kernel/list.rs
1// SPDX-License-Identifier: GPL-2.0
2
3// Copyright (C) 2024 Google LLC.
4
5//! A linked list implementation.
6
7// May not be needed in Rust 1.87.0 (pending beta backport).
8#![allow(clippy::ptr_eq)]
9
10use crate::sync::ArcBorrow;
11use crate::types::Opaque;
12use core::iter::{DoubleEndedIterator, FusedIterator};
13use core::marker::PhantomData;
14use core::ptr;
15use pin_init::PinInit;
16
17mod impl_list_item_mod;
18pub use self::impl_list_item_mod::{
19 impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
20};
21
22mod arc;
23pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
24
25mod arc_field;
26pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
27
28/// A linked list.
29///
30/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
31/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
32/// prev/next pointers are not used for several linked lists.
33///
34/// # Invariants
35///
36/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
37/// field of the first element in the list.
38/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
39/// * For every item in the list, the list owns the associated [`ListArc`] reference and has
40/// exclusive access to the `ListLinks` field.
41pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
42 first: *mut ListLinksFields,
43 _ty: PhantomData<ListArc<T, ID>>,
44}
45
46// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
47// type of access to the `ListArc<T, ID>` elements.
48unsafe impl<T, const ID: u64> Send for List<T, ID>
49where
50 ListArc<T, ID>: Send,
51 T: ?Sized + ListItem<ID>,
52{
53}
54// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
55// type of access to the `ListArc<T, ID>` elements.
56unsafe impl<T, const ID: u64> Sync for List<T, ID>
57where
58 ListArc<T, ID>: Sync,
59 T: ?Sized + ListItem<ID>,
60{
61}
62
63/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
64///
65/// # Safety
66///
67/// Implementers must ensure that they provide the guarantees documented on methods provided by
68/// this trait.
69///
70/// [`ListArc<Self>`]: ListArc
71pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
72 /// Views the [`ListLinks`] for this value.
73 ///
74 /// # Guarantees
75 ///
76 /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
77 /// since the most recent such call, then this returns the same pointer as the one returned by
78 /// the most recent call to `prepare_to_insert`.
79 ///
80 /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
81 ///
82 /// # Safety
83 ///
84 /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
85 unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
86
87 /// View the full value given its [`ListLinks`] field.
88 ///
89 /// Can only be used when the value is in a list.
90 ///
91 /// # Guarantees
92 ///
93 /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
94 /// * The returned pointer is valid until the next call to `post_remove`.
95 ///
96 /// # Safety
97 ///
98 /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
99 /// from a call to `view_links` that happened after the most recent call to
100 /// `prepare_to_insert`.
101 /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
102 /// been called.
103 unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
104
105 /// This is called when an item is inserted into a [`List`].
106 ///
107 /// # Guarantees
108 ///
109 /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
110 /// called.
111 ///
112 /// # Safety
113 ///
114 /// * The provided pointer must point at a valid value in an [`Arc`].
115 /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
116 /// * The caller must own the [`ListArc`] for this value.
117 /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
118 /// called after this call to `prepare_to_insert`.
119 ///
120 /// [`Arc`]: crate::sync::Arc
121 unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
122
123 /// This undoes a previous call to `prepare_to_insert`.
124 ///
125 /// # Guarantees
126 ///
127 /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
128 ///
129 /// # Safety
130 ///
131 /// The provided pointer must be the pointer returned by the most recent call to
132 /// `prepare_to_insert`.
133 unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
134}
135
136#[repr(C)]
137#[derive(Copy, Clone)]
138struct ListLinksFields {
139 next: *mut ListLinksFields,
140 prev: *mut ListLinksFields,
141}
142
143/// The prev/next pointers for an item in a linked list.
144///
145/// # Invariants
146///
147/// The fields are null if and only if this item is not in a list.
148#[repr(transparent)]
149pub struct ListLinks<const ID: u64 = 0> {
150 // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
151 // list.
152 inner: Opaque<ListLinksFields>,
153}
154
155// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
156// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
157// move this an instance of this type to a different thread if the pointees are `!Send`.
158unsafe impl<const ID: u64> Send for ListLinks<ID> {}
159// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
160// okay to have immutable access to a ListLinks from several threads at once.
161unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
162
163impl<const ID: u64> ListLinks<ID> {
164 /// Creates a new initializer for this type.
165 pub fn new() -> impl PinInit<Self> {
166 // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
167 // not be constructed in an `Arc` that already has a `ListArc`.
168 ListLinks {
169 inner: Opaque::new(ListLinksFields {
170 prev: ptr::null_mut(),
171 next: ptr::null_mut(),
172 }),
173 }
174 }
175
176 /// # Safety
177 ///
178 /// `me` must be dereferenceable.
179 #[inline]
180 unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
181 // SAFETY: The caller promises that the pointer is valid.
182 unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
183 }
184
185 /// # Safety
186 ///
187 /// `me` must be dereferenceable.
188 #[inline]
189 unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
190 me.cast()
191 }
192}
193
194/// Similar to [`ListLinks`], but also contains a pointer to the full value.
195///
196/// This type can be used instead of [`ListLinks`] to support lists with trait objects.
197#[repr(C)]
198pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
199 /// The `ListLinks` field inside this value.
200 ///
201 /// This is public so that it can be used with `impl_has_list_links!`.
202 pub inner: ListLinks<ID>,
203 // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
204 // `ptr::null()` doesn't work for `T: ?Sized`.
205 self_ptr: Opaque<*const T>,
206}
207
208// SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
209unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
210// SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
211// it's okay to have immutable access to a ListLinks from several threads at once.
212//
213// Note that `inner` being a public field does not prevent this type from being opaque, since
214// `inner` is a opaque type.
215unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
216
217impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
218 /// The offset from the [`ListLinks`] to the self pointer field.
219 pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
220
221 /// Creates a new initializer for this type.
222 pub fn new() -> impl PinInit<Self> {
223 // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
224 // not be constructed in an `Arc` that already has a `ListArc`.
225 Self {
226 inner: ListLinks {
227 inner: Opaque::new(ListLinksFields {
228 prev: ptr::null_mut(),
229 next: ptr::null_mut(),
230 }),
231 },
232 self_ptr: Opaque::uninit(),
233 }
234 }
235}
236
237impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
238 /// Creates a new empty list.
239 pub const fn new() -> Self {
240 Self {
241 first: ptr::null_mut(),
242 _ty: PhantomData,
243 }
244 }
245
246 /// Returns whether this list is empty.
247 pub fn is_empty(&self) -> bool {
248 self.first.is_null()
249 }
250
251 /// Inserts `item` before `next` in the cycle.
252 ///
253 /// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list
254 /// is empty.
255 ///
256 /// # Safety
257 ///
258 /// * `next` must be an element in this list or null.
259 /// * if `next` is null, then the list must be empty.
260 unsafe fn insert_inner(
261 &mut self,
262 item: ListArc<T, ID>,
263 next: *mut ListLinksFields,
264 ) -> *mut ListLinksFields {
265 let raw_item = ListArc::into_raw(item);
266 // SAFETY:
267 // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
268 // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
269 // the most recent call to `prepare_to_insert`, if any.
270 // * We own the `ListArc`.
271 // * Removing items from this list is always done using `remove_internal_inner`, which
272 // calls `post_remove` before giving up ownership.
273 let list_links = unsafe { T::prepare_to_insert(raw_item) };
274 // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
275 let item = unsafe { ListLinks::fields(list_links) };
276
277 // Check if the list is empty.
278 if next.is_null() {
279 // SAFETY: The caller just gave us ownership of these fields.
280 // INVARIANT: A linked list with one item should be cyclic.
281 unsafe {
282 (*item).next = item;
283 (*item).prev = item;
284 }
285 self.first = item;
286 } else {
287 // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
288 // it's not null, so it must be valid.
289 let prev = unsafe { (*next).prev };
290 // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
291 // ownership of the fields on `item`.
292 // INVARIANT: This correctly inserts `item` between `prev` and `next`.
293 unsafe {
294 (*item).next = next;
295 (*item).prev = prev;
296 (*prev).next = item;
297 (*next).prev = item;
298 }
299 }
300
301 item
302 }
303
304 /// Add the provided item to the back of the list.
305 pub fn push_back(&mut self, item: ListArc<T, ID>) {
306 // SAFETY:
307 // * `self.first` is null or in the list.
308 // * `self.first` is only null if the list is empty.
309 unsafe { self.insert_inner(item, self.first) };
310 }
311
312 /// Add the provided item to the front of the list.
313 pub fn push_front(&mut self, item: ListArc<T, ID>) {
314 // SAFETY:
315 // * `self.first` is null or in the list.
316 // * `self.first` is only null if the list is empty.
317 let new_elem = unsafe { self.insert_inner(item, self.first) };
318
319 // INVARIANT: `new_elem` is in the list because we just inserted it.
320 self.first = new_elem;
321 }
322
323 /// Removes the last item from this list.
324 pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
325 if self.first.is_null() {
326 return None;
327 }
328
329 // SAFETY: We just checked that the list is not empty.
330 let last = unsafe { (*self.first).prev };
331 // SAFETY: The last item of this list is in this list.
332 Some(unsafe { self.remove_internal(last) })
333 }
334
335 /// Removes the first item from this list.
336 pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
337 if self.first.is_null() {
338 return None;
339 }
340
341 // SAFETY: The first item of this list is in this list.
342 Some(unsafe { self.remove_internal(self.first) })
343 }
344
345 /// Removes the provided item from this list and returns it.
346 ///
347 /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
348 /// this means that the item is not in any list.)
349 ///
350 /// # Safety
351 ///
352 /// `item` must not be in a different linked list (with the same id).
353 pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
354 // SAFETY: TODO.
355 let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
356 // SAFETY: The user provided a reference, and reference are never dangling.
357 //
358 // As for why this is not a data race, there are two cases:
359 //
360 // * If `item` is not in any list, then these fields are read-only and null.
361 // * If `item` is in this list, then we have exclusive access to these fields since we
362 // have a mutable reference to the list.
363 //
364 // In either case, there's no race.
365 let ListLinksFields { next, prev } = unsafe { *item };
366
367 debug_assert_eq!(next.is_null(), prev.is_null());
368 if !next.is_null() {
369 // This is really a no-op, but this ensures that `item` is a raw pointer that was
370 // obtained without going through a pointer->reference->pointer conversion roundtrip.
371 // This ensures that the list is valid under the more restrictive strict provenance
372 // ruleset.
373 //
374 // SAFETY: We just checked that `next` is not null, and it's not dangling by the
375 // list invariants.
376 unsafe {
377 debug_assert_eq!(item, (*next).prev);
378 item = (*next).prev;
379 }
380
381 // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
382 // is in this list. The pointers are in the right order.
383 Some(unsafe { self.remove_internal_inner(item, next, prev) })
384 } else {
385 None
386 }
387 }
388
389 /// Removes the provided item from the list.
390 ///
391 /// # Safety
392 ///
393 /// `item` must point at an item in this list.
394 unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
395 // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
396 // since we have a mutable reference to the list containing `item`.
397 let ListLinksFields { next, prev } = unsafe { *item };
398 // SAFETY: The pointers are ok and in the right order.
399 unsafe { self.remove_internal_inner(item, next, prev) }
400 }
401
402 /// Removes the provided item from the list.
403 ///
404 /// # Safety
405 ///
406 /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
407 /// next` and `(*item).prev == prev`.
408 unsafe fn remove_internal_inner(
409 &mut self,
410 item: *mut ListLinksFields,
411 next: *mut ListLinksFields,
412 prev: *mut ListLinksFields,
413 ) -> ListArc<T, ID> {
414 // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
415 // pointers are always valid for items in a list.
416 //
417 // INVARIANT: There are three cases:
418 // * If the list has at least three items, then after removing the item, `prev` and `next`
419 // will be next to each other.
420 // * If the list has two items, then the remaining item will point at itself.
421 // * If the list has one item, then `next == prev == item`, so these writes have no
422 // effect. The list remains unchanged and `item` is still in the list for now.
423 unsafe {
424 (*next).prev = prev;
425 (*prev).next = next;
426 }
427 // SAFETY: We have exclusive access to items in the list.
428 // INVARIANT: `item` is being removed, so the pointers should be null.
429 unsafe {
430 (*item).prev = ptr::null_mut();
431 (*item).next = ptr::null_mut();
432 }
433 // INVARIANT: There are three cases:
434 // * If `item` was not the first item, then `self.first` should remain unchanged.
435 // * If `item` was the first item and there is another item, then we just updated
436 // `prev->next` to `next`, which is the new first item, and setting `item->next` to null
437 // did not modify `prev->next`.
438 // * If `item` was the only item in the list, then `prev == item`, and we just set
439 // `item->next` to null, so this correctly sets `first` to null now that the list is
440 // empty.
441 if self.first == item {
442 // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
443 // list, so it must be valid. There is no race since `prev` is still in the list and we
444 // still have exclusive access to the list.
445 self.first = unsafe { (*prev).next };
446 }
447
448 // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
449 // of `List`.
450 let list_links = unsafe { ListLinks::from_fields(item) };
451 // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
452 let raw_item = unsafe { T::post_remove(list_links) };
453 // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
454 unsafe { ListArc::from_raw(raw_item) }
455 }
456
457 /// Moves all items from `other` into `self`.
458 ///
459 /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
460 /// the last item of `self`.
461 pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
462 // First, we insert the elements into `self`. At the end, we make `other` empty.
463 if self.is_empty() {
464 // INVARIANT: All of the elements in `other` become elements of `self`.
465 self.first = other.first;
466 } else if !other.is_empty() {
467 let other_first = other.first;
468 // SAFETY: The other list is not empty, so this pointer is valid.
469 let other_last = unsafe { (*other_first).prev };
470 let self_first = self.first;
471 // SAFETY: The self list is not empty, so this pointer is valid.
472 let self_last = unsafe { (*self_first).prev };
473
474 // SAFETY: We have exclusive access to both lists, so we can update the pointers.
475 // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
476 // update `self.first` because the first element of `self` does not change.
477 unsafe {
478 (*self_first).prev = other_last;
479 (*other_last).next = self_first;
480 (*self_last).next = other_first;
481 (*other_first).prev = self_last;
482 }
483 }
484
485 // INVARIANT: The other list is now empty, so update its pointer.
486 other.first = ptr::null_mut();
487 }
488
489 /// Returns a cursor that points before the first element of the list.
490 pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> {
491 // INVARIANT: `self.first` is in this list.
492 Cursor {
493 next: self.first,
494 list: self,
495 }
496 }
497
498 /// Returns a cursor that points after the last element in the list.
499 pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> {
500 // INVARIANT: `next` is allowed to be null.
501 Cursor {
502 next: core::ptr::null_mut(),
503 list: self,
504 }
505 }
506
507 /// Creates an iterator over the list.
508 pub fn iter(&self) -> Iter<'_, T, ID> {
509 // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
510 // at the first element of the same list.
511 Iter {
512 current: self.first,
513 stop: self.first,
514 _ty: PhantomData,
515 }
516 }
517}
518
519impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
520 fn default() -> Self {
521 List::new()
522 }
523}
524
525impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
526 fn drop(&mut self) {
527 while let Some(item) = self.pop_front() {
528 drop(item);
529 }
530 }
531}
532
533/// An iterator over a [`List`].
534///
535/// # Invariants
536///
537/// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
538/// * The `current` pointer is null or points at a value in that [`List`].
539/// * The `stop` pointer is equal to the `first` field of that [`List`].
540#[derive(Clone)]
541pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
542 current: *mut ListLinksFields,
543 stop: *mut ListLinksFields,
544 _ty: PhantomData<&'a ListArc<T, ID>>,
545}
546
547impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
548 type Item = ArcBorrow<'a, T>;
549
550 fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
551 if self.current.is_null() {
552 return None;
553 }
554
555 let current = self.current;
556
557 // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
558 // dangling. There's no race because the iterator holds an immutable borrow to the list.
559 let next = unsafe { (*current).next };
560 // INVARIANT: If `current` was the last element of the list, then this updates it to null.
561 // Otherwise, we update it to the next element.
562 self.current = if next != self.stop {
563 next
564 } else {
565 ptr::null_mut()
566 };
567
568 // SAFETY: The `current` pointer points at a value in the list.
569 let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
570 // SAFETY:
571 // * All values in a list are stored in an `Arc`.
572 // * The value cannot be removed from the list for the duration of the lifetime annotated
573 // on the returned `ArcBorrow`, because removing it from the list would require mutable
574 // access to the list. However, the `ArcBorrow` is annotated with the iterator's
575 // lifetime, and the list is immutably borrowed for that lifetime.
576 // * Values in a list never have a `UniqueArc` reference.
577 Some(unsafe { ArcBorrow::from_raw(item) })
578 }
579}
580
581/// A cursor into a [`List`].
582///
583/// A cursor always rests between two elements in the list. This means that a cursor has a previous
584/// and next element, but no current element. It also means that it's possible to have a cursor
585/// into an empty list.
586///
587/// # Examples
588///
589/// ```
590/// use kernel::prelude::*;
591/// use kernel::list::{List, ListArc, ListLinks};
592///
593/// #[pin_data]
594/// struct ListItem {
595/// value: u32,
596/// #[pin]
597/// links: ListLinks,
598/// }
599///
600/// impl ListItem {
601/// fn new(value: u32) -> Result<ListArc<Self>> {
602/// ListArc::pin_init(try_pin_init!(Self {
603/// value,
604/// links <- ListLinks::new(),
605/// }), GFP_KERNEL)
606/// }
607/// }
608///
609/// kernel::list::impl_has_list_links! {
610/// impl HasListLinks<0> for ListItem { self.links }
611/// }
612/// kernel::list::impl_list_arc_safe! {
613/// impl ListArcSafe<0> for ListItem { untracked; }
614/// }
615/// kernel::list::impl_list_item! {
616/// impl ListItem<0> for ListItem { using ListLinks; }
617/// }
618///
619/// // Use a cursor to remove the first element with the given value.
620/// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
621/// let mut cursor = list.cursor_front();
622/// while let Some(next) = cursor.peek_next() {
623/// if next.value == value {
624/// return Some(next.remove());
625/// }
626/// cursor.move_next();
627/// }
628/// None
629/// }
630///
631/// // Use a cursor to remove the last element with the given value.
632/// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
633/// let mut cursor = list.cursor_back();
634/// while let Some(prev) = cursor.peek_prev() {
635/// if prev.value == value {
636/// return Some(prev.remove());
637/// }
638/// cursor.move_prev();
639/// }
640/// None
641/// }
642///
643/// // Use a cursor to remove all elements with the given value. The removed elements are moved to
644/// // a new list.
645/// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> {
646/// let mut out = List::new();
647/// let mut cursor = list.cursor_front();
648/// while let Some(next) = cursor.peek_next() {
649/// if next.value == value {
650/// out.push_back(next.remove());
651/// } else {
652/// cursor.move_next();
653/// }
654/// }
655/// out
656/// }
657///
658/// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of
659/// // bounds.
660/// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result {
661/// let mut cursor = list.cursor_front();
662/// for _ in 0..idx {
663/// if !cursor.move_next() {
664/// return Err(EINVAL);
665/// }
666/// }
667/// cursor.insert_next(new);
668/// Ok(())
669/// }
670///
671/// // Merge two sorted lists into a single sorted list.
672/// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) {
673/// let mut cursor = list.cursor_front();
674/// for to_insert in merge {
675/// while let Some(next) = cursor.peek_next() {
676/// if to_insert.value < next.value {
677/// break;
678/// }
679/// cursor.move_next();
680/// }
681/// cursor.insert_prev(to_insert);
682/// }
683/// }
684///
685/// let mut list = List::new();
686/// list.push_back(ListItem::new(14)?);
687/// list.push_back(ListItem::new(12)?);
688/// list.push_back(ListItem::new(10)?);
689/// list.push_back(ListItem::new(12)?);
690/// list.push_back(ListItem::new(15)?);
691/// list.push_back(ListItem::new(14)?);
692/// assert_eq!(remove_all(&mut list, 12).iter().count(), 2);
693/// // [14, 10, 15, 14]
694/// assert!(remove_first(&mut list, 14).is_some());
695/// // [10, 15, 14]
696/// insert_at(&mut list, ListItem::new(12)?, 2)?;
697/// // [10, 15, 12, 14]
698/// assert!(remove_last(&mut list, 15).is_some());
699/// // [10, 12, 14]
700///
701/// let mut list2 = List::new();
702/// list2.push_back(ListItem::new(11)?);
703/// list2.push_back(ListItem::new(13)?);
704/// merge_sorted(&mut list, list2);
705///
706/// let mut items = list.into_iter();
707/// assert_eq!(items.next().unwrap().value, 10);
708/// assert_eq!(items.next().unwrap().value, 11);
709/// assert_eq!(items.next().unwrap().value, 12);
710/// assert_eq!(items.next().unwrap().value, 13);
711/// assert_eq!(items.next().unwrap().value, 14);
712/// assert!(items.next().is_none());
713/// # Result::<(), Error>::Ok(())
714/// ```
715///
716/// # Invariants
717///
718/// The `next` pointer is null or points a value in `list`.
719pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
720 list: &'a mut List<T, ID>,
721 /// Points at the element after this cursor, or null if the cursor is after the last element.
722 next: *mut ListLinksFields,
723}
724
725impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
726 /// Returns a pointer to the element before the cursor.
727 ///
728 /// Returns null if there is no element before the cursor.
729 fn prev_ptr(&self) -> *mut ListLinksFields {
730 let mut next = self.next;
731 let first = self.list.first;
732 if next == first {
733 // We are before the first element.
734 return core::ptr::null_mut();
735 }
736
737 if next.is_null() {
738 // We are after the last element, so we need a pointer to the last element, which is
739 // the same as `(*first).prev`.
740 next = first;
741 }
742
743 // SAFETY: `next` can't be null, because then `first` must also be null, but in that case
744 // we would have exited at the `next == first` check. Thus, `next` is an element in the
745 // list, so we can access its `prev` pointer.
746 unsafe { (*next).prev }
747 }
748
749 /// Access the element after this cursor.
750 pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> {
751 if self.next.is_null() {
752 return None;
753 }
754
755 // INVARIANT:
756 // * We just checked that `self.next` is non-null, so it must be in `self.list`.
757 // * `ptr` is equal to `self.next`.
758 Some(CursorPeek {
759 ptr: self.next,
760 cursor: self,
761 })
762 }
763
764 /// Access the element before this cursor.
765 pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> {
766 let prev = self.prev_ptr();
767
768 if prev.is_null() {
769 return None;
770 }
771
772 // INVARIANT:
773 // * We just checked that `prev` is non-null, so it must be in `self.list`.
774 // * `self.prev_ptr()` never returns `self.next`.
775 Some(CursorPeek {
776 ptr: prev,
777 cursor: self,
778 })
779 }
780
781 /// Move the cursor one element forward.
782 ///
783 /// If the cursor is after the last element, then this call does nothing. This call returns
784 /// `true` if the cursor's position was changed.
785 pub fn move_next(&mut self) -> bool {
786 if self.next.is_null() {
787 return false;
788 }
789
790 // SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can
791 // access the `next` field.
792 let mut next = unsafe { (*self.next).next };
793
794 if next == self.list.first {
795 next = core::ptr::null_mut();
796 }
797
798 // INVARIANT: `next` is either null or the next element after an element in the list.
799 self.next = next;
800 true
801 }
802
803 /// Move the cursor one element backwards.
804 ///
805 /// If the cursor is before the first element, then this call does nothing. This call returns
806 /// `true` if the cursor's position was changed.
807 pub fn move_prev(&mut self) -> bool {
808 if self.next == self.list.first {
809 return false;
810 }
811
812 // INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list.
813 self.next = self.prev_ptr();
814 true
815 }
816
817 /// Inserts an element where the cursor is pointing and get a pointer to the new element.
818 fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields {
819 let ptr = if self.next.is_null() {
820 self.list.first
821 } else {
822 self.next
823 };
824 // SAFETY:
825 // * `ptr` is an element in the list or null.
826 // * if `ptr` is null, then `self.list.first` is null so the list is empty.
827 let item = unsafe { self.list.insert_inner(item, ptr) };
828 if self.next == self.list.first {
829 // INVARIANT: We just inserted `item`, so it's a member of list.
830 self.list.first = item;
831 }
832 item
833 }
834
835 /// Insert an element at this cursor's location.
836 pub fn insert(mut self, item: ListArc<T, ID>) {
837 // This is identical to `insert_prev`, but consumes the cursor. This is helpful because it
838 // reduces confusion when the last operation on the cursor is an insertion; in that case,
839 // you just want to insert the element at the cursor, and it is confusing that the call
840 // involves the word prev or next.
841 self.insert_inner(item);
842 }
843
844 /// Inserts an element after this cursor.
845 ///
846 /// After insertion, the new element will be after the cursor.
847 pub fn insert_next(&mut self, item: ListArc<T, ID>) {
848 self.next = self.insert_inner(item);
849 }
850
851 /// Inserts an element before this cursor.
852 ///
853 /// After insertion, the new element will be before the cursor.
854 pub fn insert_prev(&mut self, item: ListArc<T, ID>) {
855 self.insert_inner(item);
856 }
857
858 /// Remove the next element from the list.
859 pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> {
860 self.peek_next().map(|v| v.remove())
861 }
862
863 /// Remove the previous element from the list.
864 pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> {
865 self.peek_prev().map(|v| v.remove())
866 }
867}
868
869/// References the element in the list next to the cursor.
870///
871/// # Invariants
872///
873/// * `ptr` is an element in `self.cursor.list`.
874/// * `ISNEXT == (self.ptr == self.cursor.next)`.
875pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> {
876 cursor: &'a mut Cursor<'b, T, ID>,
877 ptr: *mut ListLinksFields,
878}
879
880impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64>
881 CursorPeek<'a, 'b, T, ISNEXT, ID>
882{
883 /// Remove the element from the list.
884 pub fn remove(self) -> ListArc<T, ID> {
885 if ISNEXT {
886 self.cursor.move_next();
887 }
888
889 // INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next`
890 // call.
891 // SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of
892 // `self.cursor.list` by the type invariants of `Cursor`.
893 unsafe { self.cursor.list.remove_internal(self.ptr) }
894 }
895
896 /// Access this value as an [`ArcBorrow`].
897 pub fn arc(&self) -> ArcBorrow<'_, T> {
898 // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
899 let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
900 // SAFETY:
901 // * All values in a list are stored in an `Arc`.
902 // * The value cannot be removed from the list for the duration of the lifetime annotated
903 // on the returned `ArcBorrow`, because removing it from the list would require mutable
904 // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds
905 // an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
906 // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable
907 // access requires first releasing the immutable borrow on the `CursorPeek`.
908 // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
909 // reference, and `UniqueArc` references must be unique.
910 unsafe { ArcBorrow::from_raw(me) }
911 }
912}
913
914impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref
915 for CursorPeek<'a, 'b, T, ISNEXT, ID>
916{
917 // If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could
918 // get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`.
919 // However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>`
920 // and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be
921 // unsound.
922 type Target = T;
923
924 fn deref(&self) -> &T {
925 // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
926 let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
927
928 // SAFETY: The value cannot be removed from the list for the duration of the lifetime
929 // annotated on the returned `&T`, because removing it from the list would require mutable
930 // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an
931 // immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
932 // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access
933 // requires first releasing the immutable borrow on the `CursorPeek`.
934 unsafe { &*me }
935 }
936}
937
938impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
939
940impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
941 type IntoIter = Iter<'a, T, ID>;
942 type Item = ArcBorrow<'a, T>;
943
944 fn into_iter(self) -> Iter<'a, T, ID> {
945 self.iter()
946 }
947}
948
949/// An owning iterator into a [`List`].
950pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
951 list: List<T, ID>,
952}
953
954impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
955 type Item = ListArc<T, ID>;
956
957 fn next(&mut self) -> Option<ListArc<T, ID>> {
958 self.list.pop_front()
959 }
960}
961
962impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
963
964impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
965 fn next_back(&mut self) -> Option<ListArc<T, ID>> {
966 self.list.pop_back()
967 }
968}
969
970impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
971 type IntoIter = IntoIter<T, ID>;
972 type Item = ListArc<T, ID>;
973
974 fn into_iter(self) -> IntoIter<T, ID> {
975 IntoIter { list: self }
976 }
977}