kernel/sync/arc.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! A reference-counted pointer.
4//!
5//! This module implements a way for users to create reference-counted objects and pointers to
6//! them. Such a pointer automatically increments and decrements the count, and drops the
7//! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8//! threads.
9//!
10//! It is different from the standard library's [`Arc`] in a few ways:
11//! 1. It is backed by the kernel's `refcount_t` type.
12//! 2. It does not support weak references, which allows it to be half the size.
13//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15//! 5. The object in [`Arc`] is pinned implicitly.
16//!
17//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
18
19use crate::{
20 alloc::{AllocError, Flags, KBox},
21 bindings,
22 init::InPlaceInit,
23 try_init,
24 types::{ForeignOwnable, Opaque},
25};
26use core::{
27 alloc::Layout,
28 fmt,
29 marker::PhantomData,
30 mem::{ManuallyDrop, MaybeUninit},
31 ops::{Deref, DerefMut},
32 pin::Pin,
33 ptr::NonNull,
34};
35use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit};
36
37mod std_vendor;
38
39/// A reference-counted pointer to an instance of `T`.
40///
41/// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43///
44/// # Invariants
45///
46/// The reference count on an instance of [`Arc`] is always non-zero.
47/// The object pointed to by [`Arc`] is always pinned.
48///
49/// # Examples
50///
51/// ```
52/// use kernel::sync::Arc;
53///
54/// struct Example {
55/// a: u32,
56/// b: u32,
57/// }
58///
59/// // Create a refcounted instance of `Example`.
60/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
61///
62/// // Get a new pointer to `obj` and increment the refcount.
63/// let cloned = obj.clone();
64///
65/// // Assert that both `obj` and `cloned` point to the same underlying object.
66/// assert!(core::ptr::eq(&*obj, &*cloned));
67///
68/// // Destroy `obj` and decrement its refcount.
69/// drop(obj);
70///
71/// // Check that the values are still accessible through `cloned`.
72/// assert_eq!(cloned.a, 10);
73/// assert_eq!(cloned.b, 20);
74///
75/// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76/// # Ok::<(), Error>(())
77/// ```
78///
79/// Using `Arc<T>` as the type of `self`:
80///
81/// ```
82/// use kernel::sync::Arc;
83///
84/// struct Example {
85/// a: u32,
86/// b: u32,
87/// }
88///
89/// impl Example {
90/// fn take_over(self: Arc<Self>) {
91/// // ...
92/// }
93///
94/// fn use_reference(self: &Arc<Self>) {
95/// // ...
96/// }
97/// }
98///
99/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
100/// obj.use_reference();
101/// obj.take_over();
102/// # Ok::<(), Error>(())
103/// ```
104///
105/// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106///
107/// ```
108/// use kernel::sync::{Arc, ArcBorrow};
109///
110/// trait MyTrait {
111/// // Trait has a function whose `self` type is `Arc<Self>`.
112/// fn example1(self: Arc<Self>) {}
113///
114/// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115/// fn example2(self: ArcBorrow<'_, Self>) {}
116/// }
117///
118/// struct Example;
119/// impl MyTrait for Example {}
120///
121/// // `obj` has type `Arc<Example>`.
122/// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
123///
124/// // `coerced` has type `Arc<dyn MyTrait>`.
125/// let coerced: Arc<dyn MyTrait> = obj;
126/// # Ok::<(), Error>(())
127/// ```
128#[repr(transparent)]
129#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
130pub struct Arc<T: ?Sized> {
131 ptr: NonNull<ArcInner<T>>,
132 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as
133 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in
134 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently
135 // meaningful with respect to dropck - but this may change in the future so this is left here
136 // out of an abundance of caution.
137 //
138 // See <https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking>
139 // for more detail on the semantics of dropck in the presence of `PhantomData`.
140 _p: PhantomData<ArcInner<T>>,
141}
142
143#[doc(hidden)]
144#[pin_data]
145#[repr(C)]
146pub struct ArcInner<T: ?Sized> {
147 refcount: Opaque<bindings::refcount_t>,
148 data: T,
149}
150
151impl<T: ?Sized> ArcInner<T> {
152 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
153 ///
154 /// # Safety
155 ///
156 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
157 /// not yet have been destroyed.
158 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
159 let refcount_layout = Layout::new::<bindings::refcount_t>();
160 // SAFETY: The caller guarantees that the pointer is valid.
161 let val_layout = Layout::for_value(unsafe { &*ptr });
162 // SAFETY: We're computing the layout of a real struct that existed when compiling this
163 // binary, so its layout is not so large that it can trigger arithmetic overflow.
164 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
165
166 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
167 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
168 //
169 // This is documented at:
170 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
171 let ptr = ptr as *const ArcInner<T>;
172
173 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
174 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
175 // still valid.
176 let ptr = unsafe { ptr.byte_sub(val_offset) };
177
178 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
179 // address.
180 unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
181 }
182}
183
184// This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
185// dynamically-sized type (DST) `U`.
186#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
187impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
188
189// This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
190#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
191impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
192
193// SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
194// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
195// `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
196// mutable reference when the reference count reaches zero and `T` is dropped.
197unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
198
199// SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
200// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
201// it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
202// `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
203// the reference count reaches zero and `T` is dropped.
204unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
205
206impl<T> InPlaceInit<T> for Arc<T> {
207 type PinnedSelf = Self;
208
209 #[inline]
210 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
211 where
212 E: From<AllocError>,
213 {
214 UniqueArc::try_pin_init(init, flags).map(|u| u.into())
215 }
216
217 #[inline]
218 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
219 where
220 E: From<AllocError>,
221 {
222 UniqueArc::try_init(init, flags).map(|u| u.into())
223 }
224}
225
226impl<T> Arc<T> {
227 /// Constructs a new reference counted instance of `T`.
228 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
229 // INVARIANT: The refcount is initialised to a non-zero value.
230 let value = ArcInner {
231 // SAFETY: There are no safety requirements for this FFI call.
232 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
233 data: contents,
234 };
235
236 let inner = KBox::new(value, flags)?;
237 let inner = KBox::leak(inner).into();
238
239 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
240 // `Arc` object.
241 Ok(unsafe { Self::from_inner(inner) })
242 }
243}
244
245impl<T: ?Sized> Arc<T> {
246 /// Constructs a new [`Arc`] from an existing [`ArcInner`].
247 ///
248 /// # Safety
249 ///
250 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
251 /// count, one of which will be owned by the new [`Arc`] instance.
252 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
253 // INVARIANT: By the safety requirements, the invariants hold.
254 Arc {
255 ptr: inner,
256 _p: PhantomData,
257 }
258 }
259
260 /// Convert the [`Arc`] into a raw pointer.
261 ///
262 /// The raw pointer has ownership of the refcount that this Arc object owned.
263 pub fn into_raw(self) -> *const T {
264 let ptr = self.ptr.as_ptr();
265 core::mem::forget(self);
266 // SAFETY: The pointer is valid.
267 unsafe { core::ptr::addr_of!((*ptr).data) }
268 }
269
270 /// Return a raw pointer to the data in this arc.
271 pub fn as_ptr(this: &Self) -> *const T {
272 let ptr = this.ptr.as_ptr();
273
274 // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`,
275 // field projection to `data`is within bounds of the allocation.
276 unsafe { core::ptr::addr_of!((*ptr).data) }
277 }
278
279 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
280 ///
281 /// # Safety
282 ///
283 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
284 /// must not be called more than once for each previous call to [`Arc::into_raw`].
285 pub unsafe fn from_raw(ptr: *const T) -> Self {
286 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
287 // `Arc` that is still valid.
288 let ptr = unsafe { ArcInner::container_of(ptr) };
289
290 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
291 // reference count held then will be owned by the new `Arc` object.
292 unsafe { Self::from_inner(ptr) }
293 }
294
295 /// Returns an [`ArcBorrow`] from the given [`Arc`].
296 ///
297 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
298 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
299 #[inline]
300 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
301 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
302 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
303 // reference can be created.
304 unsafe { ArcBorrow::new(self.ptr) }
305 }
306
307 /// Compare whether two [`Arc`] pointers reference the same underlying object.
308 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
309 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
310 }
311
312 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
313 ///
314 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
315 /// this method will never call the destructor of the value.
316 ///
317 /// # Examples
318 ///
319 /// ```
320 /// use kernel::sync::{Arc, UniqueArc};
321 ///
322 /// let arc = Arc::new(42, GFP_KERNEL)?;
323 /// let unique_arc = arc.into_unique_or_drop();
324 ///
325 /// // The above conversion should succeed since refcount of `arc` is 1.
326 /// assert!(unique_arc.is_some());
327 ///
328 /// assert_eq!(*(unique_arc.unwrap()), 42);
329 ///
330 /// # Ok::<(), Error>(())
331 /// ```
332 ///
333 /// ```
334 /// use kernel::sync::{Arc, UniqueArc};
335 ///
336 /// let arc = Arc::new(42, GFP_KERNEL)?;
337 /// let another = arc.clone();
338 ///
339 /// let unique_arc = arc.into_unique_or_drop();
340 ///
341 /// // The above conversion should fail since refcount of `arc` is >1.
342 /// assert!(unique_arc.is_none());
343 ///
344 /// # Ok::<(), Error>(())
345 /// ```
346 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
347 // We will manually manage the refcount in this method, so we disable the destructor.
348 let me = ManuallyDrop::new(self);
349 // SAFETY: We own a refcount, so the pointer is still valid.
350 let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
351
352 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
353 // return without further touching the `Arc`. If the refcount reaches zero, then there are
354 // no other arcs, and we can create a `UniqueArc`.
355 //
356 // SAFETY: We own a refcount, so the pointer is not dangling.
357 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
358 if is_zero {
359 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
360 // accesses to the refcount.
361 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
362
363 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
364 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
365 // their values.
366 Some(Pin::from(UniqueArc {
367 inner: ManuallyDrop::into_inner(me),
368 }))
369 } else {
370 None
371 }
372 }
373}
374
375// SAFETY: The `into_foreign` function returns a pointer that is well-aligned.
376unsafe impl<T: 'static> ForeignOwnable for Arc<T> {
377 type PointedTo = ArcInner<T>;
378 type Borrowed<'a> = ArcBorrow<'a, T>;
379 type BorrowedMut<'a> = Self::Borrowed<'a>;
380
381 fn into_foreign(self) -> *mut Self::PointedTo {
382 ManuallyDrop::new(self).ptr.as_ptr()
383 }
384
385 unsafe fn from_foreign(ptr: *mut Self::PointedTo) -> Self {
386 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
387 // call to `Self::into_foreign`.
388 let inner = unsafe { NonNull::new_unchecked(ptr) };
389
390 // SAFETY: By the safety requirement of this function, we know that `ptr` came from
391 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
392 // holds a reference count increment that is transferrable to us.
393 unsafe { Self::from_inner(inner) }
394 }
395
396 unsafe fn borrow<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T> {
397 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
398 // call to `Self::into_foreign`.
399 let inner = unsafe { NonNull::new_unchecked(ptr) };
400
401 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
402 // for the lifetime of the returned value.
403 unsafe { ArcBorrow::new(inner) }
404 }
405
406 unsafe fn borrow_mut<'a>(ptr: *mut Self::PointedTo) -> ArcBorrow<'a, T> {
407 // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety
408 // requirements for `borrow`.
409 unsafe { Self::borrow(ptr) }
410 }
411}
412
413impl<T: ?Sized> Deref for Arc<T> {
414 type Target = T;
415
416 fn deref(&self) -> &Self::Target {
417 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
418 // safe to dereference it.
419 unsafe { &self.ptr.as_ref().data }
420 }
421}
422
423impl<T: ?Sized> AsRef<T> for Arc<T> {
424 fn as_ref(&self) -> &T {
425 self.deref()
426 }
427}
428
429impl<T: ?Sized> Clone for Arc<T> {
430 fn clone(&self) -> Self {
431 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
432 // safe to dereference it.
433 let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
434
435 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
436 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
437 // safe to increment the refcount.
438 unsafe { bindings::refcount_inc(refcount) };
439
440 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
441 unsafe { Self::from_inner(self.ptr) }
442 }
443}
444
445impl<T: ?Sized> Drop for Arc<T> {
446 fn drop(&mut self) {
447 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
448 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
449 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
450 // freed/invalid memory as long as it is never dereferenced.
451 let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
452
453 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
454 // this instance is being dropped, so the broken invariant is not observable.
455 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
456 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
457 if is_zero {
458 // The count reached zero, we must free the memory.
459 //
460 // SAFETY: The pointer was initialised from the result of `KBox::leak`.
461 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
462 }
463 }
464}
465
466impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
467 fn from(item: UniqueArc<T>) -> Self {
468 item.inner
469 }
470}
471
472impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
473 fn from(item: Pin<UniqueArc<T>>) -> Self {
474 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
475 unsafe { Pin::into_inner_unchecked(item).inner }
476 }
477}
478
479/// A borrowed reference to an [`Arc`] instance.
480///
481/// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
482/// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
483///
484/// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
485/// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
486/// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
487/// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
488/// needed.
489///
490/// # Invariants
491///
492/// There are no mutable references to the underlying [`Arc`], and it remains valid for the
493/// lifetime of the [`ArcBorrow`] instance.
494///
495/// # Example
496///
497/// ```
498/// use kernel::sync::{Arc, ArcBorrow};
499///
500/// struct Example;
501///
502/// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
503/// e.into()
504/// }
505///
506/// let obj = Arc::new(Example, GFP_KERNEL)?;
507/// let cloned = do_something(obj.as_arc_borrow());
508///
509/// // Assert that both `obj` and `cloned` point to the same underlying object.
510/// assert!(core::ptr::eq(&*obj, &*cloned));
511/// # Ok::<(), Error>(())
512/// ```
513///
514/// Using `ArcBorrow<T>` as the type of `self`:
515///
516/// ```
517/// use kernel::sync::{Arc, ArcBorrow};
518///
519/// struct Example {
520/// a: u32,
521/// b: u32,
522/// }
523///
524/// impl Example {
525/// fn use_reference(self: ArcBorrow<'_, Self>) {
526/// // ...
527/// }
528/// }
529///
530/// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
531/// obj.as_arc_borrow().use_reference();
532/// # Ok::<(), Error>(())
533/// ```
534#[repr(transparent)]
535#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
536pub struct ArcBorrow<'a, T: ?Sized + 'a> {
537 inner: NonNull<ArcInner<T>>,
538 _p: PhantomData<&'a ()>,
539}
540
541// This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
542// `ArcBorrow<U>`.
543#[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
544impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
545 for ArcBorrow<'_, T>
546{
547}
548
549impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
550 fn clone(&self) -> Self {
551 *self
552 }
553}
554
555impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
556
557impl<T: ?Sized> ArcBorrow<'_, T> {
558 /// Creates a new [`ArcBorrow`] instance.
559 ///
560 /// # Safety
561 ///
562 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
563 /// 1. That `inner` remains valid;
564 /// 2. That no mutable references to `inner` are created.
565 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
566 // INVARIANT: The safety requirements guarantee the invariants.
567 Self {
568 inner,
569 _p: PhantomData,
570 }
571 }
572
573 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
574 /// [`Arc::into_raw`] or [`Arc::as_ptr`].
575 ///
576 /// # Safety
577 ///
578 /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`].
579 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
580 /// not hit zero.
581 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
582 /// [`UniqueArc`] reference to this value.
583 pub unsafe fn from_raw(ptr: *const T) -> Self {
584 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
585 // `Arc` that is still valid.
586 let ptr = unsafe { ArcInner::container_of(ptr) };
587
588 // SAFETY: The caller promises that the value remains valid since the reference count must
589 // not hit zero, and no mutable reference will be created since that would involve a
590 // `UniqueArc`.
591 unsafe { Self::new(ptr) }
592 }
593}
594
595impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
596 fn from(b: ArcBorrow<'_, T>) -> Self {
597 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
598 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
599 // increment.
600 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
601 .deref()
602 .clone()
603 }
604}
605
606impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
607 type Target = T;
608
609 fn deref(&self) -> &Self::Target {
610 // SAFETY: By the type invariant, the underlying object is still alive with no mutable
611 // references to it, so it is safe to create a shared reference.
612 unsafe { &self.inner.as_ref().data }
613 }
614}
615
616/// A refcounted object that is known to have a refcount of 1.
617///
618/// It is mutable and can be converted to an [`Arc`] so that it can be shared.
619///
620/// # Invariants
621///
622/// `inner` always has a reference count of 1.
623///
624/// # Examples
625///
626/// In the following example, we make changes to the inner object before turning it into an
627/// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
628/// cannot fail.
629///
630/// ```
631/// use kernel::sync::{Arc, UniqueArc};
632///
633/// struct Example {
634/// a: u32,
635/// b: u32,
636/// }
637///
638/// fn test() -> Result<Arc<Example>> {
639/// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
640/// x.a += 1;
641/// x.b += 1;
642/// Ok(x.into())
643/// }
644///
645/// # test().unwrap();
646/// ```
647///
648/// In the following example we first allocate memory for a refcounted `Example` but we don't
649/// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
650/// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
651/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
652///
653/// ```
654/// use kernel::sync::{Arc, UniqueArc};
655///
656/// struct Example {
657/// a: u32,
658/// b: u32,
659/// }
660///
661/// fn test() -> Result<Arc<Example>> {
662/// let x = UniqueArc::new_uninit(GFP_KERNEL)?;
663/// Ok(x.write(Example { a: 10, b: 20 }).into())
664/// }
665///
666/// # test().unwrap();
667/// ```
668///
669/// In the last example below, the caller gets a pinned instance of `Example` while converting to
670/// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
671/// initialisation, for example, when initialising fields that are wrapped in locks.
672///
673/// ```
674/// use kernel::sync::{Arc, UniqueArc};
675///
676/// struct Example {
677/// a: u32,
678/// b: u32,
679/// }
680///
681/// fn test() -> Result<Arc<Example>> {
682/// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
683/// // We can modify `pinned` because it is `Unpin`.
684/// pinned.as_mut().a += 1;
685/// Ok(pinned.into())
686/// }
687///
688/// # test().unwrap();
689/// ```
690pub struct UniqueArc<T: ?Sized> {
691 inner: Arc<T>,
692}
693
694impl<T> InPlaceInit<T> for UniqueArc<T> {
695 type PinnedSelf = Pin<Self>;
696
697 #[inline]
698 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
699 where
700 E: From<AllocError>,
701 {
702 UniqueArc::new_uninit(flags)?.write_pin_init(init)
703 }
704
705 #[inline]
706 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
707 where
708 E: From<AllocError>,
709 {
710 UniqueArc::new_uninit(flags)?.write_init(init)
711 }
712}
713
714impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
715 type Initialized = UniqueArc<T>;
716
717 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
718 let slot = self.as_mut_ptr();
719 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
720 // slot is valid.
721 unsafe { init.__init(slot)? };
722 // SAFETY: All fields have been initialized.
723 Ok(unsafe { self.assume_init() })
724 }
725
726 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
727 let slot = self.as_mut_ptr();
728 // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
729 // slot is valid and will not be moved, because we pin it later.
730 unsafe { init.__pinned_init(slot)? };
731 // SAFETY: All fields have been initialized.
732 Ok(unsafe { self.assume_init() }.into())
733 }
734}
735
736impl<T> UniqueArc<T> {
737 /// Tries to allocate a new [`UniqueArc`] instance.
738 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
739 Ok(Self {
740 // INVARIANT: The newly-created object has a refcount of 1.
741 inner: Arc::new(value, flags)?,
742 })
743 }
744
745 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
746 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
747 // INVARIANT: The refcount is initialised to a non-zero value.
748 let inner = KBox::try_init::<AllocError>(
749 try_init!(ArcInner {
750 // SAFETY: There are no safety requirements for this FFI call.
751 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
752 data <- pin_init::uninit::<T, AllocError>(),
753 }? AllocError),
754 flags,
755 )?;
756 Ok(UniqueArc {
757 // INVARIANT: The newly-created object has a refcount of 1.
758 // SAFETY: The pointer from the `KBox` is valid.
759 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
760 })
761 }
762}
763
764impl<T> UniqueArc<MaybeUninit<T>> {
765 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
766 pub fn write(mut self, value: T) -> UniqueArc<T> {
767 self.deref_mut().write(value);
768 // SAFETY: We just wrote the value to be initialized.
769 unsafe { self.assume_init() }
770 }
771
772 /// Unsafely assume that `self` is initialized.
773 ///
774 /// # Safety
775 ///
776 /// The caller guarantees that the value behind this pointer has been initialized. It is
777 /// *immediate* UB to call this when the value is not initialized.
778 pub unsafe fn assume_init(self) -> UniqueArc<T> {
779 let inner = ManuallyDrop::new(self).inner.ptr;
780 UniqueArc {
781 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
782 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
783 inner: unsafe { Arc::from_inner(inner.cast()) },
784 }
785 }
786
787 /// Initialize `self` using the given initializer.
788 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
789 // SAFETY: The supplied pointer is valid for initialization.
790 match unsafe { init.__init(self.as_mut_ptr()) } {
791 // SAFETY: Initialization completed successfully.
792 Ok(()) => Ok(unsafe { self.assume_init() }),
793 Err(err) => Err(err),
794 }
795 }
796
797 /// Pin-initialize `self` using the given pin-initializer.
798 pub fn pin_init_with<E>(
799 mut self,
800 init: impl PinInit<T, E>,
801 ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
802 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
803 // to ensure it does not move.
804 match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
805 // SAFETY: Initialization completed successfully.
806 Ok(()) => Ok(unsafe { self.assume_init() }.into()),
807 Err(err) => Err(err),
808 }
809 }
810}
811
812impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
813 fn from(obj: UniqueArc<T>) -> Self {
814 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
815 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
816 unsafe { Pin::new_unchecked(obj) }
817 }
818}
819
820impl<T: ?Sized> Deref for UniqueArc<T> {
821 type Target = T;
822
823 fn deref(&self) -> &Self::Target {
824 self.inner.deref()
825 }
826}
827
828impl<T: ?Sized> DerefMut for UniqueArc<T> {
829 fn deref_mut(&mut self) -> &mut Self::Target {
830 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
831 // it is safe to dereference it. Additionally, we know there is only one reference when
832 // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
833 unsafe { &mut self.inner.ptr.as_mut().data }
834 }
835}
836
837impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
838 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
839 fmt::Display::fmt(self.deref(), f)
840 }
841}
842
843impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
844 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
845 fmt::Display::fmt(self.deref(), f)
846 }
847}
848
849impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
850 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
851 fmt::Debug::fmt(self.deref(), f)
852 }
853}
854
855impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
856 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
857 fmt::Debug::fmt(self.deref(), f)
858 }
859}