aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2016-01-20 17:30:20 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2016-01-20 17:30:20 -0800
commite3de671dd6784e30821e64f67f854b90b4496a68 (patch)
tree82cc89b65419ae5f04586075616d2de58312a770
parent71e4634e00119b2fb8dd0da99b3f5ebbb49cc872 (diff)
parent040b323b5012b5503561ec7fe15cccd6a4bcaec2 (diff)
downloadnvdimm-e3de671dd6784e30821e64f67f854b90b4496a68.tar.gz
Merge tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic updates from Arnd Bergmann: "The asm-generic tree this time contains one series from Nicolas Pitre that makes the optimized do_div() implementation from the ARM architecture available to all architectures. This also adds stricter type checking for callers of do_div, which has uncovered a number of bugs in existing code, and fixes up the ones we have found" * tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: ARM: asm/div64.h: adjust to generic codde __div64_32(): make it overridable at compile time __div64_const32(): abstract out the actual 128-bit cross product code do_div(): generic optimization for constant divisor on 32-bit machines div64.h: optimize do_div() for power-of-two constant divisors mtd/sm_ftl.c: fix wrong do_div() usage drm/mgag200/mgag200_mode.c: fix wrong do_div() usage hid-sensor-hub.c: fix wrong do_div() usage ti/fapll: fix wrong do_div() usage ti/clkt_dpll: fix wrong do_div() usage tegra/clk-divider: fix wrong do_div() usage imx/clk-pllv2: fix wrong do_div() usage imx/clk-pllv1: fix wrong do_div() usage nouveau/nvkm/subdev/clk/gk20a.c: fix wrong do_div() usage
-rw-r--r--arch/arm/include/asm/div64.h283
-rw-r--r--drivers/clk/tegra/clk-divider.c4
-rw-r--r--drivers/gpu/drm/mgag200/mgag200_mode.c2
-rw-r--r--drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c3
-rw-r--r--drivers/hid/hid-sensor-hub.c3
-rw-r--r--include/asm-generic/div64.h178
-rw-r--r--lib/div64.c6
7 files changed, 280 insertions, 199 deletions
diff --git a/arch/arm/include/asm/div64.h b/arch/arm/include/asm/div64.h
index 662c7bd061081b..e1f07764b0d6bf 100644
--- a/arch/arm/include/asm/div64.h
+++ b/arch/arm/include/asm/div64.h
@@ -5,9 +5,9 @@
#include <asm/compiler.h>
/*
- * The semantics of do_div() are:
+ * The semantics of __div64_32() are:
*
- * uint32_t do_div(uint64_t *n, uint32_t base)
+ * uint32_t __div64_32(uint64_t *n, uint32_t base)
* {
* uint32_t remainder = *n % base;
* *n = *n / base;
@@ -16,8 +16,9 @@
*
* In other words, a 64-bit dividend with a 32-bit divisor producing
* a 64-bit result and a 32-bit remainder. To accomplish this optimally
- * we call a special __do_div64 helper with completely non standard
- * calling convention for arguments and results (beware).
+ * we override the generic version in lib/div64.c to call our __do_div64
+ * assembly implementation with completely non standard calling convention
+ * for arguments and results (beware).
*/
#ifdef __ARMEB__
@@ -28,199 +29,101 @@
#define __xh "r1"
#endif
-#define __do_div_asm(n, base) \
-({ \
- register unsigned int __base asm("r4") = base; \
- register unsigned long long __n asm("r0") = n; \
- register unsigned long long __res asm("r2"); \
- register unsigned int __rem asm(__xh); \
- asm( __asmeq("%0", __xh) \
- __asmeq("%1", "r2") \
- __asmeq("%2", "r0") \
- __asmeq("%3", "r4") \
- "bl __do_div64" \
- : "=r" (__rem), "=r" (__res) \
- : "r" (__n), "r" (__base) \
- : "ip", "lr", "cc"); \
- n = __res; \
- __rem; \
-})
-
-#if __GNUC__ < 4 || !defined(CONFIG_AEABI)
+static inline uint32_t __div64_32(uint64_t *n, uint32_t base)
+{
+ register unsigned int __base asm("r4") = base;
+ register unsigned long long __n asm("r0") = *n;
+ register unsigned long long __res asm("r2");
+ register unsigned int __rem asm(__xh);
+ asm( __asmeq("%0", __xh)
+ __asmeq("%1", "r2")
+ __asmeq("%2", "r0")
+ __asmeq("%3", "r4")
+ "bl __do_div64"
+ : "=r" (__rem), "=r" (__res)
+ : "r" (__n), "r" (__base)
+ : "ip", "lr", "cc");
+ *n = __res;
+ return __rem;
+}
+#define __div64_32 __div64_32
+
+#if !defined(CONFIG_AEABI)
/*
- * gcc versions earlier than 4.0 are simply too problematic for the
- * optimized implementation below. First there is gcc PR 15089 that
- * tend to trig on more complex constructs, spurious .global __udivsi3
- * are inserted even if none of those symbols are referenced in the
- * generated code, and those gcc versions are not able to do constant
- * propagation on long long values anyway.
+ * In OABI configurations, some uses of the do_div function
+ * cause gcc to run out of registers. To work around that,
+ * we can force the use of the out-of-line version for
+ * configurations that build a OABI kernel.
*/
-#define do_div(n, base) __do_div_asm(n, base)
-
-#elif __GNUC__ >= 4
+#define do_div(n, base) __div64_32(&(n), base)
-#include <asm/bug.h>
+#else
/*
- * If the divisor happens to be constant, we determine the appropriate
- * inverse at compile time to turn the division into a few inline
- * multiplications instead which is much faster. And yet only if compiling
- * for ARMv4 or higher (we need umull/umlal) and if the gcc version is
- * sufficiently recent to perform proper long long constant propagation.
- * (It is unfortunate that gcc doesn't perform all this internally.)
+ * gcc versions earlier than 4.0 are simply too problematic for the
+ * __div64_const32() code in asm-generic/div64.h. First there is
+ * gcc PR 15089 that tend to trig on more complex constructs, spurious
+ * .global __udivsi3 are inserted even if none of those symbols are
+ * referenced in the generated code, and those gcc versions are not able
+ * to do constant propagation on long long values anyway.
*/
-#define do_div(n, base) \
-({ \
- unsigned int __r, __b = (base); \
- if (!__builtin_constant_p(__b) || __b == 0 || \
- (__LINUX_ARM_ARCH__ < 4 && (__b & (__b - 1)) != 0)) { \
- /* non-constant divisor (or zero): slow path */ \
- __r = __do_div_asm(n, __b); \
- } else if ((__b & (__b - 1)) == 0) { \
- /* Trivial: __b is constant and a power of 2 */ \
- /* gcc does the right thing with this code. */ \
- __r = n; \
- __r &= (__b - 1); \
- n /= __b; \
- } else { \
- /* Multiply by inverse of __b: n/b = n*(p/b)/p */ \
- /* We rely on the fact that most of this code gets */ \
- /* optimized away at compile time due to constant */ \
- /* propagation and only a couple inline assembly */ \
- /* instructions should remain. Better avoid any */ \
- /* code construct that might prevent that. */ \
- unsigned long long __res, __x, __t, __m, __n = n; \
- unsigned int __c, __p, __z = 0; \
- /* preserve low part of n for reminder computation */ \
- __r = __n; \
- /* determine number of bits to represent __b */ \
- __p = 1 << __div64_fls(__b); \
- /* compute __m = ((__p << 64) + __b - 1) / __b */ \
- __m = (~0ULL / __b) * __p; \
- __m += (((~0ULL % __b + 1) * __p) + __b - 1) / __b; \
- /* compute __res = __m*(~0ULL/__b*__b-1)/(__p << 64) */ \
- __x = ~0ULL / __b * __b - 1; \
- __res = (__m & 0xffffffff) * (__x & 0xffffffff); \
- __res >>= 32; \
- __res += (__m & 0xffffffff) * (__x >> 32); \
- __t = __res; \
- __res += (__x & 0xffffffff) * (__m >> 32); \
- __t = (__res < __t) ? (1ULL << 32) : 0; \
- __res = (__res >> 32) + __t; \
- __res += (__m >> 32) * (__x >> 32); \
- __res /= __p; \
- /* Now sanitize and optimize what we've got. */ \
- if (~0ULL % (__b / (__b & -__b)) == 0) { \
- /* those cases can be simplified with: */ \
- __n /= (__b & -__b); \
- __m = ~0ULL / (__b / (__b & -__b)); \
- __p = 1; \
- __c = 1; \
- } else if (__res != __x / __b) { \
- /* We can't get away without a correction */ \
- /* to compensate for bit truncation errors. */ \
- /* To avoid it we'd need an additional bit */ \
- /* to represent __m which would overflow it. */ \
- /* Instead we do m=p/b and n/b=(n*m+m)/p. */ \
- __c = 1; \
- /* Compute __m = (__p << 64) / __b */ \
- __m = (~0ULL / __b) * __p; \
- __m += ((~0ULL % __b + 1) * __p) / __b; \
- } else { \
- /* Reduce __m/__p, and try to clear bit 31 */ \
- /* of __m when possible otherwise that'll */ \
- /* need extra overflow handling later. */ \
- unsigned int __bits = -(__m & -__m); \
- __bits |= __m >> 32; \
- __bits = (~__bits) << 1; \
- /* If __bits == 0 then setting bit 31 is */ \
- /* unavoidable. Simply apply the maximum */ \
- /* possible reduction in that case. */ \
- /* Otherwise the MSB of __bits indicates the */ \
- /* best reduction we should apply. */ \
- if (!__bits) { \
- __p /= (__m & -__m); \
- __m /= (__m & -__m); \
- } else { \
- __p >>= __div64_fls(__bits); \
- __m >>= __div64_fls(__bits); \
- } \
- /* No correction needed. */ \
- __c = 0; \
- } \
- /* Now we have a combination of 2 conditions: */ \
- /* 1) whether or not we need a correction (__c), and */ \
- /* 2) whether or not there might be an overflow in */ \
- /* the cross product (__m & ((1<<63) | (1<<31))) */ \
- /* Select the best insn combination to perform the */ \
- /* actual __m * __n / (__p << 64) operation. */ \
- if (!__c) { \
- asm ( "umull %Q0, %R0, %Q1, %Q2\n\t" \
- "mov %Q0, #0" \
- : "=&r" (__res) \
- : "r" (__m), "r" (__n) \
- : "cc" ); \
- } else if (!(__m & ((1ULL << 63) | (1ULL << 31)))) { \
- __res = __m; \
- asm ( "umlal %Q0, %R0, %Q1, %Q2\n\t" \
- "mov %Q0, #0" \
- : "+&r" (__res) \
- : "r" (__m), "r" (__n) \
- : "cc" ); \
- } else { \
- asm ( "umull %Q0, %R0, %Q1, %Q2\n\t" \
- "cmn %Q0, %Q1\n\t" \
- "adcs %R0, %R0, %R1\n\t" \
- "adc %Q0, %3, #0" \
- : "=&r" (__res) \
- : "r" (__m), "r" (__n), "r" (__z) \
- : "cc" ); \
- } \
- if (!(__m & ((1ULL << 63) | (1ULL << 31)))) { \
- asm ( "umlal %R0, %Q0, %R1, %Q2\n\t" \
- "umlal %R0, %Q0, %Q1, %R2\n\t" \
- "mov %R0, #0\n\t" \
- "umlal %Q0, %R0, %R1, %R2" \
- : "+&r" (__res) \
- : "r" (__m), "r" (__n) \
- : "cc" ); \
- } else { \
- asm ( "umlal %R0, %Q0, %R2, %Q3\n\t" \
- "umlal %R0, %1, %Q2, %R3\n\t" \
- "mov %R0, #0\n\t" \
- "adds %Q0, %1, %Q0\n\t" \
- "adc %R0, %R0, #0\n\t" \
- "umlal %Q0, %R0, %R2, %R3" \
- : "+&r" (__res), "+&r" (__z) \
- : "r" (__m), "r" (__n) \
- : "cc" ); \
- } \
- __res /= __p; \
- /* The reminder can be computed with 32-bit regs */ \
- /* only, and gcc is good at that. */ \
- { \
- unsigned int __res0 = __res; \
- unsigned int __b0 = __b; \
- __r -= __res0 * __b0; \
- } \
- /* BUG_ON(__r >= __b || __res * __b + __r != n); */ \
- n = __res; \
- } \
- __r; \
-})
-
-/* our own fls implementation to make sure constant propagation is fine */
-#define __div64_fls(bits) \
-({ \
- unsigned int __left = (bits), __nr = 0; \
- if (__left & 0xffff0000) __nr += 16, __left >>= 16; \
- if (__left & 0x0000ff00) __nr += 8, __left >>= 8; \
- if (__left & 0x000000f0) __nr += 4, __left >>= 4; \
- if (__left & 0x0000000c) __nr += 2, __left >>= 2; \
- if (__left & 0x00000002) __nr += 1; \
- __nr; \
-})
+
+#define __div64_const32_is_OK (__GNUC__ >= 4)
+
+static inline uint64_t __arch_xprod_64(uint64_t m, uint64_t n, bool bias)
+{
+ unsigned long long res;
+ unsigned int tmp = 0;
+
+ if (!bias) {
+ asm ( "umull %Q0, %R0, %Q1, %Q2\n\t"
+ "mov %Q0, #0"
+ : "=&r" (res)
+ : "r" (m), "r" (n)
+ : "cc");
+ } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
+ res = m;
+ asm ( "umlal %Q0, %R0, %Q1, %Q2\n\t"
+ "mov %Q0, #0"
+ : "+&r" (res)
+ : "r" (m), "r" (n)
+ : "cc");
+ } else {
+ asm ( "umull %Q0, %R0, %Q1, %Q2\n\t"
+ "cmn %Q0, %Q1\n\t"
+ "adcs %R0, %R0, %R1\n\t"
+ "adc %Q0, %3, #0"
+ : "=&r" (res)
+ : "r" (m), "r" (n), "r" (tmp)
+ : "cc");
+ }
+
+ if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
+ asm ( "umlal %R0, %Q0, %R1, %Q2\n\t"
+ "umlal %R0, %Q0, %Q1, %R2\n\t"
+ "mov %R0, #0\n\t"
+ "umlal %Q0, %R0, %R1, %R2"
+ : "+&r" (res)
+ : "r" (m), "r" (n)
+ : "cc");
+ } else {
+ asm ( "umlal %R0, %Q0, %R2, %Q3\n\t"
+ "umlal %R0, %1, %Q2, %R3\n\t"
+ "mov %R0, #0\n\t"
+ "adds %Q0, %1, %Q0\n\t"
+ "adc %R0, %R0, #0\n\t"
+ "umlal %Q0, %R0, %R2, %R3"
+ : "+&r" (res), "+&r" (tmp)
+ : "r" (m), "r" (n)
+ : "cc");
+ }
+
+ return res;
+}
+#define __arch_xprod_64 __arch_xprod_64
+
+#include <asm-generic/div64.h>
#endif
diff --git a/drivers/clk/tegra/clk-divider.c b/drivers/clk/tegra/clk-divider.c
index 48c83efda4cff4..16e0aee14773b9 100644
--- a/drivers/clk/tegra/clk-divider.c
+++ b/drivers/clk/tegra/clk-divider.c
@@ -32,7 +32,7 @@
static int get_div(struct tegra_clk_frac_div *divider, unsigned long rate,
unsigned long parent_rate)
{
- s64 divider_ux1 = parent_rate;
+ u64 divider_ux1 = parent_rate;
u8 flags = divider->flags;
int mul;
@@ -54,7 +54,7 @@ static int get_div(struct tegra_clk_frac_div *divider, unsigned long rate,
divider_ux1 -= mul;
- if (divider_ux1 < 0)
+ if ((s64)divider_ux1 < 0)
return 0;
if (divider_ux1 > get_max_div(divider))
diff --git a/drivers/gpu/drm/mgag200/mgag200_mode.c b/drivers/gpu/drm/mgag200/mgag200_mode.c
index 19c18b7af28a65..dc13c4857e6fe9 100644
--- a/drivers/gpu/drm/mgag200/mgag200_mode.c
+++ b/drivers/gpu/drm/mgag200/mgag200_mode.c
@@ -1564,7 +1564,7 @@ static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
int bits_per_pixel)
{
uint32_t total_area, divisor;
- int64_t active_area, pixels_per_second, bandwidth;
+ uint64_t active_area, pixels_per_second, bandwidth;
uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
divisor = 1024;
diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c
index 254094ab7fb8f9..5da2aa8cc33307 100644
--- a/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c
+++ b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk20a.c
@@ -141,9 +141,8 @@ gk20a_pllg_calc_rate(struct gk20a_clk *clk)
rate = clk->parent_rate * clk->n;
divider = clk->m * pl_to_div[clk->pl];
- do_div(rate, divider);
- return rate / 2;
+ return rate / divider / 2;
}
static int
diff --git a/drivers/hid/hid-sensor-hub.c b/drivers/hid/hid-sensor-hub.c
index 58ed8f25ab2157..3d5ba5b51af3aa 100644
--- a/drivers/hid/hid-sensor-hub.c
+++ b/drivers/hid/hid-sensor-hub.c
@@ -218,7 +218,8 @@ int sensor_hub_set_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
goto done_proc;
}
- remaining_bytes = do_div(buffer_size, sizeof(__s32));
+ remaining_bytes = buffer_size % sizeof(__s32);
+ buffer_size = buffer_size / sizeof(__s32);
if (buffer_size) {
for (i = 0; i < buffer_size; ++i) {
hid_set_field(report->field[field_index], i,
diff --git a/include/asm-generic/div64.h b/include/asm-generic/div64.h
index 8f4e3193342e58..163f77999ea4e4 100644
--- a/include/asm-generic/div64.h
+++ b/include/asm-generic/div64.h
@@ -4,6 +4,9 @@
* Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
* Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
*
+ * Optimization for constant divisors on 32-bit machines:
+ * Copyright (C) 2006-2015 Nicolas Pitre
+ *
* The semantics of do_div() are:
*
* uint32_t do_div(uint64_t *n, uint32_t base)
@@ -32,7 +35,168 @@
#elif BITS_PER_LONG == 32
+#include <linux/log2.h>
+
+/*
+ * If the divisor happens to be constant, we determine the appropriate
+ * inverse at compile time to turn the division into a few inline
+ * multiplications which ought to be much faster. And yet only if compiling
+ * with a sufficiently recent gcc version to perform proper 64-bit constant
+ * propagation.
+ *
+ * (It is unfortunate that gcc doesn't perform all this internally.)
+ */
+
+#ifndef __div64_const32_is_OK
+#define __div64_const32_is_OK (__GNUC__ >= 4)
+#endif
+
+#define __div64_const32(n, ___b) \
+({ \
+ /* \
+ * Multiplication by reciprocal of b: n / b = n * (p / b) / p \
+ * \
+ * We rely on the fact that most of this code gets optimized \
+ * away at compile time due to constant propagation and only \
+ * a few multiplication instructions should remain. \
+ * Hence this monstrous macro (static inline doesn't always \
+ * do the trick here). \
+ */ \
+ uint64_t ___res, ___x, ___t, ___m, ___n = (n); \
+ uint32_t ___p, ___bias; \
+ \
+ /* determine MSB of b */ \
+ ___p = 1 << ilog2(___b); \
+ \
+ /* compute m = ((p << 64) + b - 1) / b */ \
+ ___m = (~0ULL / ___b) * ___p; \
+ ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b; \
+ \
+ /* one less than the dividend with highest result */ \
+ ___x = ~0ULL / ___b * ___b - 1; \
+ \
+ /* test our ___m with res = m * x / (p << 64) */ \
+ ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32; \
+ ___t = ___res += (___m & 0xffffffff) * (___x >> 32); \
+ ___res += (___x & 0xffffffff) * (___m >> 32); \
+ ___t = (___res < ___t) ? (1ULL << 32) : 0; \
+ ___res = (___res >> 32) + ___t; \
+ ___res += (___m >> 32) * (___x >> 32); \
+ ___res /= ___p; \
+ \
+ /* Now sanitize and optimize what we've got. */ \
+ if (~0ULL % (___b / (___b & -___b)) == 0) { \
+ /* special case, can be simplified to ... */ \
+ ___n /= (___b & -___b); \
+ ___m = ~0ULL / (___b / (___b & -___b)); \
+ ___p = 1; \
+ ___bias = 1; \
+ } else if (___res != ___x / ___b) { \
+ /* \
+ * We can't get away without a bias to compensate \
+ * for bit truncation errors. To avoid it we'd need an \
+ * additional bit to represent m which would overflow \
+ * a 64-bit variable. \
+ * \
+ * Instead we do m = p / b and n / b = (n * m + m) / p. \
+ */ \
+ ___bias = 1; \
+ /* Compute m = (p << 64) / b */ \
+ ___m = (~0ULL / ___b) * ___p; \
+ ___m += ((~0ULL % ___b + 1) * ___p) / ___b; \
+ } else { \
+ /* \
+ * Reduce m / p, and try to clear bit 31 of m when \
+ * possible, otherwise that'll need extra overflow \
+ * handling later. \
+ */ \
+ uint32_t ___bits = -(___m & -___m); \
+ ___bits |= ___m >> 32; \
+ ___bits = (~___bits) << 1; \
+ /* \
+ * If ___bits == 0 then setting bit 31 is unavoidable. \
+ * Simply apply the maximum possible reduction in that \
+ * case. Otherwise the MSB of ___bits indicates the \
+ * best reduction we should apply. \
+ */ \
+ if (!___bits) { \
+ ___p /= (___m & -___m); \
+ ___m /= (___m & -___m); \
+ } else { \
+ ___p >>= ilog2(___bits); \
+ ___m >>= ilog2(___bits); \
+ } \
+ /* No bias needed. */ \
+ ___bias = 0; \
+ } \
+ \
+ /* \
+ * Now we have a combination of 2 conditions: \
+ * \
+ * 1) whether or not we need to apply a bias, and \
+ * \
+ * 2) whether or not there might be an overflow in the cross \
+ * product determined by (___m & ((1 << 63) | (1 << 31))). \
+ * \
+ * Select the best way to do (m_bias + m * n) / (1 << 64). \
+ * From now on there will be actual runtime code generated. \
+ */ \
+ ___res = __arch_xprod_64(___m, ___n, ___bias); \
+ \
+ ___res /= ___p; \
+})
+
+#ifndef __arch_xprod_64
+/*
+ * Default C implementation for __arch_xprod_64()
+ *
+ * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
+ * Semantic: retval = ((bias ? m : 0) + m * n) >> 64
+ *
+ * The product is a 128-bit value, scaled down to 64 bits.
+ * Assuming constant propagation to optimize away unused conditional code.
+ * Architectures may provide their own optimized assembly implementation.
+ */
+static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
+{
+ uint32_t m_lo = m;
+ uint32_t m_hi = m >> 32;
+ uint32_t n_lo = n;
+ uint32_t n_hi = n >> 32;
+ uint64_t res, tmp;
+
+ if (!bias) {
+ res = ((uint64_t)m_lo * n_lo) >> 32;
+ } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
+ /* there can't be any overflow here */
+ res = (m + (uint64_t)m_lo * n_lo) >> 32;
+ } else {
+ res = m + (uint64_t)m_lo * n_lo;
+ tmp = (res < m) ? (1ULL << 32) : 0;
+ res = (res >> 32) + tmp;
+ }
+
+ if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
+ /* there can't be any overflow here */
+ res += (uint64_t)m_lo * n_hi;
+ res += (uint64_t)m_hi * n_lo;
+ res >>= 32;
+ } else {
+ tmp = res += (uint64_t)m_lo * n_hi;
+ res += (uint64_t)m_hi * n_lo;
+ tmp = (res < tmp) ? (1ULL << 32) : 0;
+ res = (res >> 32) + tmp;
+ }
+
+ res += (uint64_t)m_hi * n_hi;
+
+ return res;
+}
+#endif
+
+#ifndef __div64_32
extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
+#endif
/* The unnecessary pointer compare is there
* to check for type safety (n must be 64bit)
@@ -41,7 +205,19 @@ extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
uint32_t __base = (base); \
uint32_t __rem; \
(void)(((typeof((n)) *)0) == ((uint64_t *)0)); \
- if (likely(((n) >> 32) == 0)) { \
+ if (__builtin_constant_p(__base) && \
+ is_power_of_2(__base)) { \
+ __rem = (n) & (__base - 1); \
+ (n) >>= ilog2(__base); \
+ } else if (__div64_const32_is_OK && \
+ __builtin_constant_p(__base) && \
+ __base != 0) { \
+ uint32_t __res_lo, __n_lo = (n); \
+ (n) = __div64_const32(n, __base); \
+ /* the remainder can be computed with 32-bit regs */ \
+ __res_lo = (n); \
+ __rem = __n_lo - __res_lo * __base; \
+ } else if (likely(((n) >> 32) == 0)) { \
__rem = (uint32_t)(n) % __base; \
(n) = (uint32_t)(n) / __base; \
} else \
diff --git a/lib/div64.c b/lib/div64.c
index 62a698a432bc6f..7f345259c32f1e 100644
--- a/lib/div64.c
+++ b/lib/div64.c
@@ -13,7 +13,8 @@
*
* Code generated for this function might be very inefficient
* for some CPUs. __div64_32() can be overridden by linking arch-specific
- * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S.
+ * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
+ * or by defining a preprocessor macro in arch/include/asm/div64.h.
*/
#include <linux/export.h>
@@ -23,6 +24,7 @@
/* Not needed on 64bit architectures */
#if BITS_PER_LONG == 32
+#ifndef __div64_32
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
{
uint64_t rem = *n;
@@ -55,8 +57,8 @@ uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
*n = res;
return rem;
}
-
EXPORT_SYMBOL(__div64_32);
+#endif
#ifndef div_s64_rem
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)