kernel/list.rs
1// SPDX-License-Identifier: GPL-2.0
2
3// Copyright (C) 2024 Google LLC.
4
5//! A linked list implementation.
6
7use crate::sync::ArcBorrow;
8use crate::types::Opaque;
9use core::iter::{DoubleEndedIterator, FusedIterator};
10use core::marker::PhantomData;
11use core::ptr;
12use pin_init::PinInit;
13
14mod impl_list_item_mod;
15pub use self::impl_list_item_mod::{
16 impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
17};
18
19mod arc;
20pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
21
22mod arc_field;
23pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
24
25/// A linked list.
26///
27/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
28/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
29/// prev/next pointers are not used for several linked lists.
30///
31/// # Invariants
32///
33/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
34/// field of the first element in the list.
35/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
36/// * For every item in the list, the list owns the associated [`ListArc`] reference and has
37/// exclusive access to the `ListLinks` field.
38///
39/// # Examples
40///
41/// ```
42/// use kernel::list::*;
43///
44/// #[pin_data]
45/// struct BasicItem {
46/// value: i32,
47/// #[pin]
48/// links: ListLinks,
49/// }
50///
51/// impl BasicItem {
52/// fn new(value: i32) -> Result<ListArc<Self>> {
53/// ListArc::pin_init(try_pin_init!(Self {
54/// value,
55/// links <- ListLinks::new(),
56/// }), GFP_KERNEL)
57/// }
58/// }
59///
60/// impl_has_list_links! {
61/// impl HasListLinks<0> for BasicItem { self.links }
62/// }
63/// impl_list_arc_safe! {
64/// impl ListArcSafe<0> for BasicItem { untracked; }
65/// }
66/// impl_list_item! {
67/// impl ListItem<0> for BasicItem { using ListLinks; }
68/// }
69///
70/// // Create a new empty list.
71/// let mut list = List::new();
72/// {
73/// assert!(list.is_empty());
74/// }
75///
76/// // Insert 3 elements using `push_back()`.
77/// list.push_back(BasicItem::new(15)?);
78/// list.push_back(BasicItem::new(10)?);
79/// list.push_back(BasicItem::new(30)?);
80///
81/// // Iterate over the list to verify the nodes were inserted correctly.
82/// // [15, 10, 30]
83/// {
84/// let mut iter = list.iter();
85/// assert_eq!(iter.next().unwrap().value, 15);
86/// assert_eq!(iter.next().unwrap().value, 10);
87/// assert_eq!(iter.next().unwrap().value, 30);
88/// assert!(iter.next().is_none());
89///
90/// // Verify the length of the list.
91/// assert_eq!(list.iter().count(), 3);
92/// }
93///
94/// // Pop the items from the list using `pop_back()` and verify the content.
95/// {
96/// assert_eq!(list.pop_back().unwrap().value, 30);
97/// assert_eq!(list.pop_back().unwrap().value, 10);
98/// assert_eq!(list.pop_back().unwrap().value, 15);
99/// }
100///
101/// // Insert 3 elements using `push_front()`.
102/// list.push_front(BasicItem::new(15)?);
103/// list.push_front(BasicItem::new(10)?);
104/// list.push_front(BasicItem::new(30)?);
105///
106/// // Iterate over the list to verify the nodes were inserted correctly.
107/// // [30, 10, 15]
108/// {
109/// let mut iter = list.iter();
110/// assert_eq!(iter.next().unwrap().value, 30);
111/// assert_eq!(iter.next().unwrap().value, 10);
112/// assert_eq!(iter.next().unwrap().value, 15);
113/// assert!(iter.next().is_none());
114///
115/// // Verify the length of the list.
116/// assert_eq!(list.iter().count(), 3);
117/// }
118///
119/// // Pop the items from the list using `pop_front()` and verify the content.
120/// {
121/// assert_eq!(list.pop_front().unwrap().value, 30);
122/// assert_eq!(list.pop_front().unwrap().value, 10);
123/// }
124///
125/// // Push `list2` to `list` through `push_all_back()`.
126/// // list: [15]
127/// // list2: [25, 35]
128/// {
129/// let mut list2 = List::new();
130/// list2.push_back(BasicItem::new(25)?);
131/// list2.push_back(BasicItem::new(35)?);
132///
133/// list.push_all_back(&mut list2);
134///
135/// // list: [15, 25, 35]
136/// // list2: []
137/// let mut iter = list.iter();
138/// assert_eq!(iter.next().unwrap().value, 15);
139/// assert_eq!(iter.next().unwrap().value, 25);
140/// assert_eq!(iter.next().unwrap().value, 35);
141/// assert!(iter.next().is_none());
142/// assert!(list2.is_empty());
143/// }
144/// # Result::<(), Error>::Ok(())
145/// ```
146pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
147 first: *mut ListLinksFields,
148 _ty: PhantomData<ListArc<T, ID>>,
149}
150
151// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
152// type of access to the `ListArc<T, ID>` elements.
153unsafe impl<T, const ID: u64> Send for List<T, ID>
154where
155 ListArc<T, ID>: Send,
156 T: ?Sized + ListItem<ID>,
157{
158}
159// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
160// type of access to the `ListArc<T, ID>` elements.
161unsafe impl<T, const ID: u64> Sync for List<T, ID>
162where
163 ListArc<T, ID>: Sync,
164 T: ?Sized + ListItem<ID>,
165{
166}
167
168/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
169///
170/// # Safety
171///
172/// Implementers must ensure that they provide the guarantees documented on methods provided by
173/// this trait.
174///
175/// [`ListArc<Self>`]: ListArc
176pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
177 /// Views the [`ListLinks`] for this value.
178 ///
179 /// # Guarantees
180 ///
181 /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
182 /// since the most recent such call, then this returns the same pointer as the one returned by
183 /// the most recent call to `prepare_to_insert`.
184 ///
185 /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
186 ///
187 /// # Safety
188 ///
189 /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
190 unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
191
192 /// View the full value given its [`ListLinks`] field.
193 ///
194 /// Can only be used when the value is in a list.
195 ///
196 /// # Guarantees
197 ///
198 /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
199 /// * The returned pointer is valid until the next call to `post_remove`.
200 ///
201 /// # Safety
202 ///
203 /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
204 /// from a call to `view_links` that happened after the most recent call to
205 /// `prepare_to_insert`.
206 /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
207 /// been called.
208 unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
209
210 /// This is called when an item is inserted into a [`List`].
211 ///
212 /// # Guarantees
213 ///
214 /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
215 /// called.
216 ///
217 /// # Safety
218 ///
219 /// * The provided pointer must point at a valid value in an [`Arc`].
220 /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
221 /// * The caller must own the [`ListArc`] for this value.
222 /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
223 /// called after this call to `prepare_to_insert`.
224 ///
225 /// [`Arc`]: crate::sync::Arc
226 unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
227
228 /// This undoes a previous call to `prepare_to_insert`.
229 ///
230 /// # Guarantees
231 ///
232 /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
233 ///
234 /// # Safety
235 ///
236 /// The provided pointer must be the pointer returned by the most recent call to
237 /// `prepare_to_insert`.
238 unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
239}
240
241#[repr(C)]
242#[derive(Copy, Clone)]
243struct ListLinksFields {
244 next: *mut ListLinksFields,
245 prev: *mut ListLinksFields,
246}
247
248/// The prev/next pointers for an item in a linked list.
249///
250/// # Invariants
251///
252/// The fields are null if and only if this item is not in a list.
253#[repr(transparent)]
254pub struct ListLinks<const ID: u64 = 0> {
255 // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
256 // list.
257 inner: Opaque<ListLinksFields>,
258}
259
260// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
261// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
262// move this an instance of this type to a different thread if the pointees are `!Send`.
263unsafe impl<const ID: u64> Send for ListLinks<ID> {}
264// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
265// okay to have immutable access to a ListLinks from several threads at once.
266unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
267
268impl<const ID: u64> ListLinks<ID> {
269 /// Creates a new initializer for this type.
270 pub fn new() -> impl PinInit<Self> {
271 // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
272 // not be constructed in an `Arc` that already has a `ListArc`.
273 ListLinks {
274 inner: Opaque::new(ListLinksFields {
275 prev: ptr::null_mut(),
276 next: ptr::null_mut(),
277 }),
278 }
279 }
280
281 /// # Safety
282 ///
283 /// `me` must be dereferenceable.
284 #[inline]
285 unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
286 // SAFETY: The caller promises that the pointer is valid.
287 unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
288 }
289
290 /// # Safety
291 ///
292 /// `me` must be dereferenceable.
293 #[inline]
294 unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
295 me.cast()
296 }
297}
298
299/// Similar to [`ListLinks`], but also contains a pointer to the full value.
300///
301/// This type can be used instead of [`ListLinks`] to support lists with trait objects.
302#[repr(C)]
303pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
304 /// The `ListLinks` field inside this value.
305 ///
306 /// This is public so that it can be used with `impl_has_list_links!`.
307 pub inner: ListLinks<ID>,
308 // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
309 // `ptr::null()` doesn't work for `T: ?Sized`.
310 self_ptr: Opaque<*const T>,
311}
312
313// SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
314unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
315// SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
316// it's okay to have immutable access to a ListLinks from several threads at once.
317//
318// Note that `inner` being a public field does not prevent this type from being opaque, since
319// `inner` is a opaque type.
320unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
321
322impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
323 /// The offset from the [`ListLinks`] to the self pointer field.
324 pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
325
326 /// Creates a new initializer for this type.
327 pub fn new() -> impl PinInit<Self> {
328 // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
329 // not be constructed in an `Arc` that already has a `ListArc`.
330 Self {
331 inner: ListLinks {
332 inner: Opaque::new(ListLinksFields {
333 prev: ptr::null_mut(),
334 next: ptr::null_mut(),
335 }),
336 },
337 self_ptr: Opaque::uninit(),
338 }
339 }
340}
341
342impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
343 /// Creates a new empty list.
344 pub const fn new() -> Self {
345 Self {
346 first: ptr::null_mut(),
347 _ty: PhantomData,
348 }
349 }
350
351 /// Returns whether this list is empty.
352 pub fn is_empty(&self) -> bool {
353 self.first.is_null()
354 }
355
356 /// Inserts `item` before `next` in the cycle.
357 ///
358 /// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list
359 /// is empty.
360 ///
361 /// # Safety
362 ///
363 /// * `next` must be an element in this list or null.
364 /// * if `next` is null, then the list must be empty.
365 unsafe fn insert_inner(
366 &mut self,
367 item: ListArc<T, ID>,
368 next: *mut ListLinksFields,
369 ) -> *mut ListLinksFields {
370 let raw_item = ListArc::into_raw(item);
371 // SAFETY:
372 // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
373 // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
374 // the most recent call to `prepare_to_insert`, if any.
375 // * We own the `ListArc`.
376 // * Removing items from this list is always done using `remove_internal_inner`, which
377 // calls `post_remove` before giving up ownership.
378 let list_links = unsafe { T::prepare_to_insert(raw_item) };
379 // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
380 let item = unsafe { ListLinks::fields(list_links) };
381
382 // Check if the list is empty.
383 if next.is_null() {
384 // SAFETY: The caller just gave us ownership of these fields.
385 // INVARIANT: A linked list with one item should be cyclic.
386 unsafe {
387 (*item).next = item;
388 (*item).prev = item;
389 }
390 self.first = item;
391 } else {
392 // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
393 // it's not null, so it must be valid.
394 let prev = unsafe { (*next).prev };
395 // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
396 // ownership of the fields on `item`.
397 // INVARIANT: This correctly inserts `item` between `prev` and `next`.
398 unsafe {
399 (*item).next = next;
400 (*item).prev = prev;
401 (*prev).next = item;
402 (*next).prev = item;
403 }
404 }
405
406 item
407 }
408
409 /// Add the provided item to the back of the list.
410 pub fn push_back(&mut self, item: ListArc<T, ID>) {
411 // SAFETY:
412 // * `self.first` is null or in the list.
413 // * `self.first` is only null if the list is empty.
414 unsafe { self.insert_inner(item, self.first) };
415 }
416
417 /// Add the provided item to the front of the list.
418 pub fn push_front(&mut self, item: ListArc<T, ID>) {
419 // SAFETY:
420 // * `self.first` is null or in the list.
421 // * `self.first` is only null if the list is empty.
422 let new_elem = unsafe { self.insert_inner(item, self.first) };
423
424 // INVARIANT: `new_elem` is in the list because we just inserted it.
425 self.first = new_elem;
426 }
427
428 /// Removes the last item from this list.
429 pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
430 if self.is_empty() {
431 return None;
432 }
433
434 // SAFETY: We just checked that the list is not empty.
435 let last = unsafe { (*self.first).prev };
436 // SAFETY: The last item of this list is in this list.
437 Some(unsafe { self.remove_internal(last) })
438 }
439
440 /// Removes the first item from this list.
441 pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
442 if self.is_empty() {
443 return None;
444 }
445
446 // SAFETY: The first item of this list is in this list.
447 Some(unsafe { self.remove_internal(self.first) })
448 }
449
450 /// Removes the provided item from this list and returns it.
451 ///
452 /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
453 /// this means that the item is not in any list.)
454 ///
455 /// # Safety
456 ///
457 /// `item` must not be in a different linked list (with the same id).
458 pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
459 // SAFETY: TODO.
460 let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
461 // SAFETY: The user provided a reference, and reference are never dangling.
462 //
463 // As for why this is not a data race, there are two cases:
464 //
465 // * If `item` is not in any list, then these fields are read-only and null.
466 // * If `item` is in this list, then we have exclusive access to these fields since we
467 // have a mutable reference to the list.
468 //
469 // In either case, there's no race.
470 let ListLinksFields { next, prev } = unsafe { *item };
471
472 debug_assert_eq!(next.is_null(), prev.is_null());
473 if !next.is_null() {
474 // This is really a no-op, but this ensures that `item` is a raw pointer that was
475 // obtained without going through a pointer->reference->pointer conversion roundtrip.
476 // This ensures that the list is valid under the more restrictive strict provenance
477 // ruleset.
478 //
479 // SAFETY: We just checked that `next` is not null, and it's not dangling by the
480 // list invariants.
481 unsafe {
482 debug_assert_eq!(item, (*next).prev);
483 item = (*next).prev;
484 }
485
486 // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
487 // is in this list. The pointers are in the right order.
488 Some(unsafe { self.remove_internal_inner(item, next, prev) })
489 } else {
490 None
491 }
492 }
493
494 /// Removes the provided item from the list.
495 ///
496 /// # Safety
497 ///
498 /// `item` must point at an item in this list.
499 unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
500 // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
501 // since we have a mutable reference to the list containing `item`.
502 let ListLinksFields { next, prev } = unsafe { *item };
503 // SAFETY: The pointers are ok and in the right order.
504 unsafe { self.remove_internal_inner(item, next, prev) }
505 }
506
507 /// Removes the provided item from the list.
508 ///
509 /// # Safety
510 ///
511 /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
512 /// next` and `(*item).prev == prev`.
513 unsafe fn remove_internal_inner(
514 &mut self,
515 item: *mut ListLinksFields,
516 next: *mut ListLinksFields,
517 prev: *mut ListLinksFields,
518 ) -> ListArc<T, ID> {
519 // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
520 // pointers are always valid for items in a list.
521 //
522 // INVARIANT: There are three cases:
523 // * If the list has at least three items, then after removing the item, `prev` and `next`
524 // will be next to each other.
525 // * If the list has two items, then the remaining item will point at itself.
526 // * If the list has one item, then `next == prev == item`, so these writes have no
527 // effect. The list remains unchanged and `item` is still in the list for now.
528 unsafe {
529 (*next).prev = prev;
530 (*prev).next = next;
531 }
532 // SAFETY: We have exclusive access to items in the list.
533 // INVARIANT: `item` is being removed, so the pointers should be null.
534 unsafe {
535 (*item).prev = ptr::null_mut();
536 (*item).next = ptr::null_mut();
537 }
538 // INVARIANT: There are three cases:
539 // * If `item` was not the first item, then `self.first` should remain unchanged.
540 // * If `item` was the first item and there is another item, then we just updated
541 // `prev->next` to `next`, which is the new first item, and setting `item->next` to null
542 // did not modify `prev->next`.
543 // * If `item` was the only item in the list, then `prev == item`, and we just set
544 // `item->next` to null, so this correctly sets `first` to null now that the list is
545 // empty.
546 if self.first == item {
547 // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
548 // list, so it must be valid. There is no race since `prev` is still in the list and we
549 // still have exclusive access to the list.
550 self.first = unsafe { (*prev).next };
551 }
552
553 // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
554 // of `List`.
555 let list_links = unsafe { ListLinks::from_fields(item) };
556 // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
557 let raw_item = unsafe { T::post_remove(list_links) };
558 // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
559 unsafe { ListArc::from_raw(raw_item) }
560 }
561
562 /// Moves all items from `other` into `self`.
563 ///
564 /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
565 /// the last item of `self`.
566 pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
567 // First, we insert the elements into `self`. At the end, we make `other` empty.
568 if self.is_empty() {
569 // INVARIANT: All of the elements in `other` become elements of `self`.
570 self.first = other.first;
571 } else if !other.is_empty() {
572 let other_first = other.first;
573 // SAFETY: The other list is not empty, so this pointer is valid.
574 let other_last = unsafe { (*other_first).prev };
575 let self_first = self.first;
576 // SAFETY: The self list is not empty, so this pointer is valid.
577 let self_last = unsafe { (*self_first).prev };
578
579 // SAFETY: We have exclusive access to both lists, so we can update the pointers.
580 // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
581 // update `self.first` because the first element of `self` does not change.
582 unsafe {
583 (*self_first).prev = other_last;
584 (*other_last).next = self_first;
585 (*self_last).next = other_first;
586 (*other_first).prev = self_last;
587 }
588 }
589
590 // INVARIANT: The other list is now empty, so update its pointer.
591 other.first = ptr::null_mut();
592 }
593
594 /// Returns a cursor that points before the first element of the list.
595 pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> {
596 // INVARIANT: `self.first` is in this list.
597 Cursor {
598 next: self.first,
599 list: self,
600 }
601 }
602
603 /// Returns a cursor that points after the last element in the list.
604 pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> {
605 // INVARIANT: `next` is allowed to be null.
606 Cursor {
607 next: core::ptr::null_mut(),
608 list: self,
609 }
610 }
611
612 /// Creates an iterator over the list.
613 pub fn iter(&self) -> Iter<'_, T, ID> {
614 // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
615 // at the first element of the same list.
616 Iter {
617 current: self.first,
618 stop: self.first,
619 _ty: PhantomData,
620 }
621 }
622}
623
624impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
625 fn default() -> Self {
626 List::new()
627 }
628}
629
630impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
631 fn drop(&mut self) {
632 while let Some(item) = self.pop_front() {
633 drop(item);
634 }
635 }
636}
637
638/// An iterator over a [`List`].
639///
640/// # Invariants
641///
642/// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
643/// * The `current` pointer is null or points at a value in that [`List`].
644/// * The `stop` pointer is equal to the `first` field of that [`List`].
645#[derive(Clone)]
646pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
647 current: *mut ListLinksFields,
648 stop: *mut ListLinksFields,
649 _ty: PhantomData<&'a ListArc<T, ID>>,
650}
651
652impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
653 type Item = ArcBorrow<'a, T>;
654
655 fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
656 if self.current.is_null() {
657 return None;
658 }
659
660 let current = self.current;
661
662 // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
663 // dangling. There's no race because the iterator holds an immutable borrow to the list.
664 let next = unsafe { (*current).next };
665 // INVARIANT: If `current` was the last element of the list, then this updates it to null.
666 // Otherwise, we update it to the next element.
667 self.current = if next != self.stop {
668 next
669 } else {
670 ptr::null_mut()
671 };
672
673 // SAFETY: The `current` pointer points at a value in the list.
674 let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
675 // SAFETY:
676 // * All values in a list are stored in an `Arc`.
677 // * The value cannot be removed from the list for the duration of the lifetime annotated
678 // on the returned `ArcBorrow`, because removing it from the list would require mutable
679 // access to the list. However, the `ArcBorrow` is annotated with the iterator's
680 // lifetime, and the list is immutably borrowed for that lifetime.
681 // * Values in a list never have a `UniqueArc` reference.
682 Some(unsafe { ArcBorrow::from_raw(item) })
683 }
684}
685
686/// A cursor into a [`List`].
687///
688/// A cursor always rests between two elements in the list. This means that a cursor has a previous
689/// and next element, but no current element. It also means that it's possible to have a cursor
690/// into an empty list.
691///
692/// # Examples
693///
694/// ```
695/// use kernel::prelude::*;
696/// use kernel::list::{List, ListArc, ListLinks};
697///
698/// #[pin_data]
699/// struct ListItem {
700/// value: u32,
701/// #[pin]
702/// links: ListLinks,
703/// }
704///
705/// impl ListItem {
706/// fn new(value: u32) -> Result<ListArc<Self>> {
707/// ListArc::pin_init(try_pin_init!(Self {
708/// value,
709/// links <- ListLinks::new(),
710/// }), GFP_KERNEL)
711/// }
712/// }
713///
714/// kernel::list::impl_has_list_links! {
715/// impl HasListLinks<0> for ListItem { self.links }
716/// }
717/// kernel::list::impl_list_arc_safe! {
718/// impl ListArcSafe<0> for ListItem { untracked; }
719/// }
720/// kernel::list::impl_list_item! {
721/// impl ListItem<0> for ListItem { using ListLinks; }
722/// }
723///
724/// // Use a cursor to remove the first element with the given value.
725/// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
726/// let mut cursor = list.cursor_front();
727/// while let Some(next) = cursor.peek_next() {
728/// if next.value == value {
729/// return Some(next.remove());
730/// }
731/// cursor.move_next();
732/// }
733/// None
734/// }
735///
736/// // Use a cursor to remove the last element with the given value.
737/// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
738/// let mut cursor = list.cursor_back();
739/// while let Some(prev) = cursor.peek_prev() {
740/// if prev.value == value {
741/// return Some(prev.remove());
742/// }
743/// cursor.move_prev();
744/// }
745/// None
746/// }
747///
748/// // Use a cursor to remove all elements with the given value. The removed elements are moved to
749/// // a new list.
750/// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> {
751/// let mut out = List::new();
752/// let mut cursor = list.cursor_front();
753/// while let Some(next) = cursor.peek_next() {
754/// if next.value == value {
755/// out.push_back(next.remove());
756/// } else {
757/// cursor.move_next();
758/// }
759/// }
760/// out
761/// }
762///
763/// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of
764/// // bounds.
765/// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result {
766/// let mut cursor = list.cursor_front();
767/// for _ in 0..idx {
768/// if !cursor.move_next() {
769/// return Err(EINVAL);
770/// }
771/// }
772/// cursor.insert_next(new);
773/// Ok(())
774/// }
775///
776/// // Merge two sorted lists into a single sorted list.
777/// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) {
778/// let mut cursor = list.cursor_front();
779/// for to_insert in merge {
780/// while let Some(next) = cursor.peek_next() {
781/// if to_insert.value < next.value {
782/// break;
783/// }
784/// cursor.move_next();
785/// }
786/// cursor.insert_prev(to_insert);
787/// }
788/// }
789///
790/// let mut list = List::new();
791/// list.push_back(ListItem::new(14)?);
792/// list.push_back(ListItem::new(12)?);
793/// list.push_back(ListItem::new(10)?);
794/// list.push_back(ListItem::new(12)?);
795/// list.push_back(ListItem::new(15)?);
796/// list.push_back(ListItem::new(14)?);
797/// assert_eq!(remove_all(&mut list, 12).iter().count(), 2);
798/// // [14, 10, 15, 14]
799/// assert!(remove_first(&mut list, 14).is_some());
800/// // [10, 15, 14]
801/// insert_at(&mut list, ListItem::new(12)?, 2)?;
802/// // [10, 15, 12, 14]
803/// assert!(remove_last(&mut list, 15).is_some());
804/// // [10, 12, 14]
805///
806/// let mut list2 = List::new();
807/// list2.push_back(ListItem::new(11)?);
808/// list2.push_back(ListItem::new(13)?);
809/// merge_sorted(&mut list, list2);
810///
811/// let mut items = list.into_iter();
812/// assert_eq!(items.next().unwrap().value, 10);
813/// assert_eq!(items.next().unwrap().value, 11);
814/// assert_eq!(items.next().unwrap().value, 12);
815/// assert_eq!(items.next().unwrap().value, 13);
816/// assert_eq!(items.next().unwrap().value, 14);
817/// assert!(items.next().is_none());
818/// # Result::<(), Error>::Ok(())
819/// ```
820///
821/// # Invariants
822///
823/// The `next` pointer is null or points a value in `list`.
824pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
825 list: &'a mut List<T, ID>,
826 /// Points at the element after this cursor, or null if the cursor is after the last element.
827 next: *mut ListLinksFields,
828}
829
830impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
831 /// Returns a pointer to the element before the cursor.
832 ///
833 /// Returns null if there is no element before the cursor.
834 fn prev_ptr(&self) -> *mut ListLinksFields {
835 let mut next = self.next;
836 let first = self.list.first;
837 if next == first {
838 // We are before the first element.
839 return core::ptr::null_mut();
840 }
841
842 if next.is_null() {
843 // We are after the last element, so we need a pointer to the last element, which is
844 // the same as `(*first).prev`.
845 next = first;
846 }
847
848 // SAFETY: `next` can't be null, because then `first` must also be null, but in that case
849 // we would have exited at the `next == first` check. Thus, `next` is an element in the
850 // list, so we can access its `prev` pointer.
851 unsafe { (*next).prev }
852 }
853
854 /// Access the element after this cursor.
855 pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> {
856 if self.next.is_null() {
857 return None;
858 }
859
860 // INVARIANT:
861 // * We just checked that `self.next` is non-null, so it must be in `self.list`.
862 // * `ptr` is equal to `self.next`.
863 Some(CursorPeek {
864 ptr: self.next,
865 cursor: self,
866 })
867 }
868
869 /// Access the element before this cursor.
870 pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> {
871 let prev = self.prev_ptr();
872
873 if prev.is_null() {
874 return None;
875 }
876
877 // INVARIANT:
878 // * We just checked that `prev` is non-null, so it must be in `self.list`.
879 // * `self.prev_ptr()` never returns `self.next`.
880 Some(CursorPeek {
881 ptr: prev,
882 cursor: self,
883 })
884 }
885
886 /// Move the cursor one element forward.
887 ///
888 /// If the cursor is after the last element, then this call does nothing. This call returns
889 /// `true` if the cursor's position was changed.
890 pub fn move_next(&mut self) -> bool {
891 if self.next.is_null() {
892 return false;
893 }
894
895 // SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can
896 // access the `next` field.
897 let mut next = unsafe { (*self.next).next };
898
899 if next == self.list.first {
900 next = core::ptr::null_mut();
901 }
902
903 // INVARIANT: `next` is either null or the next element after an element in the list.
904 self.next = next;
905 true
906 }
907
908 /// Move the cursor one element backwards.
909 ///
910 /// If the cursor is before the first element, then this call does nothing. This call returns
911 /// `true` if the cursor's position was changed.
912 pub fn move_prev(&mut self) -> bool {
913 if self.next == self.list.first {
914 return false;
915 }
916
917 // INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list.
918 self.next = self.prev_ptr();
919 true
920 }
921
922 /// Inserts an element where the cursor is pointing and get a pointer to the new element.
923 fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields {
924 let ptr = if self.next.is_null() {
925 self.list.first
926 } else {
927 self.next
928 };
929 // SAFETY:
930 // * `ptr` is an element in the list or null.
931 // * if `ptr` is null, then `self.list.first` is null so the list is empty.
932 let item = unsafe { self.list.insert_inner(item, ptr) };
933 if self.next == self.list.first {
934 // INVARIANT: We just inserted `item`, so it's a member of list.
935 self.list.first = item;
936 }
937 item
938 }
939
940 /// Insert an element at this cursor's location.
941 pub fn insert(mut self, item: ListArc<T, ID>) {
942 // This is identical to `insert_prev`, but consumes the cursor. This is helpful because it
943 // reduces confusion when the last operation on the cursor is an insertion; in that case,
944 // you just want to insert the element at the cursor, and it is confusing that the call
945 // involves the word prev or next.
946 self.insert_inner(item);
947 }
948
949 /// Inserts an element after this cursor.
950 ///
951 /// After insertion, the new element will be after the cursor.
952 pub fn insert_next(&mut self, item: ListArc<T, ID>) {
953 self.next = self.insert_inner(item);
954 }
955
956 /// Inserts an element before this cursor.
957 ///
958 /// After insertion, the new element will be before the cursor.
959 pub fn insert_prev(&mut self, item: ListArc<T, ID>) {
960 self.insert_inner(item);
961 }
962
963 /// Remove the next element from the list.
964 pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> {
965 self.peek_next().map(|v| v.remove())
966 }
967
968 /// Remove the previous element from the list.
969 pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> {
970 self.peek_prev().map(|v| v.remove())
971 }
972}
973
974/// References the element in the list next to the cursor.
975///
976/// # Invariants
977///
978/// * `ptr` is an element in `self.cursor.list`.
979/// * `ISNEXT == (self.ptr == self.cursor.next)`.
980pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> {
981 cursor: &'a mut Cursor<'b, T, ID>,
982 ptr: *mut ListLinksFields,
983}
984
985impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64>
986 CursorPeek<'a, 'b, T, ISNEXT, ID>
987{
988 /// Remove the element from the list.
989 pub fn remove(self) -> ListArc<T, ID> {
990 if ISNEXT {
991 self.cursor.move_next();
992 }
993
994 // INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next`
995 // call.
996 // SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of
997 // `self.cursor.list` by the type invariants of `Cursor`.
998 unsafe { self.cursor.list.remove_internal(self.ptr) }
999 }
1000
1001 /// Access this value as an [`ArcBorrow`].
1002 pub fn arc(&self) -> ArcBorrow<'_, T> {
1003 // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
1004 let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
1005 // SAFETY:
1006 // * All values in a list are stored in an `Arc`.
1007 // * The value cannot be removed from the list for the duration of the lifetime annotated
1008 // on the returned `ArcBorrow`, because removing it from the list would require mutable
1009 // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds
1010 // an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
1011 // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable
1012 // access requires first releasing the immutable borrow on the `CursorPeek`.
1013 // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
1014 // reference, and `UniqueArc` references must be unique.
1015 unsafe { ArcBorrow::from_raw(me) }
1016 }
1017}
1018
1019impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref
1020 for CursorPeek<'a, 'b, T, ISNEXT, ID>
1021{
1022 // If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could
1023 // get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`.
1024 // However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>`
1025 // and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be
1026 // unsound.
1027 type Target = T;
1028
1029 fn deref(&self) -> &T {
1030 // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
1031 let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
1032
1033 // SAFETY: The value cannot be removed from the list for the duration of the lifetime
1034 // annotated on the returned `&T`, because removing it from the list would require mutable
1035 // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an
1036 // immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
1037 // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access
1038 // requires first releasing the immutable borrow on the `CursorPeek`.
1039 unsafe { &*me }
1040 }
1041}
1042
1043impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
1044
1045impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
1046 type IntoIter = Iter<'a, T, ID>;
1047 type Item = ArcBorrow<'a, T>;
1048
1049 fn into_iter(self) -> Iter<'a, T, ID> {
1050 self.iter()
1051 }
1052}
1053
1054/// An owning iterator into a [`List`].
1055pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
1056 list: List<T, ID>,
1057}
1058
1059impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
1060 type Item = ListArc<T, ID>;
1061
1062 fn next(&mut self) -> Option<ListArc<T, ID>> {
1063 self.list.pop_front()
1064 }
1065}
1066
1067impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
1068
1069impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
1070 fn next_back(&mut self) -> Option<ListArc<T, ID>> {
1071 self.list.pop_back()
1072 }
1073}
1074
1075impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
1076 type IntoIter = IntoIter<T, ID>;
1077 type Item = ListArc<T, ID>;
1078
1079 fn into_iter(self) -> IntoIter<T, ID> {
1080 IntoIter { list: self }
1081 }
1082}