aboutsummaryrefslogtreecommitdiffstats
path: root/src/rseq-mempool.c
blob: 798c0e803dbc4a883e94740bbceeb3eb56b44ad6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
// SPDX-License-Identifier: MIT
// SPDX-FileCopyrightText: 2024 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>

#include <rseq/mempool.h>
#include <sys/mman.h>
#include <assert.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <rseq/compiler.h>
#include <errno.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>

#ifdef HAVE_LIBNUMA
# include <numa.h>
# include <numaif.h>
#endif

#include "rseq-utils.h"
#include "smp.h"

/*
 * rseq-mempool.c: rseq CPU-Local Storage (CLS) memory allocator.
 *
 * The rseq per-CPU memory allocator allows the application the request
 * memory pools of CPU-Local memory each of containing objects of a
 * given size (rounded to next power of 2), reserving a given virtual
 * address size per CPU, for a given maximum number of CPUs.
 *
 * The per-CPU memory allocator is analogous to TLS (Thread-Local
 * Storage) memory: TLS is Thread-Local Storage, whereas the per-CPU
 * memory allocator provides CPU-Local Storage.
 */

#define POOL_SET_NR_ENTRIES	RSEQ_BITS_PER_LONG

/*
 * Smallest allocation should hold enough space for a free list pointer.
 */
#if RSEQ_BITS_PER_LONG == 64
# define POOL_SET_MIN_ENTRY	3	/* Smallest item_len=8 */
#else
# define POOL_SET_MIN_ENTRY	2	/* Smallest item_len=4 */
#endif

/*
 * Skip pool index 0 to ensure allocated entries at index 0 do not match
 * a NULL pointer.
 */
#define FIRST_POOL		1

#define BIT_PER_ULONG		(8 * sizeof(unsigned long))

#define MOVE_PAGES_BATCH_SIZE	4096

#define RANGE_HEADER_OFFSET	sizeof(struct rseq_mempool_range)

struct free_list_node;

struct free_list_node {
	struct free_list_node *next;
};

enum mempool_type {
	MEMPOOL_TYPE_GLOBAL = 0,	/* Default */
	MEMPOOL_TYPE_PERCPU = 1,
};

struct rseq_mempool_attr {
	bool mmap_set;
	void *(*mmap_func)(void *priv, size_t len);
	int (*munmap_func)(void *priv, void *ptr, size_t len);
	void *mmap_priv;

	bool robust_set;

	enum mempool_type type;
	size_t stride;
	int max_nr_cpus;
};

struct rseq_mempool_range;

struct rseq_mempool_range {
	struct rseq_mempool_range *next;
	struct rseq_mempool *pool;	/* Backward ref. to container pool. */
	void *header;
	void *base;
	size_t next_unused;
	/* Track alloc/free. */
	unsigned long *alloc_bitmap;
};

struct rseq_mempool {
	/* Linked-list of ranges. */
	struct rseq_mempool_range *ranges;

	size_t item_len;
	int item_order;

	/*
	 * The free list chains freed items on the CPU 0 address range.
	 * We should rethink this decision if false sharing between
	 * malloc/free from other CPUs and data accesses from CPU 0
	 * becomes an issue. This is a NULL-terminated singly-linked
	 * list.
	 */
	struct free_list_node *free_list_head;

	/* This lock protects allocation/free within the pool. */
	pthread_mutex_t lock;

	struct rseq_mempool_attr attr;
	char *name;
};

/*
 * Pool set entries are indexed by item_len rounded to the next power of
 * 2. A pool set can contain NULL pool entries, in which case the next
 * large enough entry will be used for allocation.
 */
struct rseq_mempool_set {
	/* This lock protects add vs malloc/zmalloc within the pool set. */
	pthread_mutex_t lock;
	struct rseq_mempool *entries[POOL_SET_NR_ENTRIES];
};

static
void *__rseq_pool_percpu_ptr(struct rseq_mempool *pool, int cpu,
		uintptr_t item_offset, size_t stride)
{
	/* TODO: Implement multi-ranges support. */
	return pool->ranges->base + (stride * cpu) + item_offset;
}

static
void rseq_percpu_zero_item(struct rseq_mempool *pool, uintptr_t item_offset)
{
	int i;

	for (i = 0; i < pool->attr.max_nr_cpus; i++) {
		char *p = __rseq_pool_percpu_ptr(pool, i,
				item_offset, pool->attr.stride);
		memset(p, 0, pool->item_len);
	}
}

//TODO: this will need to be reimplemented for ranges,
//which cannot use __rseq_pool_percpu_ptr.
#if 0 //#ifdef HAVE_LIBNUMA
static
int rseq_mempool_range_init_numa(struct rseq_mempool *pool, struct rseq_mempool_range *range, int numa_flags)
{
	unsigned long nr_pages, page_len;
	long ret;
	int cpu;

	if (!numa_flags)
		return 0;
	page_len = rseq_get_page_len();
	nr_pages = pool->attr.stride >> rseq_get_count_order_ulong(page_len);
	for (cpu = 0; cpu < pool->attr.max_nr_cpus; cpu++) {

		int status[MOVE_PAGES_BATCH_SIZE];
		int nodes[MOVE_PAGES_BATCH_SIZE];
		void *pages[MOVE_PAGES_BATCH_SIZE];

		nodes[0] = numa_node_of_cpu(cpu);
		for (size_t k = 1; k < RSEQ_ARRAY_SIZE(nodes); ++k) {
			nodes[k] = nodes[0];
		}

		for (unsigned long page = 0; page < nr_pages;) {

			size_t max_k = RSEQ_ARRAY_SIZE(pages);
			size_t left = nr_pages - page;

			if (left < max_k) {
				max_k = left;
			}

			for (size_t k = 0; k < max_k; ++k, ++page) {
				pages[k] = __rseq_pool_percpu_ptr(pool, cpu, page * page_len);
				status[k] = -EPERM;
			}

			ret = move_pages(0, max_k, pages, nodes, status, numa_flags);

			if (ret < 0)
				return ret;

			if (ret > 0) {
				fprintf(stderr, "%lu pages were not migrated\n", ret);
				for (size_t k = 0; k < max_k; ++k) {
					if (status[k] < 0)
						fprintf(stderr,
							"Error while moving page %p to numa node %d: %u\n",
							pages[k], nodes[k], -status[k]);
				}
			}
		}
	}
	return 0;
}

int rseq_mempool_init_numa(struct rseq_mempool *pool, int numa_flags)
{
	struct rseq_mempool_range *range;
	int ret;

	if (!numa_flags)
		return 0;
	for (range = pool->ranges; range; range = range->next) {
		ret = rseq_mempool_range_init_numa(pool, range, numa_flags);
		if (ret)
			return ret;
	}
	return 0;
}
#else
int rseq_mempool_init_numa(struct rseq_mempool *pool __attribute__((unused)),
		int numa_flags __attribute__((unused)))
{
	return 0;
}
#endif

static
void *default_mmap_func(void *priv __attribute__((unused)), size_t len)
{
	void *base;

	base = mmap(NULL, len, PROT_READ | PROT_WRITE,
			MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
	if (base == MAP_FAILED)
		return NULL;
	return base;
}

static
int default_munmap_func(void *priv __attribute__((unused)), void *ptr, size_t len)
{
	return munmap(ptr, len);
}

static
int create_alloc_bitmap(struct rseq_mempool *pool, struct rseq_mempool_range *range)
{
	size_t count;

	count = ((pool->attr.stride >> pool->item_order) + BIT_PER_ULONG - 1) / BIT_PER_ULONG;

	/*
	 * Not being able to create the validation bitmap is an error
	 * that needs to be reported.
	 */
	range->alloc_bitmap = calloc(count, sizeof(unsigned long));
	if (!range->alloc_bitmap)
		return -1;
	return 0;
}

static
const char *get_pool_name(const struct rseq_mempool *pool)
{
	return pool->name ? : "<anonymous>";
}

static
bool addr_in_pool(const struct rseq_mempool *pool, void *addr)
{
	struct rseq_mempool_range *range;

	for (range = pool->ranges; range; range = range->next) {
		if (addr >= range->base && addr < range->base + range->next_unused)
			return true;
	}
	return false;
}

/* Always inline for __builtin_return_address(0). */
static inline __attribute__((always_inline))
void check_free_list(const struct rseq_mempool *pool)
{
	size_t total_item = 0, total_never_allocated = 0, total_freed = 0,
		max_list_traversal = 0, traversal_iteration = 0;
	struct rseq_mempool_range *range;

	if (!pool->attr.robust_set)
		return;

	for (range = pool->ranges; range; range = range->next) {
		total_item += pool->attr.stride >> pool->item_order;
		total_never_allocated += (pool->attr.stride - range->next_unused) >> pool->item_order;
	}
	max_list_traversal = total_item - total_never_allocated;

	for (struct free_list_node *node = pool->free_list_head, *prev = NULL;
	     node;
	     prev = node,
	     node = node->next) {

		void *node_addr = node;

		if (traversal_iteration >= max_list_traversal) {
			fprintf(stderr, "%s: Corrupted free-list; Possibly infinite loop in pool \"%s\" (%p), caller %p.\n",
				__func__, get_pool_name(pool), pool, __builtin_return_address(0));
			abort();
		}

		/* Node is out of range. */
		if (!addr_in_pool(pool, node_addr)) {
			if (prev)
				fprintf(stderr, "%s: Corrupted free-list node %p -> [out-of-range %p] in pool \"%s\" (%p), caller %p.\n",
					__func__, prev, node, get_pool_name(pool), pool, __builtin_return_address(0));
			else
				fprintf(stderr, "%s: Corrupted free-list node [out-of-range %p] in pool \"%s\" (%p), caller %p.\n",
					__func__, node, get_pool_name(pool), pool, __builtin_return_address(0));
			abort();
		}

		traversal_iteration++;
		total_freed++;
	}

	if (total_never_allocated + total_freed != total_item) {
		fprintf(stderr, "%s: Corrupted free-list in pool \"%s\" (%p); total-item: %zu total-never-used: %zu total-freed: %zu, caller %p.\n",
			__func__, get_pool_name(pool), pool, total_item, total_never_allocated, total_freed, __builtin_return_address(0));
		abort();
	}
}

/* Always inline for __builtin_return_address(0). */
static inline __attribute__((always_inline))
void destroy_alloc_bitmap(struct rseq_mempool *pool, struct rseq_mempool_range *range)
{
	unsigned long *bitmap = range->alloc_bitmap;
	size_t count, total_leaks = 0;

	if (!bitmap)
		return;

	count = ((pool->attr.stride >> pool->item_order) + BIT_PER_ULONG - 1) / BIT_PER_ULONG;

	/* Assert that all items in the pool were freed. */
	for (size_t k = 0; k < count; ++k)
		total_leaks += rseq_hweight_ulong(bitmap[k]);
	if (total_leaks) {
		fprintf(stderr, "%s: Pool \"%s\" (%p) has %zu leaked items on destroy, caller: %p.\n",
			__func__, get_pool_name(pool), pool, total_leaks, (void *) __builtin_return_address(0));
		abort();
	}

	free(bitmap);
}

/* Always inline for __builtin_return_address(0). */
static inline __attribute__((always_inline))
int rseq_mempool_range_destroy(struct rseq_mempool *pool,
		struct rseq_mempool_range *range)
{
	destroy_alloc_bitmap(pool, range);
	/* range is a header located one page before the aligned mapping. */
	return pool->attr.munmap_func(pool->attr.mmap_priv, range->header,
			(pool->attr.stride * pool->attr.max_nr_cpus) + rseq_get_page_len());
}

/*
 * Allocate a memory mapping aligned on @alignment, with an optional
 * @pre_header before the mapping.
 */
static
void *aligned_mmap_anonymous(struct rseq_mempool *pool,
		size_t page_size, size_t len, size_t alignment,
		void **pre_header, size_t pre_header_len)
{
	size_t minimum_page_count, page_count, extra, total_allocate = 0;
	int page_order;
	void *ptr;

	if (len < page_size || alignment < page_size ||
			!is_pow2(len) || !is_pow2(alignment)) {
		errno = EINVAL;
		return NULL;
	}
	page_order = rseq_get_count_order_ulong(page_size);
	if (page_order < 0) {
		errno = EINVAL;
		return NULL;
	}
	if (pre_header_len && (pre_header_len & (page_size - 1))) {
		errno = EINVAL;
		return NULL;
	}

	minimum_page_count = (pre_header_len + len) >> page_order;
	page_count = (pre_header_len + len + alignment - page_size) >> page_order;

	assert(page_count >= minimum_page_count);

	ptr = pool->attr.mmap_func(pool->attr.mmap_priv, page_count << page_order);
	if (!ptr)
		goto alloc_error;

	total_allocate = page_count << page_order;

	if (!(((uintptr_t) ptr + pre_header_len) & (alignment - 1))) {
		/* Pointer is already aligned. ptr points to pre_header. */
		goto out;
	}

	/* Unmap extra before. */
	extra = offset_align((uintptr_t) ptr + pre_header_len, alignment);
	assert(!(extra & (page_size - 1)));
	if (pool->attr.munmap_func(pool->attr.mmap_priv, ptr, extra)) {
		perror("munmap");
		abort();
	}
	total_allocate -= extra;
	ptr += extra;	/* ptr points to pre_header */
	page_count -= extra >> page_order;
out:
	assert(page_count >= minimum_page_count);

	if (page_count > minimum_page_count) {
		void *extra_ptr;

		/* Unmap extra after. */
		extra_ptr = ptr + (minimum_page_count << page_order);
		extra = (page_count - minimum_page_count) << page_order;
		if (pool->attr.munmap_func(pool->attr.mmap_priv, extra_ptr, extra)) {
			perror("munmap");
			abort();
		}
		total_allocate -= extra;
	}

	assert(!(((uintptr_t)ptr + pre_header_len) & (alignment - 1)));
	assert(total_allocate == len + pre_header_len);

alloc_error:
	if (ptr) {
		if (pre_header)
			*pre_header = ptr;
		ptr += pre_header_len;
	}
	return ptr;
}

static
struct rseq_mempool_range *rseq_mempool_range_create(struct rseq_mempool *pool)
{
	struct rseq_mempool_range *range;
	unsigned long page_size;
	void *header;
	void *base;

	page_size = rseq_get_page_len();

	base = aligned_mmap_anonymous(pool, page_size,
			pool->attr.stride * pool->attr.max_nr_cpus,
			pool->attr.stride,
			&header, page_size);
	if (!base)
		return NULL;
	range = (struct rseq_mempool_range *) (base - RANGE_HEADER_OFFSET);
	range->pool = pool;
	range->base = base;
	range->header = header;
	if (pool->attr.robust_set) {
		if (create_alloc_bitmap(pool, range))
			goto error_alloc;
	}
	return range;

error_alloc:
	(void) rseq_mempool_range_destroy(pool, range);
	return NULL;
}

int rseq_mempool_destroy(struct rseq_mempool *pool)
{
	struct rseq_mempool_range *range, *next_range;
	int ret = 0;

	if (!pool)
		return 0;
	check_free_list(pool);
	/* Iteration safe against removal. */
	for (range = pool->ranges; range && (next_range = range->next, 1); range = next_range) {
		if (rseq_mempool_range_destroy(pool, range))
			goto end;
		/* Update list head to keep list coherent in case of partial failure. */
		pool->ranges = next_range;
	}
	pthread_mutex_destroy(&pool->lock);
	free(pool->name);
	memset(pool, 0, sizeof(*pool));
end:
	return ret;
}

struct rseq_mempool *rseq_mempool_create(const char *pool_name,
		size_t item_len, const struct rseq_mempool_attr *_attr)
{
	struct rseq_mempool *pool;
	struct rseq_mempool_attr attr = {};
	int order;

	/* Make sure each item is large enough to contain free list pointers. */
	if (item_len < sizeof(void *))
		item_len = sizeof(void *);

	/* Align item_len on next power of two. */
	order = rseq_get_count_order_ulong(item_len);
	if (order < 0) {
		errno = EINVAL;
		return NULL;
	}
	item_len = 1UL << order;

	if (_attr)
		memcpy(&attr, _attr, sizeof(attr));
	if (!attr.mmap_set) {
		attr.mmap_func = default_mmap_func;
		attr.munmap_func = default_munmap_func;
		attr.mmap_priv = NULL;
	}

	switch (attr.type) {
	case MEMPOOL_TYPE_PERCPU:
		if (attr.max_nr_cpus < 0) {
			errno = EINVAL;
			return NULL;
		}
		if (attr.max_nr_cpus == 0) {
			/* Auto-detect */
			attr.max_nr_cpus = get_possible_cpus_array_len();
			if (attr.max_nr_cpus == 0) {
				errno = EINVAL;
				return NULL;
			}
		}
		break;
	case MEMPOOL_TYPE_GLOBAL:
		/* Use a 1-cpu pool for global mempool type. */
		attr.max_nr_cpus = 1;
		break;
	}
	if (!attr.stride)
		attr.stride = RSEQ_MEMPOOL_STRIDE;	/* Use default */
	if (item_len > attr.stride || attr.stride < (size_t) rseq_get_page_len() ||
			!is_pow2(attr.stride)) {
		errno = EINVAL;
		return NULL;
	}

	pool = calloc(1, sizeof(struct rseq_mempool));
	if (!pool)
		return NULL;

	memcpy(&pool->attr, &attr, sizeof(attr));
	pthread_mutex_init(&pool->lock, NULL);
	pool->item_len = item_len;
	pool->item_order = order;

	//TODO: implement multi-range support.
	pool->ranges = rseq_mempool_range_create(pool);
	if (!pool->ranges)
		goto error_alloc;

	if (pool_name) {
		pool->name = strdup(pool_name);
		if (!pool->name)
			goto error_alloc;
	}
	return pool;

error_alloc:
	rseq_mempool_destroy(pool);
	errno = ENOMEM;
	return NULL;
}

/* Always inline for __builtin_return_address(0). */
static inline __attribute__((always_inline))
void set_alloc_slot(struct rseq_mempool *pool, size_t item_offset)
{
	unsigned long *bitmap = pool->ranges->alloc_bitmap;
	size_t item_index = item_offset >> pool->item_order;
	unsigned long mask;
	size_t k;

	if (!bitmap)
		return;

	k = item_index / BIT_PER_ULONG;
	mask = 1ULL << (item_index % BIT_PER_ULONG);

	/* Print error if bit is already set. */
	if (bitmap[k] & mask) {
		fprintf(stderr, "%s: Allocator corruption detected for pool: \"%s\" (%p), item offset: %zu, caller: %p.\n",
			__func__, get_pool_name(pool), pool, item_offset, (void *) __builtin_return_address(0));
		abort();
	}
	bitmap[k] |= mask;
}

static
void __rseq_percpu *__rseq_percpu_malloc(struct rseq_mempool *pool, bool zeroed)
{
	struct free_list_node *node;
	uintptr_t item_offset;
	void __rseq_percpu *addr;

	pthread_mutex_lock(&pool->lock);
	/* Get first entry from free list. */
	node = pool->free_list_head;
	if (node != NULL) {
		/* Remove node from free list (update head). */
		pool->free_list_head = node->next;
		item_offset = (uintptr_t) ((void *) node - pool->ranges->base);
		addr = (void __rseq_percpu *) (pool->ranges->base + item_offset);
		goto end;
	}
	if (pool->ranges->next_unused + pool->item_len > pool->attr.stride) {
		errno = ENOMEM;
		addr = NULL;
		goto end;
	}
	item_offset = pool->ranges->next_unused;
	addr = (void __rseq_percpu *) (pool->ranges->base + item_offset);
	pool->ranges->next_unused += pool->item_len;
end:
	if (addr)
		set_alloc_slot(pool, item_offset);
	pthread_mutex_unlock(&pool->lock);
	if (zeroed && addr)
		rseq_percpu_zero_item(pool, item_offset);
	return addr;
}

void __rseq_percpu *rseq_mempool_percpu_malloc(struct rseq_mempool *pool)
{
	return __rseq_percpu_malloc(pool, false);
}

void __rseq_percpu *rseq_mempool_percpu_zmalloc(struct rseq_mempool *pool)
{
	return __rseq_percpu_malloc(pool, true);
}

/* Always inline for __builtin_return_address(0). */
static inline __attribute__((always_inline))
void clear_alloc_slot(struct rseq_mempool *pool, size_t item_offset)
{
	unsigned long *bitmap = pool->ranges->alloc_bitmap;
	size_t item_index = item_offset >> pool->item_order;
	unsigned long mask;
	size_t k;

	if (!bitmap)
		return;

	k = item_index / BIT_PER_ULONG;
	mask = 1ULL << (item_index % BIT_PER_ULONG);

	/* Print error if bit is not set. */
	if (!(bitmap[k] & mask)) {
		fprintf(stderr, "%s: Double-free detected for pool: \"%s\" (%p), item offset: %zu, caller: %p.\n",
			__func__, get_pool_name(pool), pool, item_offset,
			(void *) __builtin_return_address(0));
		abort();
	}
	bitmap[k] &= ~mask;
}

void librseq_mempool_percpu_free(void __rseq_percpu *_ptr, size_t stride)
{
	uintptr_t ptr = (uintptr_t) _ptr;
	void *range_base = (void *) (ptr & (~(stride - 1)));
	struct rseq_mempool_range *range = (struct rseq_mempool_range *) (range_base - RANGE_HEADER_OFFSET);
	struct rseq_mempool *pool = range->pool;
	uintptr_t item_offset = ptr & (stride - 1);
	struct free_list_node *head, *item;

	pthread_mutex_lock(&pool->lock);
	clear_alloc_slot(pool, item_offset);
	/* Add ptr to head of free list */
	head = pool->free_list_head;
	/* Free-list is in CPU 0 range. */
	item = (struct free_list_node *) ptr;
	item->next = head;
	pool->free_list_head = item;
	pthread_mutex_unlock(&pool->lock);
}

struct rseq_mempool_set *rseq_mempool_set_create(void)
{
	struct rseq_mempool_set *pool_set;

	pool_set = calloc(1, sizeof(struct rseq_mempool_set));
	if (!pool_set)
		return NULL;
	pthread_mutex_init(&pool_set->lock, NULL);
	return pool_set;
}

int rseq_mempool_set_destroy(struct rseq_mempool_set *pool_set)
{
	int order, ret;

	for (order = POOL_SET_MIN_ENTRY; order < POOL_SET_NR_ENTRIES; order++) {
		struct rseq_mempool *pool = pool_set->entries[order];

		if (!pool)
			continue;
		ret = rseq_mempool_destroy(pool);
		if (ret)
			return ret;
		pool_set->entries[order] = NULL;
	}
	pthread_mutex_destroy(&pool_set->lock);
	free(pool_set);
	return 0;
}

/* Ownership of pool is handed over to pool set on success. */
int rseq_mempool_set_add_pool(struct rseq_mempool_set *pool_set, struct rseq_mempool *pool)
{
	size_t item_order = pool->item_order;
	int ret = 0;

	pthread_mutex_lock(&pool_set->lock);
	if (pool_set->entries[item_order]) {
		errno = EBUSY;
		ret = -1;
		goto end;
	}
	pool_set->entries[pool->item_order] = pool;
end:
	pthread_mutex_unlock(&pool_set->lock);
	return ret;
}

static
void __rseq_percpu *__rseq_mempool_set_malloc(struct rseq_mempool_set *pool_set, size_t len, bool zeroed)
{
	int order, min_order = POOL_SET_MIN_ENTRY;
	struct rseq_mempool *pool;
	void __rseq_percpu *addr;

	order = rseq_get_count_order_ulong(len);
	if (order > POOL_SET_MIN_ENTRY)
		min_order = order;
again:
	pthread_mutex_lock(&pool_set->lock);
	/* First smallest present pool where @len fits. */
	for (order = min_order; order < POOL_SET_NR_ENTRIES; order++) {
		pool = pool_set->entries[order];

		if (!pool)
			continue;
		if (pool->item_len >= len)
			goto found;
	}
	pool = NULL;
found:
	pthread_mutex_unlock(&pool_set->lock);
	if (pool) {
		addr = __rseq_percpu_malloc(pool, zeroed);
		if (addr == NULL && errno == ENOMEM) {
			/*
			 * If the allocation failed, try again with a
			 * larger pool.
			 */
			min_order = order + 1;
			goto again;
		}
	} else {
		/* Not found. */
		errno = ENOMEM;
		addr = NULL;
	}
	return addr;
}

void __rseq_percpu *rseq_mempool_set_percpu_malloc(struct rseq_mempool_set *pool_set, size_t len)
{
	return __rseq_mempool_set_malloc(pool_set, len, false);
}

void __rseq_percpu *rseq_mempool_set_percpu_zmalloc(struct rseq_mempool_set *pool_set, size_t len)
{
	return __rseq_mempool_set_malloc(pool_set, len, true);
}

struct rseq_mempool_attr *rseq_mempool_attr_create(void)
{
	return calloc(1, sizeof(struct rseq_mempool_attr));
}

void rseq_mempool_attr_destroy(struct rseq_mempool_attr *attr)
{
	free(attr);
}

int rseq_mempool_attr_set_mmap(struct rseq_mempool_attr *attr,
		void *(*mmap_func)(void *priv, size_t len),
		int (*munmap_func)(void *priv, void *ptr, size_t len),
		void *mmap_priv)
{
	if (!attr) {
		errno = EINVAL;
		return -1;
	}
	attr->mmap_set = true;
	attr->mmap_func = mmap_func;
	attr->munmap_func = munmap_func;
	attr->mmap_priv = mmap_priv;
	return 0;
}

int rseq_mempool_attr_set_robust(struct rseq_mempool_attr *attr)
{
	if (!attr) {
		errno = EINVAL;
		return -1;
	}
	attr->robust_set = true;
	return 0;
}

int rseq_mempool_attr_set_percpu(struct rseq_mempool_attr *attr,
		size_t stride, int max_nr_cpus)
{
	if (!attr) {
		errno = EINVAL;
		return -1;
	}
	attr->type = MEMPOOL_TYPE_PERCPU;
	attr->stride = stride;
	attr->max_nr_cpus = max_nr_cpus;
	return 0;
}

int rseq_mempool_attr_set_global(struct rseq_mempool_attr *attr,
		size_t stride)
{
	if (!attr) {
		errno = EINVAL;
		return -1;
	}
	attr->type = MEMPOOL_TYPE_GLOBAL;
	attr->stride = stride;
	attr->max_nr_cpus = 0;
	return 0;
}