kernel/io.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Memory-mapped IO.
4//!
5//! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
6
7use crate::{
8 bindings,
9 prelude::*, //
10};
11
12pub mod mem;
13pub mod poll;
14pub mod resource;
15
16pub use resource::Resource;
17
18/// Physical address type.
19///
20/// This is a type alias to either `u32` or `u64` depending on the config option
21/// `CONFIG_PHYS_ADDR_T_64BIT`, and it can be a u64 even on 32-bit architectures.
22pub type PhysAddr = bindings::phys_addr_t;
23
24/// Resource Size type.
25///
26/// This is a type alias to either `u32` or `u64` depending on the config option
27/// `CONFIG_PHYS_ADDR_T_64BIT`, and it can be a u64 even on 32-bit architectures.
28pub type ResourceSize = bindings::resource_size_t;
29
30/// Raw representation of an MMIO region.
31///
32/// By itself, the existence of an instance of this structure does not provide any guarantees that
33/// the represented MMIO region does exist or is properly mapped.
34///
35/// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
36/// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
37/// any guarantees are given.
38pub struct IoRaw<const SIZE: usize = 0> {
39 addr: usize,
40 maxsize: usize,
41}
42
43impl<const SIZE: usize> IoRaw<SIZE> {
44 /// Returns a new `IoRaw` instance on success, an error otherwise.
45 pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
46 if maxsize < SIZE {
47 return Err(EINVAL);
48 }
49
50 Ok(Self { addr, maxsize })
51 }
52
53 /// Returns the base address of the MMIO region.
54 #[inline]
55 pub fn addr(&self) -> usize {
56 self.addr
57 }
58
59 /// Returns the maximum size of the MMIO region.
60 #[inline]
61 pub fn maxsize(&self) -> usize {
62 self.maxsize
63 }
64}
65
66/// IO-mapped memory region.
67///
68/// The creator (usually a subsystem / bus such as PCI) is responsible for creating the
69/// mapping, performing an additional region request etc.
70///
71/// # Invariant
72///
73/// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size
74/// `maxsize`.
75///
76/// # Examples
77///
78/// ```no_run
79/// use kernel::{
80/// bindings,
81/// ffi::c_void,
82/// io::{
83/// Io,
84/// IoRaw,
85/// PhysAddr,
86/// },
87/// };
88/// use core::ops::Deref;
89///
90/// // See also [`pci::Bar`] for a real example.
91/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
92///
93/// impl<const SIZE: usize> IoMem<SIZE> {
94/// /// # Safety
95/// ///
96/// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
97/// /// virtual address space.
98/// unsafe fn new(paddr: usize) -> Result<Self>{
99/// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
100/// // valid for `ioremap`.
101/// let addr = unsafe { bindings::ioremap(paddr as PhysAddr, SIZE) };
102/// if addr.is_null() {
103/// return Err(ENOMEM);
104/// }
105///
106/// Ok(IoMem(IoRaw::new(addr as usize, SIZE)?))
107/// }
108/// }
109///
110/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
111/// fn drop(&mut self) {
112/// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
113/// unsafe { bindings::iounmap(self.0.addr() as *mut c_void); };
114/// }
115/// }
116///
117/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
118/// type Target = Io<SIZE>;
119///
120/// fn deref(&self) -> &Self::Target {
121/// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
122/// unsafe { Io::from_raw(&self.0) }
123/// }
124/// }
125///
126///# fn no_run() -> Result<(), Error> {
127/// // SAFETY: Invalid usage for example purposes.
128/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
129/// iomem.write32(0x42, 0x0);
130/// assert!(iomem.try_write32(0x42, 0x0).is_ok());
131/// assert!(iomem.try_write32(0x42, 0x4).is_err());
132/// # Ok(())
133/// # }
134/// ```
135#[repr(transparent)]
136pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
137
138macro_rules! define_read {
139 ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident -> $type_name:ty) => {
140 /// Read IO data from a given offset known at compile time.
141 ///
142 /// Bound checks are performed on compile time, hence if the offset is not known at compile
143 /// time, the build will fail.
144 $(#[$attr])*
145 #[inline]
146 pub fn $name(&self, offset: usize) -> $type_name {
147 let addr = self.io_addr_assert::<$type_name>(offset);
148
149 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
150 unsafe { bindings::$c_fn(addr as *const c_void) }
151 }
152
153 /// Read IO data from a given offset.
154 ///
155 /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
156 /// out of bounds.
157 $(#[$attr])*
158 pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
159 let addr = self.io_addr::<$type_name>(offset)?;
160
161 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
162 Ok(unsafe { bindings::$c_fn(addr as *const c_void) })
163 }
164 };
165}
166
167macro_rules! define_write {
168 ($(#[$attr:meta])* $name:ident, $try_name:ident, $c_fn:ident <- $type_name:ty) => {
169 /// Write IO data from a given offset known at compile time.
170 ///
171 /// Bound checks are performed on compile time, hence if the offset is not known at compile
172 /// time, the build will fail.
173 $(#[$attr])*
174 #[inline]
175 pub fn $name(&self, value: $type_name, offset: usize) {
176 let addr = self.io_addr_assert::<$type_name>(offset);
177
178 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
179 unsafe { bindings::$c_fn(value, addr as *mut c_void) }
180 }
181
182 /// Write IO data from a given offset.
183 ///
184 /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
185 /// out of bounds.
186 $(#[$attr])*
187 pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
188 let addr = self.io_addr::<$type_name>(offset)?;
189
190 // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
191 unsafe { bindings::$c_fn(value, addr as *mut c_void) }
192 Ok(())
193 }
194 };
195}
196
197impl<const SIZE: usize> Io<SIZE> {
198 /// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
199 ///
200 /// # Safety
201 ///
202 /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
203 /// `maxsize`.
204 pub unsafe fn from_raw(raw: &IoRaw<SIZE>) -> &Self {
205 // SAFETY: `Io` is a transparent wrapper around `IoRaw`.
206 unsafe { &*core::ptr::from_ref(raw).cast() }
207 }
208
209 /// Returns the base address of this mapping.
210 #[inline]
211 pub fn addr(&self) -> usize {
212 self.0.addr()
213 }
214
215 /// Returns the maximum size of this mapping.
216 #[inline]
217 pub fn maxsize(&self) -> usize {
218 self.0.maxsize()
219 }
220
221 #[inline]
222 const fn offset_valid<U>(offset: usize, size: usize) -> bool {
223 let type_size = core::mem::size_of::<U>();
224 if let Some(end) = offset.checked_add(type_size) {
225 end <= size && offset % type_size == 0
226 } else {
227 false
228 }
229 }
230
231 #[inline]
232 fn io_addr<U>(&self, offset: usize) -> Result<usize> {
233 if !Self::offset_valid::<U>(offset, self.maxsize()) {
234 return Err(EINVAL);
235 }
236
237 // Probably no need to check, since the safety requirements of `Self::new` guarantee that
238 // this can't overflow.
239 self.addr().checked_add(offset).ok_or(EINVAL)
240 }
241
242 #[inline]
243 fn io_addr_assert<U>(&self, offset: usize) -> usize {
244 build_assert!(Self::offset_valid::<U>(offset, SIZE));
245
246 self.addr() + offset
247 }
248
249 define_read!(read8, try_read8, readb -> u8);
250 define_read!(read16, try_read16, readw -> u16);
251 define_read!(read32, try_read32, readl -> u32);
252 define_read!(
253 #[cfg(CONFIG_64BIT)]
254 read64,
255 try_read64,
256 readq -> u64
257 );
258
259 define_read!(read8_relaxed, try_read8_relaxed, readb_relaxed -> u8);
260 define_read!(read16_relaxed, try_read16_relaxed, readw_relaxed -> u16);
261 define_read!(read32_relaxed, try_read32_relaxed, readl_relaxed -> u32);
262 define_read!(
263 #[cfg(CONFIG_64BIT)]
264 read64_relaxed,
265 try_read64_relaxed,
266 readq_relaxed -> u64
267 );
268
269 define_write!(write8, try_write8, writeb <- u8);
270 define_write!(write16, try_write16, writew <- u16);
271 define_write!(write32, try_write32, writel <- u32);
272 define_write!(
273 #[cfg(CONFIG_64BIT)]
274 write64,
275 try_write64,
276 writeq <- u64
277 );
278
279 define_write!(write8_relaxed, try_write8_relaxed, writeb_relaxed <- u8);
280 define_write!(write16_relaxed, try_write16_relaxed, writew_relaxed <- u16);
281 define_write!(write32_relaxed, try_write32_relaxed, writel_relaxed <- u32);
282 define_write!(
283 #[cfg(CONFIG_64BIT)]
284 write64_relaxed,
285 try_write64_relaxed,
286 writeq_relaxed <- u64
287 );
288}