kernel/
list.rs

1// SPDX-License-Identifier: GPL-2.0
2
3// Copyright (C) 2024 Google LLC.
4
5//! A linked list implementation.
6
7use crate::sync::ArcBorrow;
8use crate::types::Opaque;
9use core::iter::{DoubleEndedIterator, FusedIterator};
10use core::marker::PhantomData;
11use core::ptr;
12use pin_init::PinInit;
13
14mod impl_list_item_mod;
15pub use self::impl_list_item_mod::{
16    impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
17};
18
19mod arc;
20pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
21
22mod arc_field;
23pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
24
25/// A linked list.
26///
27/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
28/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
29/// prev/next pointers are not used for several linked lists.
30///
31/// # Invariants
32///
33/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
34///   field of the first element in the list.
35/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
36/// * For every item in the list, the list owns the associated [`ListArc`] reference and has
37///   exclusive access to the `ListLinks` field.
38///
39/// # Examples
40///
41/// ```
42/// use kernel::list::*;
43///
44/// #[pin_data]
45/// struct BasicItem {
46///     value: i32,
47///     #[pin]
48///     links: ListLinks,
49/// }
50///
51/// impl BasicItem {
52///     fn new(value: i32) -> Result<ListArc<Self>> {
53///         ListArc::pin_init(try_pin_init!(Self {
54///             value,
55///             links <- ListLinks::new(),
56///         }), GFP_KERNEL)
57///     }
58/// }
59///
60/// impl_has_list_links! {
61///     impl HasListLinks<0> for BasicItem { self.links }
62/// }
63/// impl_list_arc_safe! {
64///     impl ListArcSafe<0> for BasicItem { untracked; }
65/// }
66/// impl_list_item! {
67///     impl ListItem<0> for BasicItem { using ListLinks; }
68/// }
69///
70/// // Create a new empty list.
71/// let mut list = List::new();
72/// {
73///     assert!(list.is_empty());
74/// }
75///
76/// // Insert 3 elements using `push_back()`.
77/// list.push_back(BasicItem::new(15)?);
78/// list.push_back(BasicItem::new(10)?);
79/// list.push_back(BasicItem::new(30)?);
80///
81/// // Iterate over the list to verify the nodes were inserted correctly.
82/// // [15, 10, 30]
83/// {
84///     let mut iter = list.iter();
85///     assert_eq!(iter.next().unwrap().value, 15);
86///     assert_eq!(iter.next().unwrap().value, 10);
87///     assert_eq!(iter.next().unwrap().value, 30);
88///     assert!(iter.next().is_none());
89///
90///     // Verify the length of the list.
91///     assert_eq!(list.iter().count(), 3);
92/// }
93///
94/// // Pop the items from the list using `pop_back()` and verify the content.
95/// {
96///     assert_eq!(list.pop_back().unwrap().value, 30);
97///     assert_eq!(list.pop_back().unwrap().value, 10);
98///     assert_eq!(list.pop_back().unwrap().value, 15);
99/// }
100///
101/// // Insert 3 elements using `push_front()`.
102/// list.push_front(BasicItem::new(15)?);
103/// list.push_front(BasicItem::new(10)?);
104/// list.push_front(BasicItem::new(30)?);
105///
106/// // Iterate over the list to verify the nodes were inserted correctly.
107/// // [30, 10, 15]
108/// {
109///     let mut iter = list.iter();
110///     assert_eq!(iter.next().unwrap().value, 30);
111///     assert_eq!(iter.next().unwrap().value, 10);
112///     assert_eq!(iter.next().unwrap().value, 15);
113///     assert!(iter.next().is_none());
114///
115///     // Verify the length of the list.
116///     assert_eq!(list.iter().count(), 3);
117/// }
118///
119/// // Pop the items from the list using `pop_front()` and verify the content.
120/// {
121///     assert_eq!(list.pop_front().unwrap().value, 30);
122///     assert_eq!(list.pop_front().unwrap().value, 10);
123/// }
124///
125/// // Push `list2` to `list` through `push_all_back()`.
126/// // list: [15]
127/// // list2: [25, 35]
128/// {
129///     let mut list2 = List::new();
130///     list2.push_back(BasicItem::new(25)?);
131///     list2.push_back(BasicItem::new(35)?);
132///
133///     list.push_all_back(&mut list2);
134///
135///     // list: [15, 25, 35]
136///     // list2: []
137///     let mut iter = list.iter();
138///     assert_eq!(iter.next().unwrap().value, 15);
139///     assert_eq!(iter.next().unwrap().value, 25);
140///     assert_eq!(iter.next().unwrap().value, 35);
141///     assert!(iter.next().is_none());
142///     assert!(list2.is_empty());
143/// }
144/// # Result::<(), Error>::Ok(())
145/// ```
146pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
147    first: *mut ListLinksFields,
148    _ty: PhantomData<ListArc<T, ID>>,
149}
150
151// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
152// type of access to the `ListArc<T, ID>` elements.
153unsafe impl<T, const ID: u64> Send for List<T, ID>
154where
155    ListArc<T, ID>: Send,
156    T: ?Sized + ListItem<ID>,
157{
158}
159// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
160// type of access to the `ListArc<T, ID>` elements.
161unsafe impl<T, const ID: u64> Sync for List<T, ID>
162where
163    ListArc<T, ID>: Sync,
164    T: ?Sized + ListItem<ID>,
165{
166}
167
168/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
169///
170/// # Safety
171///
172/// Implementers must ensure that they provide the guarantees documented on methods provided by
173/// this trait.
174///
175/// [`ListArc<Self>`]: ListArc
176pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
177    /// Views the [`ListLinks`] for this value.
178    ///
179    /// # Guarantees
180    ///
181    /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
182    /// since the most recent such call, then this returns the same pointer as the one returned by
183    /// the most recent call to `prepare_to_insert`.
184    ///
185    /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
186    ///
187    /// # Safety
188    ///
189    /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
190    unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
191
192    /// View the full value given its [`ListLinks`] field.
193    ///
194    /// Can only be used when the value is in a list.
195    ///
196    /// # Guarantees
197    ///
198    /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
199    /// * The returned pointer is valid until the next call to `post_remove`.
200    ///
201    /// # Safety
202    ///
203    /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
204    ///   from a call to `view_links` that happened after the most recent call to
205    ///   `prepare_to_insert`.
206    /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
207    ///   been called.
208    unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
209
210    /// This is called when an item is inserted into a [`List`].
211    ///
212    /// # Guarantees
213    ///
214    /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
215    /// called.
216    ///
217    /// # Safety
218    ///
219    /// * The provided pointer must point at a valid value in an [`Arc`].
220    /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
221    /// * The caller must own the [`ListArc`] for this value.
222    /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
223    ///   called after this call to `prepare_to_insert`.
224    ///
225    /// [`Arc`]: crate::sync::Arc
226    unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
227
228    /// This undoes a previous call to `prepare_to_insert`.
229    ///
230    /// # Guarantees
231    ///
232    /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
233    ///
234    /// # Safety
235    ///
236    /// The provided pointer must be the pointer returned by the most recent call to
237    /// `prepare_to_insert`.
238    unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
239}
240
241#[repr(C)]
242#[derive(Copy, Clone)]
243struct ListLinksFields {
244    next: *mut ListLinksFields,
245    prev: *mut ListLinksFields,
246}
247
248/// The prev/next pointers for an item in a linked list.
249///
250/// # Invariants
251///
252/// The fields are null if and only if this item is not in a list.
253#[repr(transparent)]
254pub struct ListLinks<const ID: u64 = 0> {
255    // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
256    // list.
257    inner: Opaque<ListLinksFields>,
258}
259
260// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
261// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
262// move this an instance of this type to a different thread if the pointees are `!Send`.
263unsafe impl<const ID: u64> Send for ListLinks<ID> {}
264// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
265// okay to have immutable access to a ListLinks from several threads at once.
266unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
267
268impl<const ID: u64> ListLinks<ID> {
269    /// Creates a new initializer for this type.
270    pub fn new() -> impl PinInit<Self> {
271        // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
272        // not be constructed in an `Arc` that already has a `ListArc`.
273        ListLinks {
274            inner: Opaque::new(ListLinksFields {
275                prev: ptr::null_mut(),
276                next: ptr::null_mut(),
277            }),
278        }
279    }
280
281    /// # Safety
282    ///
283    /// `me` must be dereferenceable.
284    #[inline]
285    unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
286        // SAFETY: The caller promises that the pointer is valid.
287        unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
288    }
289
290    /// # Safety
291    ///
292    /// `me` must be dereferenceable.
293    #[inline]
294    unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
295        me.cast()
296    }
297}
298
299/// Similar to [`ListLinks`], but also contains a pointer to the full value.
300///
301/// This type can be used instead of [`ListLinks`] to support lists with trait objects.
302#[repr(C)]
303pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
304    /// The `ListLinks` field inside this value.
305    ///
306    /// This is public so that it can be used with `impl_has_list_links!`.
307    pub inner: ListLinks<ID>,
308    // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
309    // `ptr::null()` doesn't work for `T: ?Sized`.
310    self_ptr: Opaque<*const T>,
311}
312
313// SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
314unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
315// SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
316// it's okay to have immutable access to a ListLinks from several threads at once.
317//
318// Note that `inner` being a public field does not prevent this type from being opaque, since
319// `inner` is a opaque type.
320unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
321
322impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
323    /// The offset from the [`ListLinks`] to the self pointer field.
324    pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
325
326    /// Creates a new initializer for this type.
327    pub fn new() -> impl PinInit<Self> {
328        // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
329        // not be constructed in an `Arc` that already has a `ListArc`.
330        Self {
331            inner: ListLinks {
332                inner: Opaque::new(ListLinksFields {
333                    prev: ptr::null_mut(),
334                    next: ptr::null_mut(),
335                }),
336            },
337            self_ptr: Opaque::uninit(),
338        }
339    }
340}
341
342impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
343    /// Creates a new empty list.
344    pub const fn new() -> Self {
345        Self {
346            first: ptr::null_mut(),
347            _ty: PhantomData,
348        }
349    }
350
351    /// Returns whether this list is empty.
352    pub fn is_empty(&self) -> bool {
353        self.first.is_null()
354    }
355
356    /// Inserts `item` before `next` in the cycle.
357    ///
358    /// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list
359    /// is empty.
360    ///
361    /// # Safety
362    ///
363    /// * `next` must be an element in this list or null.
364    /// * if `next` is null, then the list must be empty.
365    unsafe fn insert_inner(
366        &mut self,
367        item: ListArc<T, ID>,
368        next: *mut ListLinksFields,
369    ) -> *mut ListLinksFields {
370        let raw_item = ListArc::into_raw(item);
371        // SAFETY:
372        // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
373        // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
374        //   the most recent call to `prepare_to_insert`, if any.
375        // * We own the `ListArc`.
376        // * Removing items from this list is always done using `remove_internal_inner`, which
377        //   calls `post_remove` before giving up ownership.
378        let list_links = unsafe { T::prepare_to_insert(raw_item) };
379        // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
380        let item = unsafe { ListLinks::fields(list_links) };
381
382        // Check if the list is empty.
383        if next.is_null() {
384            // SAFETY: The caller just gave us ownership of these fields.
385            // INVARIANT: A linked list with one item should be cyclic.
386            unsafe {
387                (*item).next = item;
388                (*item).prev = item;
389            }
390            self.first = item;
391        } else {
392            // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
393            // it's not null, so it must be valid.
394            let prev = unsafe { (*next).prev };
395            // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
396            // ownership of the fields on `item`.
397            // INVARIANT: This correctly inserts `item` between `prev` and `next`.
398            unsafe {
399                (*item).next = next;
400                (*item).prev = prev;
401                (*prev).next = item;
402                (*next).prev = item;
403            }
404        }
405
406        item
407    }
408
409    /// Add the provided item to the back of the list.
410    pub fn push_back(&mut self, item: ListArc<T, ID>) {
411        // SAFETY:
412        // * `self.first` is null or in the list.
413        // * `self.first` is only null if the list is empty.
414        unsafe { self.insert_inner(item, self.first) };
415    }
416
417    /// Add the provided item to the front of the list.
418    pub fn push_front(&mut self, item: ListArc<T, ID>) {
419        // SAFETY:
420        // * `self.first` is null or in the list.
421        // * `self.first` is only null if the list is empty.
422        let new_elem = unsafe { self.insert_inner(item, self.first) };
423
424        // INVARIANT: `new_elem` is in the list because we just inserted it.
425        self.first = new_elem;
426    }
427
428    /// Removes the last item from this list.
429    pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
430        if self.is_empty() {
431            return None;
432        }
433
434        // SAFETY: We just checked that the list is not empty.
435        let last = unsafe { (*self.first).prev };
436        // SAFETY: The last item of this list is in this list.
437        Some(unsafe { self.remove_internal(last) })
438    }
439
440    /// Removes the first item from this list.
441    pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
442        if self.is_empty() {
443            return None;
444        }
445
446        // SAFETY: The first item of this list is in this list.
447        Some(unsafe { self.remove_internal(self.first) })
448    }
449
450    /// Removes the provided item from this list and returns it.
451    ///
452    /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
453    /// this means that the item is not in any list.)
454    ///
455    /// # Safety
456    ///
457    /// `item` must not be in a different linked list (with the same id).
458    pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
459        // SAFETY: TODO.
460        let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
461        // SAFETY: The user provided a reference, and reference are never dangling.
462        //
463        // As for why this is not a data race, there are two cases:
464        //
465        //  * If `item` is not in any list, then these fields are read-only and null.
466        //  * If `item` is in this list, then we have exclusive access to these fields since we
467        //    have a mutable reference to the list.
468        //
469        // In either case, there's no race.
470        let ListLinksFields { next, prev } = unsafe { *item };
471
472        debug_assert_eq!(next.is_null(), prev.is_null());
473        if !next.is_null() {
474            // This is really a no-op, but this ensures that `item` is a raw pointer that was
475            // obtained without going through a pointer->reference->pointer conversion roundtrip.
476            // This ensures that the list is valid under the more restrictive strict provenance
477            // ruleset.
478            //
479            // SAFETY: We just checked that `next` is not null, and it's not dangling by the
480            // list invariants.
481            unsafe {
482                debug_assert_eq!(item, (*next).prev);
483                item = (*next).prev;
484            }
485
486            // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
487            // is in this list. The pointers are in the right order.
488            Some(unsafe { self.remove_internal_inner(item, next, prev) })
489        } else {
490            None
491        }
492    }
493
494    /// Removes the provided item from the list.
495    ///
496    /// # Safety
497    ///
498    /// `item` must point at an item in this list.
499    unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
500        // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
501        // since we have a mutable reference to the list containing `item`.
502        let ListLinksFields { next, prev } = unsafe { *item };
503        // SAFETY: The pointers are ok and in the right order.
504        unsafe { self.remove_internal_inner(item, next, prev) }
505    }
506
507    /// Removes the provided item from the list.
508    ///
509    /// # Safety
510    ///
511    /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
512    /// next` and `(*item).prev == prev`.
513    unsafe fn remove_internal_inner(
514        &mut self,
515        item: *mut ListLinksFields,
516        next: *mut ListLinksFields,
517        prev: *mut ListLinksFields,
518    ) -> ListArc<T, ID> {
519        // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
520        // pointers are always valid for items in a list.
521        //
522        // INVARIANT: There are three cases:
523        //  * If the list has at least three items, then after removing the item, `prev` and `next`
524        //    will be next to each other.
525        //  * If the list has two items, then the remaining item will point at itself.
526        //  * If the list has one item, then `next == prev == item`, so these writes have no
527        //    effect. The list remains unchanged and `item` is still in the list for now.
528        unsafe {
529            (*next).prev = prev;
530            (*prev).next = next;
531        }
532        // SAFETY: We have exclusive access to items in the list.
533        // INVARIANT: `item` is being removed, so the pointers should be null.
534        unsafe {
535            (*item).prev = ptr::null_mut();
536            (*item).next = ptr::null_mut();
537        }
538        // INVARIANT: There are three cases:
539        //  * If `item` was not the first item, then `self.first` should remain unchanged.
540        //  * If `item` was the first item and there is another item, then we just updated
541        //    `prev->next` to `next`, which is the new first item, and setting `item->next` to null
542        //    did not modify `prev->next`.
543        //  * If `item` was the only item in the list, then `prev == item`, and we just set
544        //    `item->next` to null, so this correctly sets `first` to null now that the list is
545        //    empty.
546        if self.first == item {
547            // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
548            // list, so it must be valid. There is no race since `prev` is still in the list and we
549            // still have exclusive access to the list.
550            self.first = unsafe { (*prev).next };
551        }
552
553        // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
554        // of `List`.
555        let list_links = unsafe { ListLinks::from_fields(item) };
556        // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
557        let raw_item = unsafe { T::post_remove(list_links) };
558        // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
559        unsafe { ListArc::from_raw(raw_item) }
560    }
561
562    /// Moves all items from `other` into `self`.
563    ///
564    /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
565    /// the last item of `self`.
566    pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
567        // First, we insert the elements into `self`. At the end, we make `other` empty.
568        if self.is_empty() {
569            // INVARIANT: All of the elements in `other` become elements of `self`.
570            self.first = other.first;
571        } else if !other.is_empty() {
572            let other_first = other.first;
573            // SAFETY: The other list is not empty, so this pointer is valid.
574            let other_last = unsafe { (*other_first).prev };
575            let self_first = self.first;
576            // SAFETY: The self list is not empty, so this pointer is valid.
577            let self_last = unsafe { (*self_first).prev };
578
579            // SAFETY: We have exclusive access to both lists, so we can update the pointers.
580            // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
581            // update `self.first` because the first element of `self` does not change.
582            unsafe {
583                (*self_first).prev = other_last;
584                (*other_last).next = self_first;
585                (*self_last).next = other_first;
586                (*other_first).prev = self_last;
587            }
588        }
589
590        // INVARIANT: The other list is now empty, so update its pointer.
591        other.first = ptr::null_mut();
592    }
593
594    /// Returns a cursor that points before the first element of the list.
595    pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> {
596        // INVARIANT: `self.first` is in this list.
597        Cursor {
598            next: self.first,
599            list: self,
600        }
601    }
602
603    /// Returns a cursor that points after the last element in the list.
604    pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> {
605        // INVARIANT: `next` is allowed to be null.
606        Cursor {
607            next: core::ptr::null_mut(),
608            list: self,
609        }
610    }
611
612    /// Creates an iterator over the list.
613    pub fn iter(&self) -> Iter<'_, T, ID> {
614        // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
615        // at the first element of the same list.
616        Iter {
617            current: self.first,
618            stop: self.first,
619            _ty: PhantomData,
620        }
621    }
622}
623
624impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
625    fn default() -> Self {
626        List::new()
627    }
628}
629
630impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
631    fn drop(&mut self) {
632        while let Some(item) = self.pop_front() {
633            drop(item);
634        }
635    }
636}
637
638/// An iterator over a [`List`].
639///
640/// # Invariants
641///
642/// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
643/// * The `current` pointer is null or points at a value in that [`List`].
644/// * The `stop` pointer is equal to the `first` field of that [`List`].
645#[derive(Clone)]
646pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
647    current: *mut ListLinksFields,
648    stop: *mut ListLinksFields,
649    _ty: PhantomData<&'a ListArc<T, ID>>,
650}
651
652impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
653    type Item = ArcBorrow<'a, T>;
654
655    fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
656        if self.current.is_null() {
657            return None;
658        }
659
660        let current = self.current;
661
662        // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
663        // dangling. There's no race because the iterator holds an immutable borrow to the list.
664        let next = unsafe { (*current).next };
665        // INVARIANT: If `current` was the last element of the list, then this updates it to null.
666        // Otherwise, we update it to the next element.
667        self.current = if next != self.stop {
668            next
669        } else {
670            ptr::null_mut()
671        };
672
673        // SAFETY: The `current` pointer points at a value in the list.
674        let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
675        // SAFETY:
676        // * All values in a list are stored in an `Arc`.
677        // * The value cannot be removed from the list for the duration of the lifetime annotated
678        //   on the returned `ArcBorrow`, because removing it from the list would require mutable
679        //   access to the list. However, the `ArcBorrow` is annotated with the iterator's
680        //   lifetime, and the list is immutably borrowed for that lifetime.
681        // * Values in a list never have a `UniqueArc` reference.
682        Some(unsafe { ArcBorrow::from_raw(item) })
683    }
684}
685
686/// A cursor into a [`List`].
687///
688/// A cursor always rests between two elements in the list. This means that a cursor has a previous
689/// and next element, but no current element. It also means that it's possible to have a cursor
690/// into an empty list.
691///
692/// # Examples
693///
694/// ```
695/// use kernel::prelude::*;
696/// use kernel::list::{List, ListArc, ListLinks};
697///
698/// #[pin_data]
699/// struct ListItem {
700///     value: u32,
701///     #[pin]
702///     links: ListLinks,
703/// }
704///
705/// impl ListItem {
706///     fn new(value: u32) -> Result<ListArc<Self>> {
707///         ListArc::pin_init(try_pin_init!(Self {
708///             value,
709///             links <- ListLinks::new(),
710///         }), GFP_KERNEL)
711///     }
712/// }
713///
714/// kernel::list::impl_has_list_links! {
715///     impl HasListLinks<0> for ListItem { self.links }
716/// }
717/// kernel::list::impl_list_arc_safe! {
718///     impl ListArcSafe<0> for ListItem { untracked; }
719/// }
720/// kernel::list::impl_list_item! {
721///     impl ListItem<0> for ListItem { using ListLinks; }
722/// }
723///
724/// // Use a cursor to remove the first element with the given value.
725/// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
726///     let mut cursor = list.cursor_front();
727///     while let Some(next) = cursor.peek_next() {
728///         if next.value == value {
729///             return Some(next.remove());
730///         }
731///         cursor.move_next();
732///     }
733///     None
734/// }
735///
736/// // Use a cursor to remove the last element with the given value.
737/// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
738///     let mut cursor = list.cursor_back();
739///     while let Some(prev) = cursor.peek_prev() {
740///         if prev.value == value {
741///             return Some(prev.remove());
742///         }
743///         cursor.move_prev();
744///     }
745///     None
746/// }
747///
748/// // Use a cursor to remove all elements with the given value. The removed elements are moved to
749/// // a new list.
750/// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> {
751///     let mut out = List::new();
752///     let mut cursor = list.cursor_front();
753///     while let Some(next) = cursor.peek_next() {
754///         if next.value == value {
755///             out.push_back(next.remove());
756///         } else {
757///             cursor.move_next();
758///         }
759///     }
760///     out
761/// }
762///
763/// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of
764/// // bounds.
765/// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result {
766///     let mut cursor = list.cursor_front();
767///     for _ in 0..idx {
768///         if !cursor.move_next() {
769///             return Err(EINVAL);
770///         }
771///     }
772///     cursor.insert_next(new);
773///     Ok(())
774/// }
775///
776/// // Merge two sorted lists into a single sorted list.
777/// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) {
778///     let mut cursor = list.cursor_front();
779///     for to_insert in merge {
780///         while let Some(next) = cursor.peek_next() {
781///             if to_insert.value < next.value {
782///                 break;
783///             }
784///             cursor.move_next();
785///         }
786///         cursor.insert_prev(to_insert);
787///     }
788/// }
789///
790/// let mut list = List::new();
791/// list.push_back(ListItem::new(14)?);
792/// list.push_back(ListItem::new(12)?);
793/// list.push_back(ListItem::new(10)?);
794/// list.push_back(ListItem::new(12)?);
795/// list.push_back(ListItem::new(15)?);
796/// list.push_back(ListItem::new(14)?);
797/// assert_eq!(remove_all(&mut list, 12).iter().count(), 2);
798/// // [14, 10, 15, 14]
799/// assert!(remove_first(&mut list, 14).is_some());
800/// // [10, 15, 14]
801/// insert_at(&mut list, ListItem::new(12)?, 2)?;
802/// // [10, 15, 12, 14]
803/// assert!(remove_last(&mut list, 15).is_some());
804/// // [10, 12, 14]
805///
806/// let mut list2 = List::new();
807/// list2.push_back(ListItem::new(11)?);
808/// list2.push_back(ListItem::new(13)?);
809/// merge_sorted(&mut list, list2);
810///
811/// let mut items = list.into_iter();
812/// assert_eq!(items.next().unwrap().value, 10);
813/// assert_eq!(items.next().unwrap().value, 11);
814/// assert_eq!(items.next().unwrap().value, 12);
815/// assert_eq!(items.next().unwrap().value, 13);
816/// assert_eq!(items.next().unwrap().value, 14);
817/// assert!(items.next().is_none());
818/// # Result::<(), Error>::Ok(())
819/// ```
820///
821/// # Invariants
822///
823/// The `next` pointer is null or points a value in `list`.
824pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
825    list: &'a mut List<T, ID>,
826    /// Points at the element after this cursor, or null if the cursor is after the last element.
827    next: *mut ListLinksFields,
828}
829
830impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
831    /// Returns a pointer to the element before the cursor.
832    ///
833    /// Returns null if there is no element before the cursor.
834    fn prev_ptr(&self) -> *mut ListLinksFields {
835        let mut next = self.next;
836        let first = self.list.first;
837        if next == first {
838            // We are before the first element.
839            return core::ptr::null_mut();
840        }
841
842        if next.is_null() {
843            // We are after the last element, so we need a pointer to the last element, which is
844            // the same as `(*first).prev`.
845            next = first;
846        }
847
848        // SAFETY: `next` can't be null, because then `first` must also be null, but in that case
849        // we would have exited at the `next == first` check. Thus, `next` is an element in the
850        // list, so we can access its `prev` pointer.
851        unsafe { (*next).prev }
852    }
853
854    /// Access the element after this cursor.
855    pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> {
856        if self.next.is_null() {
857            return None;
858        }
859
860        // INVARIANT:
861        // * We just checked that `self.next` is non-null, so it must be in `self.list`.
862        // * `ptr` is equal to `self.next`.
863        Some(CursorPeek {
864            ptr: self.next,
865            cursor: self,
866        })
867    }
868
869    /// Access the element before this cursor.
870    pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> {
871        let prev = self.prev_ptr();
872
873        if prev.is_null() {
874            return None;
875        }
876
877        // INVARIANT:
878        // * We just checked that `prev` is non-null, so it must be in `self.list`.
879        // * `self.prev_ptr()` never returns `self.next`.
880        Some(CursorPeek {
881            ptr: prev,
882            cursor: self,
883        })
884    }
885
886    /// Move the cursor one element forward.
887    ///
888    /// If the cursor is after the last element, then this call does nothing. This call returns
889    /// `true` if the cursor's position was changed.
890    pub fn move_next(&mut self) -> bool {
891        if self.next.is_null() {
892            return false;
893        }
894
895        // SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can
896        // access the `next` field.
897        let mut next = unsafe { (*self.next).next };
898
899        if next == self.list.first {
900            next = core::ptr::null_mut();
901        }
902
903        // INVARIANT: `next` is either null or the next element after an element in the list.
904        self.next = next;
905        true
906    }
907
908    /// Move the cursor one element backwards.
909    ///
910    /// If the cursor is before the first element, then this call does nothing. This call returns
911    /// `true` if the cursor's position was changed.
912    pub fn move_prev(&mut self) -> bool {
913        if self.next == self.list.first {
914            return false;
915        }
916
917        // INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list.
918        self.next = self.prev_ptr();
919        true
920    }
921
922    /// Inserts an element where the cursor is pointing and get a pointer to the new element.
923    fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields {
924        let ptr = if self.next.is_null() {
925            self.list.first
926        } else {
927            self.next
928        };
929        // SAFETY:
930        // * `ptr` is an element in the list or null.
931        // * if `ptr` is null, then `self.list.first` is null so the list is empty.
932        let item = unsafe { self.list.insert_inner(item, ptr) };
933        if self.next == self.list.first {
934            // INVARIANT: We just inserted `item`, so it's a member of list.
935            self.list.first = item;
936        }
937        item
938    }
939
940    /// Insert an element at this cursor's location.
941    pub fn insert(mut self, item: ListArc<T, ID>) {
942        // This is identical to `insert_prev`, but consumes the cursor. This is helpful because it
943        // reduces confusion when the last operation on the cursor is an insertion; in that case,
944        // you just want to insert the element at the cursor, and it is confusing that the call
945        // involves the word prev or next.
946        self.insert_inner(item);
947    }
948
949    /// Inserts an element after this cursor.
950    ///
951    /// After insertion, the new element will be after the cursor.
952    pub fn insert_next(&mut self, item: ListArc<T, ID>) {
953        self.next = self.insert_inner(item);
954    }
955
956    /// Inserts an element before this cursor.
957    ///
958    /// After insertion, the new element will be before the cursor.
959    pub fn insert_prev(&mut self, item: ListArc<T, ID>) {
960        self.insert_inner(item);
961    }
962
963    /// Remove the next element from the list.
964    pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> {
965        self.peek_next().map(|v| v.remove())
966    }
967
968    /// Remove the previous element from the list.
969    pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> {
970        self.peek_prev().map(|v| v.remove())
971    }
972}
973
974/// References the element in the list next to the cursor.
975///
976/// # Invariants
977///
978/// * `ptr` is an element in `self.cursor.list`.
979/// * `ISNEXT == (self.ptr == self.cursor.next)`.
980pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> {
981    cursor: &'a mut Cursor<'b, T, ID>,
982    ptr: *mut ListLinksFields,
983}
984
985impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64>
986    CursorPeek<'a, 'b, T, ISNEXT, ID>
987{
988    /// Remove the element from the list.
989    pub fn remove(self) -> ListArc<T, ID> {
990        if ISNEXT {
991            self.cursor.move_next();
992        }
993
994        // INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next`
995        // call.
996        // SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of
997        // `self.cursor.list` by the type invariants of `Cursor`.
998        unsafe { self.cursor.list.remove_internal(self.ptr) }
999    }
1000
1001    /// Access this value as an [`ArcBorrow`].
1002    pub fn arc(&self) -> ArcBorrow<'_, T> {
1003        // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
1004        let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
1005        // SAFETY:
1006        // * All values in a list are stored in an `Arc`.
1007        // * The value cannot be removed from the list for the duration of the lifetime annotated
1008        //   on the returned `ArcBorrow`, because removing it from the list would require mutable
1009        //   access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds
1010        //   an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
1011        //   `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable
1012        //   access requires first releasing the immutable borrow on the `CursorPeek`.
1013        // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
1014        //   reference, and `UniqueArc` references must be unique.
1015        unsafe { ArcBorrow::from_raw(me) }
1016    }
1017}
1018
1019impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref
1020    for CursorPeek<'a, 'b, T, ISNEXT, ID>
1021{
1022    // If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could
1023    // get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`.
1024    // However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>`
1025    // and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be
1026    // unsound.
1027    type Target = T;
1028
1029    fn deref(&self) -> &T {
1030        // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
1031        let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
1032
1033        // SAFETY: The value cannot be removed from the list for the duration of the lifetime
1034        // annotated on the returned `&T`, because removing it from the list would require mutable
1035        // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an
1036        // immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
1037        // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access
1038        // requires first releasing the immutable borrow on the `CursorPeek`.
1039        unsafe { &*me }
1040    }
1041}
1042
1043impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
1044
1045impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
1046    type IntoIter = Iter<'a, T, ID>;
1047    type Item = ArcBorrow<'a, T>;
1048
1049    fn into_iter(self) -> Iter<'a, T, ID> {
1050        self.iter()
1051    }
1052}
1053
1054/// An owning iterator into a [`List`].
1055pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
1056    list: List<T, ID>,
1057}
1058
1059impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
1060    type Item = ListArc<T, ID>;
1061
1062    fn next(&mut self) -> Option<ListArc<T, ID>> {
1063        self.list.pop_front()
1064    }
1065}
1066
1067impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
1068
1069impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
1070    fn next_back(&mut self) -> Option<ListArc<T, ID>> {
1071        self.list.pop_back()
1072    }
1073}
1074
1075impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
1076    type IntoIter = IntoIter<T, ID>;
1077    type Item = ListArc<T, ID>;
1078
1079    fn into_iter(self) -> IntoIter<T, ID> {
1080        IntoIter { list: self }
1081    }
1082}