat model. The cloc utility now reports that random.c is 931 lines of code and 466 lines of comments, not that basic metrics like that mean all that much, but at the very least it tells you that this is very much a manageable driver now. Here's a summary of the various updates: - The random_get_entropy() function now always returns something at least minimally useful. This is the primary entropy source in most collectors, which in the best case expands to something like RDTSC, but prior to this change, in the worst case it would just return 0, contributing nothing. For 5.19, additional architectures are wired up, and architectures that are entirely missing a cycle counter now have a generic fallback path, which uses the highest resolution clock available from the timekeeping subsystem. Some of those clocks can actually be quite good, despite the CPU not having a cycle counter of its own, and going off-core for a stamp is generally thought to increase jitter, something positive from the perspective of entropy gathering. Done very early on in the development cycle, this has been sitting in next getting some testing for a while now and has relevant acks from the archs, so it should be pretty well tested and fine, but is nonetheless the thing I'll be keeping my eye on most closely. - Of particular note with the random_get_entropy() improvements is MIPS, which, on CPUs that lack the c0 count register, will now combine the high-speed but short-cycle c0 random register with the lower-speed but long-cycle generic fallback path. - With random_get_entropy() now always returning something useful, the interrupt handler now collects entropy in a consistent construction. - Rather than comparing two samples of random_get_entropy() for the jitter dance, the algorithm now tests many samples, and uses the amount of differing ones to determine whether or not jitter entropy is usable and how laborious it must be. The problem with comparing only two samples was that if the cycle counter was extremely slow, but just so happened to be on the cusp of a change, the slowness wouldn't be detected. Taking many samples fixes that to some degree. This, combined with the other improvements to random_get_entropy(), should make future unification of /dev/random and /dev/urandom maybe more possible. At the very least, were we to attempt it again today (we're not), it wouldn't break any of Guenter's test rigs that broke when we tried it with 5.18. So, not today, but perhaps down the road, that's something we can revisit. - We attempt to reseed the RNG immediately upon waking up from system suspend or hibernation, making use of the various timestamps about suspend time and such available, as well as the usual inputs such as RDRAND when available. - Batched randomness now falls back to ordinary randomness before the RNG is initialized. This provides more consistent guarantees to the types of random numbers being returned by the various accessors. - The "pre-init injection" code is now gone for good. I suspect you in particular will be happy to read that, as I recall you expressing your distaste for it a few months ago. Instead, to avoid a "premature first" issue, while still allowing for maximal amount of entropy availability during system boot, the first 128 bits of estimated entropy are used immediately as it arrives, with the next 128 bits being buffered. And, as before, after the RNG has been fully initialized, it winds up reseeding anyway a few seconds later in most cases. This resulted in a pretty big simplification of the initialization code and let us remove various ad-hoc mechanisms like the ugly crng_pre_init_inject(). - The RNG no longer pretends to handle the "premature next" security model, something that various academics and other RNG designs have tried to care about in the past. After an interesting mailing list thread, these issues are thought to be a) mainly academic and not practical at all, and b) actively harming the real security of the RNG by delaying new entropy additions after a potential compromise, making a potentially bad situation even worse. As well, in the first place, our RNG never even properly handled the premature next issue, so removing an incomplete solution to a fake problem was particularly nice. This allowed for numerous other simplifications in the code, which is a lot cleaner as a consequence. If you didn't see it before, https://lore.kernel.org/lkml/YmlMGx6+uigkGiZ0@zx2c4.com/ may be a thread worth skimming through. - While the interrupt handler received a separate code path years ago that avoids locks by using per-cpu data structures and a faster mixing algorithm, in order to reduce interrupt latency, input and disk events that are triggered in hardirq handlers were still hitting locks and more expensive algorithms. Those are now redirected to use the faster per-cpu data structures. - Rather than having the fake-crypto almost-siphash-based random32 implementation be used right and left, and in many places where cryptographically secure randomness is desirable, the batched entropy code is now fast enough to replace that. - As usual, numerous code quality and documentation cleanups. For example, the initialization state machine now uses enum symbolic constants instead of just hard coding numbers everywhere. - Since the RNG initializes once, and then is always initialized thereafter, a pretty heavy amount of code used during that initialization is never used again. It is now completely cordoned off using static branches and it winds up in the .text.unlikely section so that it doesn't reduce cache compactness after the RNG is ready. - A variety of functions meant for waiting on the RNG to be initialized were only used by vsprintf, and in not a particularly optimal way. Replacing that usage with a more ordinary setup made it possible to remove those functions. - A cleanup of how we warn userspace about the use of uninitialized /dev/urandom and uninitialized get_random_bytes() usage. Interestingly, with the change you merged for 5.18 that attempts to use jitter (but does not block if it can't), the majority of users should never see those warnings for /dev/urandom at all now, and the one for in-kernel usage is mainly a debug thing. - The file_operations struct for /dev/[u]random now implements .read_iter and .write_iter instead of .read and .write, allowing it to also implement .splice_read and .splice_write, which makes splice(2) work again after it was broken here (and in many other places in the tree) during the set_fs() removal. This was a bit of a last minute arrival from Jens that hasn't had as much time to bake, so I'll be keeping my eye on this as well, but it seems fairly ordinary. Unfortunately, read_iter() is around 3% slower than read() in my tests, which I'm not thrilled about. But Jens and Al, spurred by this observation, seem to be making progress in removing the bottlenecks on the iter paths in the VFS layer in general, which should remove the performance gap for all drivers. - Assorted other bug fixes, cleanups, and optimizations. - A small SipHash cleanup" * tag 'random-5.19-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (49 commits) random: check for signals after page of pool writes random: wire up fops->splice_{read,write}_iter() random: convert to using fops->write_iter() random: convert to using fops->read_iter() random: unify batched entropy implementations random: move randomize_page() into mm where it belongs random: remove mostly unused async readiness notifier random: remove get_random_bytes_arch() and add rng_has_arch_random() random: move initialization functions out of hot pages random: make consistent use of buf and len random: use proper return types on get_random_{int,long}_wait() random: remove extern from functions in header random: use static branch for crng_ready() random: credit architectural init the exact amount random: handle latent entropy and command line from random_init() random: use proper jiffies comparison macro random: remove ratelimiting for in-kernel unseeded randomness random: move initialization out of reseeding hot path random: avoid initializing twice in credit race random: use symbolic constants for crng_init states ...
Diffstat (limited to 'include')
-rw-r--r--include/linux/mm.h1
-rw-r--r--include/linux/prandom.h61
-rw-r--r--include/linux/random.h90
-rw-r--r--include/linux/siphash.h28
-rw-r--r--include/linux/timex.h8
5 files changed, 79 insertions, 109 deletions
diff --git a/include/linux/mm.h b/include/linux/mm.h
index 9f44254af8ce9e..b0183450e484b2 100644
--- a/include/linux/mm.h
+++ b/include/linux/mm.h
@@ -2677,6 +2677,7 @@ extern int install_special_mapping(struct mm_struct *mm,
unsigned long flags, struct page **pages);
unsigned long randomize_stack_top(unsigned long stack_top);
+unsigned long randomize_page(unsigned long start, unsigned long range);
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
diff --git a/include/linux/prandom.h b/include/linux/prandom.h
index 056d31317e4990..deace5fb4e628b 100644
--- a/include/linux/prandom.h
+++ b/include/linux/prandom.h
@@ -10,62 +10,16 @@
#include <linux/types.h>
#include <linux/percpu.h>
+#include <linux/random.h>
-u32 prandom_u32(void);
-void prandom_bytes(void *buf, size_t nbytes);
-void prandom_seed(u32 seed);
-void prandom_reseed_late(void);
-
-DECLARE_PER_CPU(unsigned long, net_rand_noise);
-
-#define PRANDOM_ADD_NOISE(a, b, c, d) \
- prandom_u32_add_noise((unsigned long)(a), (unsigned long)(b), \
- (unsigned long)(c), (unsigned long)(d))
-
-#if BITS_PER_LONG == 64
-/*
- * The core SipHash round function. Each line can be executed in
- * parallel given enough CPU resources.
- */
-#define PRND_SIPROUND(v0, v1, v2, v3) ( \
- v0 += v1, v1 = rol64(v1, 13), v2 += v3, v3 = rol64(v3, 16), \
- v1 ^= v0, v0 = rol64(v0, 32), v3 ^= v2, \
- v0 += v3, v3 = rol64(v3, 21), v2 += v1, v1 = rol64(v1, 17), \
- v3 ^= v0, v1 ^= v2, v2 = rol64(v2, 32) \
-)
-
-#define PRND_K0 (0x736f6d6570736575 ^ 0x6c7967656e657261)
-#define PRND_K1 (0x646f72616e646f6d ^ 0x7465646279746573)
-
-#elif BITS_PER_LONG == 32
-/*
- * On 32-bit machines, we use HSipHash, a reduced-width version of SipHash.
- * This is weaker, but 32-bit machines are not used for high-traffic
- * applications, so there is less output for an attacker to analyze.
- */
-#define PRND_SIPROUND(v0, v1, v2, v3) ( \
- v0 += v1, v1 = rol32(v1, 5), v2 += v3, v3 = rol32(v3, 8), \
- v1 ^= v0, v0 = rol32(v0, 16), v3 ^= v2, \
- v0 += v3, v3 = rol32(v3, 7), v2 += v1, v1 = rol32(v1, 13), \
- v3 ^= v0, v1 ^= v2, v2 = rol32(v2, 16) \
-)
-#define PRND_K0 0x6c796765
-#define PRND_K1 0x74656462
-
-#else
-#error Unsupported BITS_PER_LONG
-#endif
+static inline u32 prandom_u32(void)
+{
+ return get_random_u32();
+}
-static inline void prandom_u32_add_noise(unsigned long a, unsigned long b,
- unsigned long c, unsigned long d)
+static inline void prandom_bytes(void *buf, size_t nbytes)
{
- /*
- * This is not used cryptographically; it's just
- * a convenient 4-word hash function. (3 xor, 2 add, 2 rol)
- */
- a ^= raw_cpu_read(net_rand_noise);
- PRND_SIPROUND(a, b, c, d);
- raw_cpu_write(net_rand_noise, d);
+ return get_random_bytes(buf, nbytes);
}
struct rnd_state {
@@ -117,7 +71,6 @@ static inline void prandom_seed_state(struct rnd_state *state, u64 seed)
state->s2 = __seed(i, 8U);
state->s3 = __seed(i, 16U);
state->s4 = __seed(i, 128U);
- PRANDOM_ADD_NOISE(state, i, 0, 0);
}
/* Pseudo random number generator from numerical recipes. */
diff --git a/include/linux/random.h b/include/linux/random.h
index f673fbb838b35f..fae0c84027fdcc 100644
--- a/include/linux/random.h
+++ b/include/linux/random.h
@@ -12,45 +12,32 @@
struct notifier_block;
-extern void add_device_randomness(const void *, size_t);
-extern void add_bootloader_randomness(const void *, size_t);
+void add_device_randomness(const void *buf, size_t len);
+void add_bootloader_randomness(const void *buf, size_t len);
+void add_input_randomness(unsigned int type, unsigned int code,
+ unsigned int value) __latent_entropy;
+void add_interrupt_randomness(int irq) __latent_entropy;
+void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
#if defined(LATENT_ENTROPY_PLUGIN) && !defined(__CHECKER__)
static inline void add_latent_entropy(void)
{
- add_device_randomness((const void *)&latent_entropy,
- sizeof(latent_entropy));
+ add_device_randomness((const void *)&latent_entropy, sizeof(latent_entropy));
}
#else
-static inline void add_latent_entropy(void) {}
+static inline void add_latent_entropy(void) { }
#endif
-extern void add_input_randomness(unsigned int type, unsigned int code,
- unsigned int value) __latent_entropy;
-extern void add_interrupt_randomness(int irq) __latent_entropy;
-extern void add_hwgenerator_randomness(const void *buffer, size_t count,
- size_t entropy);
#if IS_ENABLED(CONFIG_VMGENID)
-extern void add_vmfork_randomness(const void *unique_vm_id, size_t size);
-extern int register_random_vmfork_notifier(struct notifier_block *nb);
-extern int unregister_random_vmfork_notifier(struct notifier_block *nb);
+void add_vmfork_randomness(const void *unique_vm_id, size_t len);
+int register_random_vmfork_notifier(struct notifier_block *nb);
+int unregister_random_vmfork_notifier(struct notifier_block *nb);
#else
static inline int register_random_vmfork_notifier(struct notifier_block *nb) { return 0; }
static inline int unregister_random_vmfork_notifier(struct notifier_block *nb) { return 0; }
#endif
-extern void get_random_bytes(void *buf, size_t nbytes);
-extern int wait_for_random_bytes(void);
-extern int __init rand_initialize(void);
-extern bool rng_is_initialized(void);
-extern int register_random_ready_notifier(struct notifier_block *nb);
-extern int unregister_random_ready_notifier(struct notifier_block *nb);
-extern size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes);
-
-#ifndef MODULE
-extern const struct file_operations random_fops, urandom_fops;
-#endif
-
+void get_random_bytes(void *buf, size_t len);
u32 get_random_u32(void);
u64 get_random_u64(void);
static inline unsigned int get_random_int(void)
@@ -82,11 +69,14 @@ static inline unsigned long get_random_long(void)
static inline unsigned long get_random_canary(void)
{
- unsigned long val = get_random_long();
-
- return val & CANARY_MASK;
+ return get_random_long() & CANARY_MASK;
}
+int __init random_init(const char *command_line);
+bool rng_is_initialized(void);
+bool rng_has_arch_random(void);
+int wait_for_random_bytes(void);
+
/* Calls wait_for_random_bytes() and then calls get_random_bytes(buf, nbytes).
* Returns the result of the call to wait_for_random_bytes. */
static inline int get_random_bytes_wait(void *buf, size_t nbytes)
@@ -96,22 +86,20 @@ static inline int get_random_bytes_wait(void *buf, size_t nbytes)
return ret;
}
-#define declare_get_random_var_wait(var) \
- static inline int get_random_ ## var ## _wait(var *out) { \
+#define declare_get_random_var_wait(name, ret_type) \
+ static inline int get_random_ ## name ## _wait(ret_type *out) { \
int ret = wait_for_random_bytes(); \
if (unlikely(ret)) \
return ret; \
- *out = get_random_ ## var(); \
+ *out = get_random_ ## name(); \
return 0; \
}
-declare_get_random_var_wait(u32)
-declare_get_random_var_wait(u64)
-declare_get_random_var_wait(int)
-declare_get_random_var_wait(long)
+declare_get_random_var_wait(u32, u32)
+declare_get_random_var_wait(u64, u32)
+declare_get_random_var_wait(int, unsigned int)
+declare_get_random_var_wait(long, unsigned long)
#undef declare_get_random_var
-unsigned long randomize_page(unsigned long start, unsigned long range);
-
/*
* This is designed to be standalone for just prandom
* users, but for now we include it from <linux/random.h>
@@ -122,22 +110,10 @@ unsigned long randomize_page(unsigned long start, unsigned long range);
#ifdef CONFIG_ARCH_RANDOM
# include <asm/archrandom.h>
#else
-static inline bool __must_check arch_get_random_long(unsigned long *v)
-{
- return false;
-}
-static inline bool __must_check arch_get_random_int(unsigned int *v)
-{
- return false;
-}
-static inline bool __must_check arch_get_random_seed_long(unsigned long *v)
-{
- return false;
-}
-static inline bool __must_check arch_get_random_seed_int(unsigned int *v)
-{
- return false;
-}
+static inline bool __must_check arch_get_random_long(unsigned long *v) { return false; }
+static inline bool __must_check arch_get_random_int(unsigned int *v) { return false; }
+static inline bool __must_check arch_get_random_seed_long(unsigned long *v) { return false; }
+static inline bool __must_check arch_get_random_seed_int(unsigned int *v) { return false; }
#endif
/*
@@ -161,8 +137,12 @@ static inline bool __init arch_get_random_long_early(unsigned long *v)
#endif
#ifdef CONFIG_SMP
-extern int random_prepare_cpu(unsigned int cpu);
-extern int random_online_cpu(unsigned int cpu);
+int random_prepare_cpu(unsigned int cpu);
+int random_online_cpu(unsigned int cpu);
+#endif
+
+#ifndef MODULE
+extern const struct file_operations random_fops, urandom_fops;
#endif
#endif /* _LINUX_RANDOM_H */
diff --git a/include/linux/siphash.h b/include/linux/siphash.h
index cce8a9acc76cbe..3af1428da5597b 100644
--- a/include/linux/siphash.h
+++ b/include/linux/siphash.h
@@ -138,4 +138,32 @@ static inline u32 hsiphash(const void *data, size_t len,
return ___hsiphash_aligned(data, len, key);
}
+/*
+ * These macros expose the raw SipHash and HalfSipHash permutations.
+ * Do not use them directly! If you think you have a use for them,
+ * be sure to CC the maintainer of this file explaining why.
+ */
+
+#define SIPHASH_PERMUTATION(a, b, c, d) ( \
+ (a) += (b), (b) = rol64((b), 13), (b) ^= (a), (a) = rol64((a), 32), \
+ (c) += (d), (d) = rol64((d), 16), (d) ^= (c), \
+ (a) += (d), (d) = rol64((d), 21), (d) ^= (a), \
+ (c) += (b), (b) = rol64((b), 17), (b) ^= (c), (c) = rol64((c), 32))
+
+#define SIPHASH_CONST_0 0x736f6d6570736575ULL
+#define SIPHASH_CONST_1 0x646f72616e646f6dULL
+#define SIPHASH_CONST_2 0x6c7967656e657261ULL
+#define SIPHASH_CONST_3 0x7465646279746573ULL
+
+#define HSIPHASH_PERMUTATION(a, b, c, d) ( \
+ (a) += (b), (b) = rol32((b), 5), (b) ^= (a), (a) = rol32((a), 16), \
+ (c) += (d), (d) = rol32((d), 8), (d) ^= (c), \
+ (a) += (d), (d) = rol32((d), 7), (d) ^= (a), \
+ (c) += (b), (b) = rol32((b), 13), (b) ^= (c), (c) = rol32((c), 16))
+
+#define HSIPHASH_CONST_0 0U
+#define HSIPHASH_CONST_1 0U
+#define HSIPHASH_CONST_2 0x6c796765U
+#define HSIPHASH_CONST_3 0x74656462U
+
#endif /* _LINUX_SIPHASH_H */
diff --git a/include/linux/timex.h b/include/linux/timex.h
index 5745c90c880054..3871b06bd302ce 100644
--- a/include/linux/timex.h
+++ b/include/linux/timex.h
@@ -62,6 +62,8 @@
#include <linux/types.h>
#include <linux/param.h>
+unsigned long random_get_entropy_fallback(void);
+
#include <asm/timex.h>
#ifndef random_get_entropy
@@ -74,8 +76,14 @@
*
* By default we use get_cycles() for this purpose, but individual
* architectures may override this in their asm/timex.h header file.
+ * If a given arch does not have get_cycles(), then we fallback to
+ * using random_get_entropy_fallback().
*/
+#ifdef get_cycles
#define random_get_entropy() ((unsigned long)get_cycles())
+#else
+#define random_get_entropy() random_get_entropy_fallback()
+#endif
#endif
/*