core/str/
mod.rs

1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
17use crate::char::{self, EscapeDebugExtArgs};
18use crate::ops::Range;
19use crate::slice::{self, SliceIndex};
20use crate::ub_checks::assert_unsafe_precondition;
21use crate::{ascii, mem};
22
23pub mod pattern;
24
25mod lossy;
26#[unstable(feature = "str_from_raw_parts", issue = "119206")]
27pub use converts::{from_raw_parts, from_raw_parts_mut};
28#[stable(feature = "rust1", since = "1.0.0")]
29pub use converts::{from_utf8, from_utf8_unchecked};
30#[stable(feature = "str_mut_extras", since = "1.20.0")]
31pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
32#[stable(feature = "rust1", since = "1.0.0")]
33pub use error::{ParseBoolError, Utf8Error};
34#[stable(feature = "encode_utf16", since = "1.8.0")]
35pub use iter::EncodeUtf16;
36#[stable(feature = "rust1", since = "1.0.0")]
37#[allow(deprecated)]
38pub use iter::LinesAny;
39#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
40pub use iter::SplitAsciiWhitespace;
41#[stable(feature = "split_inclusive", since = "1.51.0")]
42pub use iter::SplitInclusive;
43#[stable(feature = "rust1", since = "1.0.0")]
44pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
45#[stable(feature = "str_escape", since = "1.34.0")]
46pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
47#[stable(feature = "str_match_indices", since = "1.5.0")]
48pub use iter::{MatchIndices, RMatchIndices};
49use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
50#[stable(feature = "str_matches", since = "1.2.0")]
51pub use iter::{Matches, RMatches};
52#[stable(feature = "rust1", since = "1.0.0")]
53pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
54#[stable(feature = "rust1", since = "1.0.0")]
55pub use iter::{RSplitN, SplitN};
56#[stable(feature = "utf8_chunks", since = "1.79.0")]
57pub use lossy::{Utf8Chunk, Utf8Chunks};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use traits::FromStr;
60#[unstable(feature = "str_internals", issue = "none")]
61pub use validations::{next_code_point, utf8_char_width};
62
63#[inline(never)]
64#[cold]
65#[track_caller]
66#[rustc_allow_const_fn_unstable(const_eval_select)]
67#[cfg(not(panic = "immediate-abort"))]
68const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
69    crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
70}
71
72#[cfg(panic = "immediate-abort")]
73const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
74    slice_error_fail_ct(s, begin, end)
75}
76
77#[track_caller]
78const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
79    panic!("failed to slice string");
80}
81
82#[track_caller]
83fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
84    const MAX_DISPLAY_LENGTH: usize = 256;
85    let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
86    let s_trunc = &s[..trunc_len];
87    let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
88
89    // 1. out of bounds
90    if begin > s.len() || end > s.len() {
91        let oob_index = if begin > s.len() { begin } else { end };
92        panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
93    }
94
95    // 2. begin <= end
96    assert!(
97        begin <= end,
98        "begin <= end ({} <= {}) when slicing `{}`{}",
99        begin,
100        end,
101        s_trunc,
102        ellipsis
103    );
104
105    // 3. character boundary
106    let index = if !s.is_char_boundary(begin) { begin } else { end };
107    // find the character
108    let char_start = s.floor_char_boundary(index);
109    // `char_start` must be less than len and a char boundary
110    let ch = s[char_start..].chars().next().unwrap();
111    let char_range = char_start..char_start + ch.len_utf8();
112    panic!(
113        "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
114        index, ch, char_range, s_trunc, ellipsis
115    );
116}
117
118impl str {
119    /// Returns the length of `self`.
120    ///
121    /// This length is in bytes, not [`char`]s or graphemes. In other words,
122    /// it might not be what a human considers the length of the string.
123    ///
124    /// [`char`]: prim@char
125    ///
126    /// # Examples
127    ///
128    /// ```
129    /// let len = "foo".len();
130    /// assert_eq!(3, len);
131    ///
132    /// assert_eq!("ƒoo".len(), 4); // fancy f!
133    /// assert_eq!("ƒoo".chars().count(), 3);
134    /// ```
135    #[stable(feature = "rust1", since = "1.0.0")]
136    #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
137    #[rustc_diagnostic_item = "str_len"]
138    #[rustc_no_implicit_autorefs]
139    #[must_use]
140    #[inline]
141    pub const fn len(&self) -> usize {
142        self.as_bytes().len()
143    }
144
145    /// Returns `true` if `self` has a length of zero bytes.
146    ///
147    /// # Examples
148    ///
149    /// ```
150    /// let s = "";
151    /// assert!(s.is_empty());
152    ///
153    /// let s = "not empty";
154    /// assert!(!s.is_empty());
155    /// ```
156    #[stable(feature = "rust1", since = "1.0.0")]
157    #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
158    #[rustc_no_implicit_autorefs]
159    #[must_use]
160    #[inline]
161    pub const fn is_empty(&self) -> bool {
162        self.len() == 0
163    }
164
165    /// Converts a slice of bytes to a string slice.
166    ///
167    /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
168    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
169    /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
170    /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
171    /// UTF-8, and then does the conversion.
172    ///
173    /// [`&str`]: str
174    /// [byteslice]: prim@slice
175    ///
176    /// If you are sure that the byte slice is valid UTF-8, and you don't want to
177    /// incur the overhead of the validity check, there is an unsafe version of
178    /// this function, [`from_utf8_unchecked`], which has the same
179    /// behavior but skips the check.
180    ///
181    /// If you need a `String` instead of a `&str`, consider
182    /// [`String::from_utf8`][string].
183    ///
184    /// [string]: ../std/string/struct.String.html#method.from_utf8
185    ///
186    /// Because you can stack-allocate a `[u8; N]`, and you can take a
187    /// [`&[u8]`][byteslice] of it, this function is one way to have a
188    /// stack-allocated string. There is an example of this in the
189    /// examples section below.
190    ///
191    /// [byteslice]: slice
192    ///
193    /// # Errors
194    ///
195    /// Returns `Err` if the slice is not UTF-8 with a description as to why the
196    /// provided slice is not UTF-8.
197    ///
198    /// # Examples
199    ///
200    /// Basic usage:
201    ///
202    /// ```
203    /// // some bytes, in a vector
204    /// let sparkle_heart = vec![240, 159, 146, 150];
205    ///
206    /// // We can use the ? (try) operator to check if the bytes are valid
207    /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
208    ///
209    /// assert_eq!("💖", sparkle_heart);
210    /// # Ok::<_, std::str::Utf8Error>(())
211    /// ```
212    ///
213    /// Incorrect bytes:
214    ///
215    /// ```
216    /// // some invalid bytes, in a vector
217    /// let sparkle_heart = vec![0, 159, 146, 150];
218    ///
219    /// assert!(str::from_utf8(&sparkle_heart).is_err());
220    /// ```
221    ///
222    /// See the docs for [`Utf8Error`] for more details on the kinds of
223    /// errors that can be returned.
224    ///
225    /// A "stack allocated string":
226    ///
227    /// ```
228    /// // some bytes, in a stack-allocated array
229    /// let sparkle_heart = [240, 159, 146, 150];
230    ///
231    /// // We know these bytes are valid, so just use `unwrap()`.
232    /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
233    ///
234    /// assert_eq!("💖", sparkle_heart);
235    /// ```
236    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
237    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
238    #[rustc_diagnostic_item = "str_inherent_from_utf8"]
239    pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
240        converts::from_utf8(v)
241    }
242
243    /// Converts a mutable slice of bytes to a mutable string slice.
244    ///
245    /// # Examples
246    ///
247    /// Basic usage:
248    ///
249    /// ```
250    /// // "Hello, Rust!" as a mutable vector
251    /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
252    ///
253    /// // As we know these bytes are valid, we can use `unwrap()`
254    /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
255    ///
256    /// assert_eq!("Hello, Rust!", outstr);
257    /// ```
258    ///
259    /// Incorrect bytes:
260    ///
261    /// ```
262    /// // Some invalid bytes in a mutable vector
263    /// let mut invalid = vec![128, 223];
264    ///
265    /// assert!(str::from_utf8_mut(&mut invalid).is_err());
266    /// ```
267    /// See the docs for [`Utf8Error`] for more details on the kinds of
268    /// errors that can be returned.
269    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
270    #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
271    #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
272    pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
273        converts::from_utf8_mut(v)
274    }
275
276    /// Converts a slice of bytes to a string slice without checking
277    /// that the string contains valid UTF-8.
278    ///
279    /// See the safe version, [`from_utf8`], for more information.
280    ///
281    /// # Safety
282    ///
283    /// The bytes passed in must be valid UTF-8.
284    ///
285    /// # Examples
286    ///
287    /// Basic usage:
288    ///
289    /// ```
290    /// // some bytes, in a vector
291    /// let sparkle_heart = vec![240, 159, 146, 150];
292    ///
293    /// let sparkle_heart = unsafe {
294    ///     str::from_utf8_unchecked(&sparkle_heart)
295    /// };
296    ///
297    /// assert_eq!("💖", sparkle_heart);
298    /// ```
299    #[inline]
300    #[must_use]
301    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
302    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
303    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
304    pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
305        // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
306        unsafe { converts::from_utf8_unchecked(v) }
307    }
308
309    /// Converts a slice of bytes to a string slice without checking
310    /// that the string contains valid UTF-8; mutable version.
311    ///
312    /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
313    ///
314    /// # Examples
315    ///
316    /// Basic usage:
317    ///
318    /// ```
319    /// let mut heart = vec![240, 159, 146, 150];
320    /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
321    ///
322    /// assert_eq!("💖", heart);
323    /// ```
324    #[inline]
325    #[must_use]
326    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
327    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
328    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
329    pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
330        // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
331        unsafe { converts::from_utf8_unchecked_mut(v) }
332    }
333
334    /// Checks that `index`-th byte is the first byte in a UTF-8 code point
335    /// sequence or the end of the string.
336    ///
337    /// The start and end of the string (when `index == self.len()`) are
338    /// considered to be boundaries.
339    ///
340    /// Returns `false` if `index` is greater than `self.len()`.
341    ///
342    /// # Examples
343    ///
344    /// ```
345    /// let s = "Löwe 老虎 Léopard";
346    /// assert!(s.is_char_boundary(0));
347    /// // start of `老`
348    /// assert!(s.is_char_boundary(6));
349    /// assert!(s.is_char_boundary(s.len()));
350    ///
351    /// // second byte of `ö`
352    /// assert!(!s.is_char_boundary(2));
353    ///
354    /// // third byte of `老`
355    /// assert!(!s.is_char_boundary(8));
356    /// ```
357    #[must_use]
358    #[stable(feature = "is_char_boundary", since = "1.9.0")]
359    #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
360    #[inline]
361    pub const fn is_char_boundary(&self, index: usize) -> bool {
362        // 0 is always ok.
363        // Test for 0 explicitly so that it can optimize out the check
364        // easily and skip reading string data for that case.
365        // Note that optimizing `self.get(..index)` relies on this.
366        if index == 0 {
367            return true;
368        }
369
370        if index >= self.len() {
371            // For `true` we have two options:
372            //
373            // - index == self.len()
374            //   Empty strings are valid, so return true
375            // - index > self.len()
376            //   In this case return false
377            //
378            // The check is placed exactly here, because it improves generated
379            // code on higher opt-levels. See PR #84751 for more details.
380            index == self.len()
381        } else {
382            self.as_bytes()[index].is_utf8_char_boundary()
383        }
384    }
385
386    /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
387    ///
388    /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
389    /// exceed a given number of bytes. Note that this is done purely at the character level
390    /// and can still visually split graphemes, even though the underlying characters aren't
391    /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only
392    /// includes 🧑 (person) instead.
393    ///
394    /// [`is_char_boundary(x)`]: Self::is_char_boundary
395    ///
396    /// # Examples
397    ///
398    /// ```
399    /// let s = "❤️🧡💛💚💙💜";
400    /// assert_eq!(s.len(), 26);
401    /// assert!(!s.is_char_boundary(13));
402    ///
403    /// let closest = s.floor_char_boundary(13);
404    /// assert_eq!(closest, 10);
405    /// assert_eq!(&s[..closest], "❤️🧡");
406    /// ```
407    #[stable(feature = "round_char_boundary", since = "1.91.0")]
408    #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
409    #[inline]
410    pub const fn floor_char_boundary(&self, index: usize) -> usize {
411        if index >= self.len() {
412            self.len()
413        } else {
414            let mut i = index;
415            while i > 0 {
416                if self.as_bytes()[i].is_utf8_char_boundary() {
417                    break;
418                }
419                i -= 1;
420            }
421
422            //  The character boundary will be within four bytes of the index
423            debug_assert!(i >= index.saturating_sub(3));
424
425            i
426        }
427    }
428
429    /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
430    ///
431    /// If `index` is greater than the length of the string, this returns the length of the string.
432    ///
433    /// This method is the natural complement to [`floor_char_boundary`]. See that method
434    /// for more details.
435    ///
436    /// [`floor_char_boundary`]: str::floor_char_boundary
437    /// [`is_char_boundary(x)`]: Self::is_char_boundary
438    ///
439    /// # Examples
440    ///
441    /// ```
442    /// let s = "❤️🧡💛💚💙💜";
443    /// assert_eq!(s.len(), 26);
444    /// assert!(!s.is_char_boundary(13));
445    ///
446    /// let closest = s.ceil_char_boundary(13);
447    /// assert_eq!(closest, 14);
448    /// assert_eq!(&s[..closest], "❤️🧡💛");
449    /// ```
450    #[stable(feature = "round_char_boundary", since = "1.91.0")]
451    #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
452    #[inline]
453    pub const fn ceil_char_boundary(&self, index: usize) -> usize {
454        if index >= self.len() {
455            self.len()
456        } else {
457            let mut i = index;
458            while i < self.len() {
459                if self.as_bytes()[i].is_utf8_char_boundary() {
460                    break;
461                }
462                i += 1;
463            }
464
465            //  The character boundary will be within four bytes of the index
466            debug_assert!(i <= index + 3);
467
468            i
469        }
470    }
471
472    /// Converts a string slice to a byte slice. To convert the byte slice back
473    /// into a string slice, use the [`from_utf8`] function.
474    ///
475    /// # Examples
476    ///
477    /// ```
478    /// let bytes = "bors".as_bytes();
479    /// assert_eq!(b"bors", bytes);
480    /// ```
481    #[stable(feature = "rust1", since = "1.0.0")]
482    #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
483    #[must_use]
484    #[inline(always)]
485    #[allow(unused_attributes)]
486    pub const fn as_bytes(&self) -> &[u8] {
487        // SAFETY: const sound because we transmute two types with the same layout
488        unsafe { mem::transmute(self) }
489    }
490
491    /// Converts a mutable string slice to a mutable byte slice.
492    ///
493    /// # Safety
494    ///
495    /// The caller must ensure that the content of the slice is valid UTF-8
496    /// before the borrow ends and the underlying `str` is used.
497    ///
498    /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
499    ///
500    /// # Examples
501    ///
502    /// Basic usage:
503    ///
504    /// ```
505    /// let mut s = String::from("Hello");
506    /// let bytes = unsafe { s.as_bytes_mut() };
507    ///
508    /// assert_eq!(b"Hello", bytes);
509    /// ```
510    ///
511    /// Mutability:
512    ///
513    /// ```
514    /// let mut s = String::from("🗻∈🌏");
515    ///
516    /// unsafe {
517    ///     let bytes = s.as_bytes_mut();
518    ///
519    ///     bytes[0] = 0xF0;
520    ///     bytes[1] = 0x9F;
521    ///     bytes[2] = 0x8D;
522    ///     bytes[3] = 0x94;
523    /// }
524    ///
525    /// assert_eq!("🍔∈🌏", s);
526    /// ```
527    #[stable(feature = "str_mut_extras", since = "1.20.0")]
528    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
529    #[must_use]
530    #[inline(always)]
531    pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
532        // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
533        // has the same layout as `&[u8]` (only std can make this guarantee).
534        // The pointer dereference is safe since it comes from a mutable reference which
535        // is guaranteed to be valid for writes.
536        unsafe { &mut *(self as *mut str as *mut [u8]) }
537    }
538
539    /// Converts a string slice to a raw pointer.
540    ///
541    /// As string slices are a slice of bytes, the raw pointer points to a
542    /// [`u8`]. This pointer will be pointing to the first byte of the string
543    /// slice.
544    ///
545    /// The caller must ensure that the returned pointer is never written to.
546    /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
547    ///
548    /// [`as_mut_ptr`]: str::as_mut_ptr
549    ///
550    /// # Examples
551    ///
552    /// ```
553    /// let s = "Hello";
554    /// let ptr = s.as_ptr();
555    /// ```
556    #[stable(feature = "rust1", since = "1.0.0")]
557    #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
558    #[rustc_never_returns_null_ptr]
559    #[rustc_as_ptr]
560    #[must_use]
561    #[inline(always)]
562    pub const fn as_ptr(&self) -> *const u8 {
563        self as *const str as *const u8
564    }
565
566    /// Converts a mutable string slice to a raw pointer.
567    ///
568    /// As string slices are a slice of bytes, the raw pointer points to a
569    /// [`u8`]. This pointer will be pointing to the first byte of the string
570    /// slice.
571    ///
572    /// It is your responsibility to make sure that the string slice only gets
573    /// modified in a way that it remains valid UTF-8.
574    #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
575    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
576    #[rustc_never_returns_null_ptr]
577    #[rustc_as_ptr]
578    #[must_use]
579    #[inline(always)]
580    pub const fn as_mut_ptr(&mut self) -> *mut u8 {
581        self as *mut str as *mut u8
582    }
583
584    /// Returns a subslice of `str`.
585    ///
586    /// This is the non-panicking alternative to indexing the `str`. Returns
587    /// [`None`] whenever equivalent indexing operation would panic.
588    ///
589    /// # Examples
590    ///
591    /// ```
592    /// let v = String::from("🗻∈🌏");
593    ///
594    /// assert_eq!(Some("🗻"), v.get(0..4));
595    ///
596    /// // indices not on UTF-8 sequence boundaries
597    /// assert!(v.get(1..).is_none());
598    /// assert!(v.get(..8).is_none());
599    ///
600    /// // out of bounds
601    /// assert!(v.get(..42).is_none());
602    /// ```
603    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
604    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
605    #[inline]
606    pub const fn get<I: [const] SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
607        i.get(self)
608    }
609
610    /// Returns a mutable subslice of `str`.
611    ///
612    /// This is the non-panicking alternative to indexing the `str`. Returns
613    /// [`None`] whenever equivalent indexing operation would panic.
614    ///
615    /// # Examples
616    ///
617    /// ```
618    /// let mut v = String::from("hello");
619    /// // correct length
620    /// assert!(v.get_mut(0..5).is_some());
621    /// // out of bounds
622    /// assert!(v.get_mut(..42).is_none());
623    /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
624    ///
625    /// assert_eq!("hello", v);
626    /// {
627    ///     let s = v.get_mut(0..2);
628    ///     let s = s.map(|s| {
629    ///         s.make_ascii_uppercase();
630    ///         &*s
631    ///     });
632    ///     assert_eq!(Some("HE"), s);
633    /// }
634    /// assert_eq!("HEllo", v);
635    /// ```
636    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
637    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
638    #[inline]
639    pub const fn get_mut<I: [const] SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
640        i.get_mut(self)
641    }
642
643    /// Returns an unchecked subslice of `str`.
644    ///
645    /// This is the unchecked alternative to indexing the `str`.
646    ///
647    /// # Safety
648    ///
649    /// Callers of this function are responsible that these preconditions are
650    /// satisfied:
651    ///
652    /// * The starting index must not exceed the ending index;
653    /// * Indexes must be within bounds of the original slice;
654    /// * Indexes must lie on UTF-8 sequence boundaries.
655    ///
656    /// Failing that, the returned string slice may reference invalid memory or
657    /// violate the invariants communicated by the `str` type.
658    ///
659    /// # Examples
660    ///
661    /// ```
662    /// let v = "🗻∈🌏";
663    /// unsafe {
664    ///     assert_eq!("🗻", v.get_unchecked(0..4));
665    ///     assert_eq!("∈", v.get_unchecked(4..7));
666    ///     assert_eq!("🌏", v.get_unchecked(7..11));
667    /// }
668    /// ```
669    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
670    #[inline]
671    pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
672        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
673        // the slice is dereferenceable because `self` is a safe reference.
674        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
675        unsafe { &*i.get_unchecked(self) }
676    }
677
678    /// Returns a mutable, unchecked subslice of `str`.
679    ///
680    /// This is the unchecked alternative to indexing the `str`.
681    ///
682    /// # Safety
683    ///
684    /// Callers of this function are responsible that these preconditions are
685    /// satisfied:
686    ///
687    /// * The starting index must not exceed the ending index;
688    /// * Indexes must be within bounds of the original slice;
689    /// * Indexes must lie on UTF-8 sequence boundaries.
690    ///
691    /// Failing that, the returned string slice may reference invalid memory or
692    /// violate the invariants communicated by the `str` type.
693    ///
694    /// # Examples
695    ///
696    /// ```
697    /// let mut v = String::from("🗻∈🌏");
698    /// unsafe {
699    ///     assert_eq!("🗻", v.get_unchecked_mut(0..4));
700    ///     assert_eq!("∈", v.get_unchecked_mut(4..7));
701    ///     assert_eq!("🌏", v.get_unchecked_mut(7..11));
702    /// }
703    /// ```
704    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
705    #[inline]
706    pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
707        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
708        // the slice is dereferenceable because `self` is a safe reference.
709        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
710        unsafe { &mut *i.get_unchecked_mut(self) }
711    }
712
713    /// Creates a string slice from another string slice, bypassing safety
714    /// checks.
715    ///
716    /// This is generally not recommended, use with caution! For a safe
717    /// alternative see [`str`] and [`Index`].
718    ///
719    /// [`Index`]: crate::ops::Index
720    ///
721    /// This new slice goes from `begin` to `end`, including `begin` but
722    /// excluding `end`.
723    ///
724    /// To get a mutable string slice instead, see the
725    /// [`slice_mut_unchecked`] method.
726    ///
727    /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
728    ///
729    /// # Safety
730    ///
731    /// Callers of this function are responsible that three preconditions are
732    /// satisfied:
733    ///
734    /// * `begin` must not exceed `end`.
735    /// * `begin` and `end` must be byte positions within the string slice.
736    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
737    ///
738    /// # Examples
739    ///
740    /// ```
741    /// let s = "Löwe 老虎 Léopard";
742    ///
743    /// unsafe {
744    ///     assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
745    /// }
746    ///
747    /// let s = "Hello, world!";
748    ///
749    /// unsafe {
750    ///     assert_eq!("world", s.slice_unchecked(7, 12));
751    /// }
752    /// ```
753    #[stable(feature = "rust1", since = "1.0.0")]
754    #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
755    #[must_use]
756    #[inline]
757    pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
758        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
759        // the slice is dereferenceable because `self` is a safe reference.
760        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
761        unsafe { &*(begin..end).get_unchecked(self) }
762    }
763
764    /// Creates a string slice from another string slice, bypassing safety
765    /// checks.
766    ///
767    /// This is generally not recommended, use with caution! For a safe
768    /// alternative see [`str`] and [`IndexMut`].
769    ///
770    /// [`IndexMut`]: crate::ops::IndexMut
771    ///
772    /// This new slice goes from `begin` to `end`, including `begin` but
773    /// excluding `end`.
774    ///
775    /// To get an immutable string slice instead, see the
776    /// [`slice_unchecked`] method.
777    ///
778    /// [`slice_unchecked`]: str::slice_unchecked
779    ///
780    /// # Safety
781    ///
782    /// Callers of this function are responsible that three preconditions are
783    /// satisfied:
784    ///
785    /// * `begin` must not exceed `end`.
786    /// * `begin` and `end` must be byte positions within the string slice.
787    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
788    #[stable(feature = "str_slice_mut", since = "1.5.0")]
789    #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
790    #[inline]
791    pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
792        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
793        // the slice is dereferenceable because `self` is a safe reference.
794        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
795        unsafe { &mut *(begin..end).get_unchecked_mut(self) }
796    }
797
798    /// Divides one string slice into two at an index.
799    ///
800    /// The argument, `mid`, should be a byte offset from the start of the
801    /// string. It must also be on the boundary of a UTF-8 code point.
802    ///
803    /// The two slices returned go from the start of the string slice to `mid`,
804    /// and from `mid` to the end of the string slice.
805    ///
806    /// To get mutable string slices instead, see the [`split_at_mut`]
807    /// method.
808    ///
809    /// [`split_at_mut`]: str::split_at_mut
810    ///
811    /// # Panics
812    ///
813    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
814    /// the end of the last code point of the string slice.  For a non-panicking
815    /// alternative see [`split_at_checked`](str::split_at_checked).
816    ///
817    /// # Examples
818    ///
819    /// ```
820    /// let s = "Per Martin-Löf";
821    ///
822    /// let (first, last) = s.split_at(3);
823    ///
824    /// assert_eq!("Per", first);
825    /// assert_eq!(" Martin-Löf", last);
826    /// ```
827    #[inline]
828    #[must_use]
829    #[stable(feature = "str_split_at", since = "1.4.0")]
830    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
831    pub const fn split_at(&self, mid: usize) -> (&str, &str) {
832        match self.split_at_checked(mid) {
833            None => slice_error_fail(self, 0, mid),
834            Some(pair) => pair,
835        }
836    }
837
838    /// Divides one mutable string slice into two at an index.
839    ///
840    /// The argument, `mid`, should be a byte offset from the start of the
841    /// string. It must also be on the boundary of a UTF-8 code point.
842    ///
843    /// The two slices returned go from the start of the string slice to `mid`,
844    /// and from `mid` to the end of the string slice.
845    ///
846    /// To get immutable string slices instead, see the [`split_at`] method.
847    ///
848    /// [`split_at`]: str::split_at
849    ///
850    /// # Panics
851    ///
852    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
853    /// the end of the last code point of the string slice.  For a non-panicking
854    /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
855    ///
856    /// # Examples
857    ///
858    /// ```
859    /// let mut s = "Per Martin-Löf".to_string();
860    /// {
861    ///     let (first, last) = s.split_at_mut(3);
862    ///     first.make_ascii_uppercase();
863    ///     assert_eq!("PER", first);
864    ///     assert_eq!(" Martin-Löf", last);
865    /// }
866    /// assert_eq!("PER Martin-Löf", s);
867    /// ```
868    #[inline]
869    #[must_use]
870    #[stable(feature = "str_split_at", since = "1.4.0")]
871    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
872    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
873        // is_char_boundary checks that the index is in [0, .len()]
874        if self.is_char_boundary(mid) {
875            // SAFETY: just checked that `mid` is on a char boundary.
876            unsafe { self.split_at_mut_unchecked(mid) }
877        } else {
878            slice_error_fail(self, 0, mid)
879        }
880    }
881
882    /// Divides one string slice into two at an index.
883    ///
884    /// The argument, `mid`, should be a valid byte offset from the start of the
885    /// string. It must also be on the boundary of a UTF-8 code point. The
886    /// method returns `None` if that’s not the case.
887    ///
888    /// The two slices returned go from the start of the string slice to `mid`,
889    /// and from `mid` to the end of the string slice.
890    ///
891    /// To get mutable string slices instead, see the [`split_at_mut_checked`]
892    /// method.
893    ///
894    /// [`split_at_mut_checked`]: str::split_at_mut_checked
895    ///
896    /// # Examples
897    ///
898    /// ```
899    /// let s = "Per Martin-Löf";
900    ///
901    /// let (first, last) = s.split_at_checked(3).unwrap();
902    /// assert_eq!("Per", first);
903    /// assert_eq!(" Martin-Löf", last);
904    ///
905    /// assert_eq!(None, s.split_at_checked(13));  // Inside “ö”
906    /// assert_eq!(None, s.split_at_checked(16));  // Beyond the string length
907    /// ```
908    #[inline]
909    #[must_use]
910    #[stable(feature = "split_at_checked", since = "1.80.0")]
911    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
912    pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
913        // is_char_boundary checks that the index is in [0, .len()]
914        if self.is_char_boundary(mid) {
915            // SAFETY: just checked that `mid` is on a char boundary.
916            Some(unsafe { self.split_at_unchecked(mid) })
917        } else {
918            None
919        }
920    }
921
922    /// Divides one mutable string slice into two at an index.
923    ///
924    /// The argument, `mid`, should be a valid byte offset from the start of the
925    /// string. It must also be on the boundary of a UTF-8 code point. The
926    /// method returns `None` if that’s not the case.
927    ///
928    /// The two slices returned go from the start of the string slice to `mid`,
929    /// and from `mid` to the end of the string slice.
930    ///
931    /// To get immutable string slices instead, see the [`split_at_checked`] method.
932    ///
933    /// [`split_at_checked`]: str::split_at_checked
934    ///
935    /// # Examples
936    ///
937    /// ```
938    /// let mut s = "Per Martin-Löf".to_string();
939    /// if let Some((first, last)) = s.split_at_mut_checked(3) {
940    ///     first.make_ascii_uppercase();
941    ///     assert_eq!("PER", first);
942    ///     assert_eq!(" Martin-Löf", last);
943    /// }
944    /// assert_eq!("PER Martin-Löf", s);
945    ///
946    /// assert_eq!(None, s.split_at_mut_checked(13));  // Inside “ö”
947    /// assert_eq!(None, s.split_at_mut_checked(16));  // Beyond the string length
948    /// ```
949    #[inline]
950    #[must_use]
951    #[stable(feature = "split_at_checked", since = "1.80.0")]
952    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
953    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
954        // is_char_boundary checks that the index is in [0, .len()]
955        if self.is_char_boundary(mid) {
956            // SAFETY: just checked that `mid` is on a char boundary.
957            Some(unsafe { self.split_at_mut_unchecked(mid) })
958        } else {
959            None
960        }
961    }
962
963    /// Divides one string slice into two at an index.
964    ///
965    /// # Safety
966    ///
967    /// The caller must ensure that `mid` is a valid byte offset from the start
968    /// of the string and falls on the boundary of a UTF-8 code point.
969    #[inline]
970    const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
971        let len = self.len();
972        let ptr = self.as_ptr();
973        // SAFETY: caller guarantees `mid` is on a char boundary.
974        unsafe {
975            (
976                from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
977                from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
978            )
979        }
980    }
981
982    /// Divides one string slice into two at an index.
983    ///
984    /// # Safety
985    ///
986    /// The caller must ensure that `mid` is a valid byte offset from the start
987    /// of the string and falls on the boundary of a UTF-8 code point.
988    const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
989        let len = self.len();
990        let ptr = self.as_mut_ptr();
991        // SAFETY: caller guarantees `mid` is on a char boundary.
992        unsafe {
993            (
994                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
995                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
996            )
997        }
998    }
999
1000    /// Returns an iterator over the [`char`]s of a string slice.
1001    ///
1002    /// As a string slice consists of valid UTF-8, we can iterate through a
1003    /// string slice by [`char`]. This method returns such an iterator.
1004    ///
1005    /// It's important to remember that [`char`] represents a Unicode Scalar
1006    /// Value, and might not match your idea of what a 'character' is. Iteration
1007    /// over grapheme clusters may be what you actually want. This functionality
1008    /// is not provided by Rust's standard library, check crates.io instead.
1009    ///
1010    /// # Examples
1011    ///
1012    /// Basic usage:
1013    ///
1014    /// ```
1015    /// let word = "goodbye";
1016    ///
1017    /// let count = word.chars().count();
1018    /// assert_eq!(7, count);
1019    ///
1020    /// let mut chars = word.chars();
1021    ///
1022    /// assert_eq!(Some('g'), chars.next());
1023    /// assert_eq!(Some('o'), chars.next());
1024    /// assert_eq!(Some('o'), chars.next());
1025    /// assert_eq!(Some('d'), chars.next());
1026    /// assert_eq!(Some('b'), chars.next());
1027    /// assert_eq!(Some('y'), chars.next());
1028    /// assert_eq!(Some('e'), chars.next());
1029    ///
1030    /// assert_eq!(None, chars.next());
1031    /// ```
1032    ///
1033    /// Remember, [`char`]s might not match your intuition about characters:
1034    ///
1035    /// [`char`]: prim@char
1036    ///
1037    /// ```
1038    /// let y = "y̆";
1039    ///
1040    /// let mut chars = y.chars();
1041    ///
1042    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1043    /// assert_eq!(Some('\u{0306}'), chars.next());
1044    ///
1045    /// assert_eq!(None, chars.next());
1046    /// ```
1047    #[stable(feature = "rust1", since = "1.0.0")]
1048    #[inline]
1049    #[rustc_diagnostic_item = "str_chars"]
1050    pub fn chars(&self) -> Chars<'_> {
1051        Chars { iter: self.as_bytes().iter() }
1052    }
1053
1054    /// Returns an iterator over the [`char`]s of a string slice, and their
1055    /// positions.
1056    ///
1057    /// As a string slice consists of valid UTF-8, we can iterate through a
1058    /// string slice by [`char`]. This method returns an iterator of both
1059    /// these [`char`]s, as well as their byte positions.
1060    ///
1061    /// The iterator yields tuples. The position is first, the [`char`] is
1062    /// second.
1063    ///
1064    /// # Examples
1065    ///
1066    /// Basic usage:
1067    ///
1068    /// ```
1069    /// let word = "goodbye";
1070    ///
1071    /// let count = word.char_indices().count();
1072    /// assert_eq!(7, count);
1073    ///
1074    /// let mut char_indices = word.char_indices();
1075    ///
1076    /// assert_eq!(Some((0, 'g')), char_indices.next());
1077    /// assert_eq!(Some((1, 'o')), char_indices.next());
1078    /// assert_eq!(Some((2, 'o')), char_indices.next());
1079    /// assert_eq!(Some((3, 'd')), char_indices.next());
1080    /// assert_eq!(Some((4, 'b')), char_indices.next());
1081    /// assert_eq!(Some((5, 'y')), char_indices.next());
1082    /// assert_eq!(Some((6, 'e')), char_indices.next());
1083    ///
1084    /// assert_eq!(None, char_indices.next());
1085    /// ```
1086    ///
1087    /// Remember, [`char`]s might not match your intuition about characters:
1088    ///
1089    /// [`char`]: prim@char
1090    ///
1091    /// ```
1092    /// let yes = "y̆es";
1093    ///
1094    /// let mut char_indices = yes.char_indices();
1095    ///
1096    /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1097    /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1098    ///
1099    /// // note the 3 here - the previous character took up two bytes
1100    /// assert_eq!(Some((3, 'e')), char_indices.next());
1101    /// assert_eq!(Some((4, 's')), char_indices.next());
1102    ///
1103    /// assert_eq!(None, char_indices.next());
1104    /// ```
1105    #[stable(feature = "rust1", since = "1.0.0")]
1106    #[inline]
1107    pub fn char_indices(&self) -> CharIndices<'_> {
1108        CharIndices { front_offset: 0, iter: self.chars() }
1109    }
1110
1111    /// Returns an iterator over the bytes of a string slice.
1112    ///
1113    /// As a string slice consists of a sequence of bytes, we can iterate
1114    /// through a string slice by byte. This method returns such an iterator.
1115    ///
1116    /// # Examples
1117    ///
1118    /// ```
1119    /// let mut bytes = "bors".bytes();
1120    ///
1121    /// assert_eq!(Some(b'b'), bytes.next());
1122    /// assert_eq!(Some(b'o'), bytes.next());
1123    /// assert_eq!(Some(b'r'), bytes.next());
1124    /// assert_eq!(Some(b's'), bytes.next());
1125    ///
1126    /// assert_eq!(None, bytes.next());
1127    /// ```
1128    #[stable(feature = "rust1", since = "1.0.0")]
1129    #[inline]
1130    pub fn bytes(&self) -> Bytes<'_> {
1131        Bytes(self.as_bytes().iter().copied())
1132    }
1133
1134    /// Splits a string slice by whitespace.
1135    ///
1136    /// The iterator returned will return string slices that are sub-slices of
1137    /// the original string slice, separated by any amount of whitespace.
1138    ///
1139    /// 'Whitespace' is defined according to the terms of the Unicode Derived
1140    /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1141    /// instead, use [`split_ascii_whitespace`].
1142    ///
1143    /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1144    ///
1145    /// # Examples
1146    ///
1147    /// Basic usage:
1148    ///
1149    /// ```
1150    /// let mut iter = "A few words".split_whitespace();
1151    ///
1152    /// assert_eq!(Some("A"), iter.next());
1153    /// assert_eq!(Some("few"), iter.next());
1154    /// assert_eq!(Some("words"), iter.next());
1155    ///
1156    /// assert_eq!(None, iter.next());
1157    /// ```
1158    ///
1159    /// All kinds of whitespace are considered:
1160    ///
1161    /// ```
1162    /// let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
1163    /// assert_eq!(Some("Mary"), iter.next());
1164    /// assert_eq!(Some("had"), iter.next());
1165    /// assert_eq!(Some("a"), iter.next());
1166    /// assert_eq!(Some("little"), iter.next());
1167    /// assert_eq!(Some("lamb"), iter.next());
1168    ///
1169    /// assert_eq!(None, iter.next());
1170    /// ```
1171    ///
1172    /// If the string is empty or all whitespace, the iterator yields no string slices:
1173    /// ```
1174    /// assert_eq!("".split_whitespace().next(), None);
1175    /// assert_eq!("   ".split_whitespace().next(), None);
1176    /// ```
1177    #[must_use = "this returns the split string as an iterator, \
1178                  without modifying the original"]
1179    #[stable(feature = "split_whitespace", since = "1.1.0")]
1180    #[rustc_diagnostic_item = "str_split_whitespace"]
1181    #[inline]
1182    pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1183        SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1184    }
1185
1186    /// Splits a string slice by ASCII whitespace.
1187    ///
1188    /// The iterator returned will return string slices that are sub-slices of
1189    /// the original string slice, separated by any amount of ASCII whitespace.
1190    ///
1191    /// This uses the same definition as [`char::is_ascii_whitespace`].
1192    /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1193    ///
1194    /// [`split_whitespace`]: str::split_whitespace
1195    ///
1196    /// # Examples
1197    ///
1198    /// Basic usage:
1199    ///
1200    /// ```
1201    /// let mut iter = "A few words".split_ascii_whitespace();
1202    ///
1203    /// assert_eq!(Some("A"), iter.next());
1204    /// assert_eq!(Some("few"), iter.next());
1205    /// assert_eq!(Some("words"), iter.next());
1206    ///
1207    /// assert_eq!(None, iter.next());
1208    /// ```
1209    ///
1210    /// Various kinds of ASCII whitespace are considered
1211    /// (see [`char::is_ascii_whitespace`]):
1212    ///
1213    /// ```
1214    /// let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace();
1215    /// assert_eq!(Some("Mary"), iter.next());
1216    /// assert_eq!(Some("had"), iter.next());
1217    /// assert_eq!(Some("a"), iter.next());
1218    /// assert_eq!(Some("little"), iter.next());
1219    /// assert_eq!(Some("lamb"), iter.next());
1220    ///
1221    /// assert_eq!(None, iter.next());
1222    /// ```
1223    ///
1224    /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1225    /// ```
1226    /// assert_eq!("".split_ascii_whitespace().next(), None);
1227    /// assert_eq!("   ".split_ascii_whitespace().next(), None);
1228    /// ```
1229    #[must_use = "this returns the split string as an iterator, \
1230                  without modifying the original"]
1231    #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1232    #[inline]
1233    pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1234        let inner =
1235            self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1236        SplitAsciiWhitespace { inner }
1237    }
1238
1239    /// Returns an iterator over the lines of a string, as string slices.
1240    ///
1241    /// Lines are split at line endings that are either newlines (`\n`) or
1242    /// sequences of a carriage return followed by a line feed (`\r\n`).
1243    ///
1244    /// Line terminators are not included in the lines returned by the iterator.
1245    ///
1246    /// Note that any carriage return (`\r`) not immediately followed by a
1247    /// line feed (`\n`) does not split a line. These carriage returns are
1248    /// thereby included in the produced lines.
1249    ///
1250    /// The final line ending is optional. A string that ends with a final line
1251    /// ending will return the same lines as an otherwise identical string
1252    /// without a final line ending.
1253    ///
1254    /// An empty string returns an empty iterator.
1255    ///
1256    /// # Examples
1257    ///
1258    /// Basic usage:
1259    ///
1260    /// ```
1261    /// let text = "foo\r\nbar\n\nbaz\r";
1262    /// let mut lines = text.lines();
1263    ///
1264    /// assert_eq!(Some("foo"), lines.next());
1265    /// assert_eq!(Some("bar"), lines.next());
1266    /// assert_eq!(Some(""), lines.next());
1267    /// // Trailing carriage return is included in the last line
1268    /// assert_eq!(Some("baz\r"), lines.next());
1269    ///
1270    /// assert_eq!(None, lines.next());
1271    /// ```
1272    ///
1273    /// The final line does not require any ending:
1274    ///
1275    /// ```
1276    /// let text = "foo\nbar\n\r\nbaz";
1277    /// let mut lines = text.lines();
1278    ///
1279    /// assert_eq!(Some("foo"), lines.next());
1280    /// assert_eq!(Some("bar"), lines.next());
1281    /// assert_eq!(Some(""), lines.next());
1282    /// assert_eq!(Some("baz"), lines.next());
1283    ///
1284    /// assert_eq!(None, lines.next());
1285    /// ```
1286    ///
1287    /// An empty string returns an empty iterator:
1288    ///
1289    /// ```
1290    /// let text = "";
1291    /// let mut lines = text.lines();
1292    ///
1293    /// assert_eq!(lines.next(), None);
1294    /// ```
1295    #[stable(feature = "rust1", since = "1.0.0")]
1296    #[inline]
1297    pub fn lines(&self) -> Lines<'_> {
1298        Lines(self.split_inclusive('\n').map(LinesMap))
1299    }
1300
1301    /// Returns an iterator over the lines of a string.
1302    #[stable(feature = "rust1", since = "1.0.0")]
1303    #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1304    #[inline]
1305    #[allow(deprecated)]
1306    pub fn lines_any(&self) -> LinesAny<'_> {
1307        LinesAny(self.lines())
1308    }
1309
1310    /// Returns an iterator of `u16` over the string encoded
1311    /// as native endian UTF-16 (without byte-order mark).
1312    ///
1313    /// # Examples
1314    ///
1315    /// ```
1316    /// let text = "Zażółć gęślą jaźń";
1317    ///
1318    /// let utf8_len = text.len();
1319    /// let utf16_len = text.encode_utf16().count();
1320    ///
1321    /// assert!(utf16_len <= utf8_len);
1322    /// ```
1323    #[must_use = "this returns the encoded string as an iterator, \
1324                  without modifying the original"]
1325    #[stable(feature = "encode_utf16", since = "1.8.0")]
1326    pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1327        EncodeUtf16 { chars: self.chars(), extra: 0 }
1328    }
1329
1330    /// Returns `true` if the given pattern matches a sub-slice of
1331    /// this string slice.
1332    ///
1333    /// Returns `false` if it does not.
1334    ///
1335    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1336    /// function or closure that determines if a character matches.
1337    ///
1338    /// [`char`]: prim@char
1339    /// [pattern]: self::pattern
1340    ///
1341    /// # Examples
1342    ///
1343    /// ```
1344    /// let bananas = "bananas";
1345    ///
1346    /// assert!(bananas.contains("nana"));
1347    /// assert!(!bananas.contains("apples"));
1348    /// ```
1349    #[stable(feature = "rust1", since = "1.0.0")]
1350    #[inline]
1351    pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1352        pat.is_contained_in(self)
1353    }
1354
1355    /// Returns `true` if the given pattern matches a prefix of this
1356    /// string slice.
1357    ///
1358    /// Returns `false` if it does not.
1359    ///
1360    /// The [pattern] can be a `&str`, in which case this function will return true if
1361    /// the `&str` is a prefix of this string slice.
1362    ///
1363    /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1364    /// function or closure that determines if a character matches.
1365    /// These will only be checked against the first character of this string slice.
1366    /// Look at the second example below regarding behavior for slices of [`char`]s.
1367    ///
1368    /// [`char`]: prim@char
1369    /// [pattern]: self::pattern
1370    ///
1371    /// # Examples
1372    ///
1373    /// ```
1374    /// let bananas = "bananas";
1375    ///
1376    /// assert!(bananas.starts_with("bana"));
1377    /// assert!(!bananas.starts_with("nana"));
1378    /// ```
1379    ///
1380    /// ```
1381    /// let bananas = "bananas";
1382    ///
1383    /// // Note that both of these assert successfully.
1384    /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1385    /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1386    /// ```
1387    #[stable(feature = "rust1", since = "1.0.0")]
1388    #[rustc_diagnostic_item = "str_starts_with"]
1389    pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1390        pat.is_prefix_of(self)
1391    }
1392
1393    /// Returns `true` if the given pattern matches a suffix of this
1394    /// string slice.
1395    ///
1396    /// Returns `false` if it does not.
1397    ///
1398    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1399    /// function or closure that determines if a character matches.
1400    ///
1401    /// [`char`]: prim@char
1402    /// [pattern]: self::pattern
1403    ///
1404    /// # Examples
1405    ///
1406    /// ```
1407    /// let bananas = "bananas";
1408    ///
1409    /// assert!(bananas.ends_with("anas"));
1410    /// assert!(!bananas.ends_with("nana"));
1411    /// ```
1412    #[stable(feature = "rust1", since = "1.0.0")]
1413    #[rustc_diagnostic_item = "str_ends_with"]
1414    pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1415    where
1416        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1417    {
1418        pat.is_suffix_of(self)
1419    }
1420
1421    /// Returns the byte index of the first character of this string slice that
1422    /// matches the pattern.
1423    ///
1424    /// Returns [`None`] if the pattern doesn't match.
1425    ///
1426    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1427    /// function or closure that determines if a character matches.
1428    ///
1429    /// [`char`]: prim@char
1430    /// [pattern]: self::pattern
1431    ///
1432    /// # Examples
1433    ///
1434    /// Simple patterns:
1435    ///
1436    /// ```
1437    /// let s = "Löwe 老虎 Léopard Gepardi";
1438    ///
1439    /// assert_eq!(s.find('L'), Some(0));
1440    /// assert_eq!(s.find('é'), Some(14));
1441    /// assert_eq!(s.find("pard"), Some(17));
1442    /// ```
1443    ///
1444    /// More complex patterns using point-free style and closures:
1445    ///
1446    /// ```
1447    /// let s = "Löwe 老虎 Léopard";
1448    ///
1449    /// assert_eq!(s.find(char::is_whitespace), Some(5));
1450    /// assert_eq!(s.find(char::is_lowercase), Some(1));
1451    /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1452    /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1453    /// ```
1454    ///
1455    /// Not finding the pattern:
1456    ///
1457    /// ```
1458    /// let s = "Löwe 老虎 Léopard";
1459    /// let x: &[_] = &['1', '2'];
1460    ///
1461    /// assert_eq!(s.find(x), None);
1462    /// ```
1463    #[stable(feature = "rust1", since = "1.0.0")]
1464    #[inline]
1465    pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1466        pat.into_searcher(self).next_match().map(|(i, _)| i)
1467    }
1468
1469    /// Returns the byte index for the first character of the last match of the pattern in
1470    /// this string slice.
1471    ///
1472    /// Returns [`None`] if the pattern doesn't match.
1473    ///
1474    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1475    /// function or closure that determines if a character matches.
1476    ///
1477    /// [`char`]: prim@char
1478    /// [pattern]: self::pattern
1479    ///
1480    /// # Examples
1481    ///
1482    /// Simple patterns:
1483    ///
1484    /// ```
1485    /// let s = "Löwe 老虎 Léopard Gepardi";
1486    ///
1487    /// assert_eq!(s.rfind('L'), Some(13));
1488    /// assert_eq!(s.rfind('é'), Some(14));
1489    /// assert_eq!(s.rfind("pard"), Some(24));
1490    /// ```
1491    ///
1492    /// More complex patterns with closures:
1493    ///
1494    /// ```
1495    /// let s = "Löwe 老虎 Léopard";
1496    ///
1497    /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1498    /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1499    /// ```
1500    ///
1501    /// Not finding the pattern:
1502    ///
1503    /// ```
1504    /// let s = "Löwe 老虎 Léopard";
1505    /// let x: &[_] = &['1', '2'];
1506    ///
1507    /// assert_eq!(s.rfind(x), None);
1508    /// ```
1509    #[stable(feature = "rust1", since = "1.0.0")]
1510    #[inline]
1511    pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1512    where
1513        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1514    {
1515        pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1516    }
1517
1518    /// Returns an iterator over substrings of this string slice, separated by
1519    /// characters matched by a pattern.
1520    ///
1521    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1522    /// function or closure that determines if a character matches.
1523    ///
1524    /// If there are no matches the full string slice is returned as the only
1525    /// item in the iterator.
1526    ///
1527    /// [`char`]: prim@char
1528    /// [pattern]: self::pattern
1529    ///
1530    /// # Iterator behavior
1531    ///
1532    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1533    /// allows a reverse search and forward/reverse search yields the same
1534    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1535    ///
1536    /// If the pattern allows a reverse search but its results might differ
1537    /// from a forward search, the [`rsplit`] method can be used.
1538    ///
1539    /// [`rsplit`]: str::rsplit
1540    ///
1541    /// # Examples
1542    ///
1543    /// Simple patterns:
1544    ///
1545    /// ```
1546    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1547    /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1548    ///
1549    /// let v: Vec<&str> = "".split('X').collect();
1550    /// assert_eq!(v, [""]);
1551    ///
1552    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1553    /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1554    ///
1555    /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1556    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1557    ///
1558    /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1559    /// assert_eq!(v, ["AABBCC"]);
1560    ///
1561    /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1562    /// assert_eq!(v, ["abc", "def", "ghi"]);
1563    ///
1564    /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1565    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1566    /// ```
1567    ///
1568    /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1569    ///
1570    /// ```
1571    /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1572    /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1573    /// ```
1574    ///
1575    /// A more complex pattern, using a closure:
1576    ///
1577    /// ```
1578    /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1579    /// assert_eq!(v, ["abc", "def", "ghi"]);
1580    /// ```
1581    ///
1582    /// If a string contains multiple contiguous separators, you will end up
1583    /// with empty strings in the output:
1584    ///
1585    /// ```
1586    /// let x = "||||a||b|c".to_string();
1587    /// let d: Vec<_> = x.split('|').collect();
1588    ///
1589    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1590    /// ```
1591    ///
1592    /// Contiguous separators are separated by the empty string.
1593    ///
1594    /// ```
1595    /// let x = "(///)".to_string();
1596    /// let d: Vec<_> = x.split('/').collect();
1597    ///
1598    /// assert_eq!(d, &["(", "", "", ")"]);
1599    /// ```
1600    ///
1601    /// Separators at the start or end of a string are neighbored
1602    /// by empty strings.
1603    ///
1604    /// ```
1605    /// let d: Vec<_> = "010".split("0").collect();
1606    /// assert_eq!(d, &["", "1", ""]);
1607    /// ```
1608    ///
1609    /// When the empty string is used as a separator, it separates
1610    /// every character in the string, along with the beginning
1611    /// and end of the string.
1612    ///
1613    /// ```
1614    /// let f: Vec<_> = "rust".split("").collect();
1615    /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1616    /// ```
1617    ///
1618    /// Contiguous separators can lead to possibly surprising behavior
1619    /// when whitespace is used as the separator. This code is correct:
1620    ///
1621    /// ```
1622    /// let x = "    a  b c".to_string();
1623    /// let d: Vec<_> = x.split(' ').collect();
1624    ///
1625    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1626    /// ```
1627    ///
1628    /// It does _not_ give you:
1629    ///
1630    /// ```,ignore
1631    /// assert_eq!(d, &["a", "b", "c"]);
1632    /// ```
1633    ///
1634    /// Use [`split_whitespace`] for this behavior.
1635    ///
1636    /// [`split_whitespace`]: str::split_whitespace
1637    #[stable(feature = "rust1", since = "1.0.0")]
1638    #[inline]
1639    pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1640        Split(SplitInternal {
1641            start: 0,
1642            end: self.len(),
1643            matcher: pat.into_searcher(self),
1644            allow_trailing_empty: true,
1645            finished: false,
1646        })
1647    }
1648
1649    /// Returns an iterator over substrings of this string slice, separated by
1650    /// characters matched by a pattern.
1651    ///
1652    /// Differs from the iterator produced by `split` in that `split_inclusive`
1653    /// leaves the matched part as the terminator of the substring.
1654    ///
1655    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1656    /// function or closure that determines if a character matches.
1657    ///
1658    /// [`char`]: prim@char
1659    /// [pattern]: self::pattern
1660    ///
1661    /// # Examples
1662    ///
1663    /// ```
1664    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1665    ///     .split_inclusive('\n').collect();
1666    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1667    /// ```
1668    ///
1669    /// If the last element of the string is matched,
1670    /// that element will be considered the terminator of the preceding substring.
1671    /// That substring will be the last item returned by the iterator.
1672    ///
1673    /// ```
1674    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1675    ///     .split_inclusive('\n').collect();
1676    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1677    /// ```
1678    #[stable(feature = "split_inclusive", since = "1.51.0")]
1679    #[inline]
1680    pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1681        SplitInclusive(SplitInternal {
1682            start: 0,
1683            end: self.len(),
1684            matcher: pat.into_searcher(self),
1685            allow_trailing_empty: false,
1686            finished: false,
1687        })
1688    }
1689
1690    /// Returns an iterator over substrings of the given string slice, separated
1691    /// by characters matched by a pattern and yielded in reverse order.
1692    ///
1693    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1694    /// function or closure that determines if a character matches.
1695    ///
1696    /// [`char`]: prim@char
1697    /// [pattern]: self::pattern
1698    ///
1699    /// # Iterator behavior
1700    ///
1701    /// The returned iterator requires that the pattern supports a reverse
1702    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1703    /// search yields the same elements.
1704    ///
1705    /// For iterating from the front, the [`split`] method can be used.
1706    ///
1707    /// [`split`]: str::split
1708    ///
1709    /// # Examples
1710    ///
1711    /// Simple patterns:
1712    ///
1713    /// ```
1714    /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1715    /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1716    ///
1717    /// let v: Vec<&str> = "".rsplit('X').collect();
1718    /// assert_eq!(v, [""]);
1719    ///
1720    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1721    /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1722    ///
1723    /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1724    /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1725    /// ```
1726    ///
1727    /// A more complex pattern, using a closure:
1728    ///
1729    /// ```
1730    /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1731    /// assert_eq!(v, ["ghi", "def", "abc"]);
1732    /// ```
1733    #[stable(feature = "rust1", since = "1.0.0")]
1734    #[inline]
1735    pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1736    where
1737        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1738    {
1739        RSplit(self.split(pat).0)
1740    }
1741
1742    /// Returns an iterator over substrings of the given string slice, separated
1743    /// by characters matched by a pattern.
1744    ///
1745    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1746    /// function or closure that determines if a character matches.
1747    ///
1748    /// [`char`]: prim@char
1749    /// [pattern]: self::pattern
1750    ///
1751    /// Equivalent to [`split`], except that the trailing substring
1752    /// is skipped if empty.
1753    ///
1754    /// [`split`]: str::split
1755    ///
1756    /// This method can be used for string data that is _terminated_,
1757    /// rather than _separated_ by a pattern.
1758    ///
1759    /// # Iterator behavior
1760    ///
1761    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1762    /// allows a reverse search and forward/reverse search yields the same
1763    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1764    ///
1765    /// If the pattern allows a reverse search but its results might differ
1766    /// from a forward search, the [`rsplit_terminator`] method can be used.
1767    ///
1768    /// [`rsplit_terminator`]: str::rsplit_terminator
1769    ///
1770    /// # Examples
1771    ///
1772    /// ```
1773    /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1774    /// assert_eq!(v, ["A", "B"]);
1775    ///
1776    /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1777    /// assert_eq!(v, ["A", "", "B", ""]);
1778    ///
1779    /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1780    /// assert_eq!(v, ["A", "B", "C", "D"]);
1781    /// ```
1782    #[stable(feature = "rust1", since = "1.0.0")]
1783    #[inline]
1784    pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1785        SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1786    }
1787
1788    /// Returns an iterator over substrings of `self`, separated by characters
1789    /// matched by a pattern and yielded in reverse order.
1790    ///
1791    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1792    /// function or closure that determines if a character matches.
1793    ///
1794    /// [`char`]: prim@char
1795    /// [pattern]: self::pattern
1796    ///
1797    /// Equivalent to [`split`], except that the trailing substring is
1798    /// skipped if empty.
1799    ///
1800    /// [`split`]: str::split
1801    ///
1802    /// This method can be used for string data that is _terminated_,
1803    /// rather than _separated_ by a pattern.
1804    ///
1805    /// # Iterator behavior
1806    ///
1807    /// The returned iterator requires that the pattern supports a
1808    /// reverse search, and it will be double ended if a forward/reverse
1809    /// search yields the same elements.
1810    ///
1811    /// For iterating from the front, the [`split_terminator`] method can be
1812    /// used.
1813    ///
1814    /// [`split_terminator`]: str::split_terminator
1815    ///
1816    /// # Examples
1817    ///
1818    /// ```
1819    /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1820    /// assert_eq!(v, ["B", "A"]);
1821    ///
1822    /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1823    /// assert_eq!(v, ["", "B", "", "A"]);
1824    ///
1825    /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1826    /// assert_eq!(v, ["D", "C", "B", "A"]);
1827    /// ```
1828    #[stable(feature = "rust1", since = "1.0.0")]
1829    #[inline]
1830    pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1831    where
1832        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1833    {
1834        RSplitTerminator(self.split_terminator(pat).0)
1835    }
1836
1837    /// Returns an iterator over substrings of the given string slice, separated
1838    /// by a pattern, restricted to returning at most `n` items.
1839    ///
1840    /// If `n` substrings are returned, the last substring (the `n`th substring)
1841    /// will contain the remainder of the string.
1842    ///
1843    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1844    /// function or closure that determines if a character matches.
1845    ///
1846    /// [`char`]: prim@char
1847    /// [pattern]: self::pattern
1848    ///
1849    /// # Iterator behavior
1850    ///
1851    /// The returned iterator will not be double ended, because it is
1852    /// not efficient to support.
1853    ///
1854    /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1855    /// used.
1856    ///
1857    /// [`rsplitn`]: str::rsplitn
1858    ///
1859    /// # Examples
1860    ///
1861    /// Simple patterns:
1862    ///
1863    /// ```
1864    /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1865    /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1866    ///
1867    /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1868    /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1869    ///
1870    /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1871    /// assert_eq!(v, ["abcXdef"]);
1872    ///
1873    /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1874    /// assert_eq!(v, [""]);
1875    /// ```
1876    ///
1877    /// A more complex pattern, using a closure:
1878    ///
1879    /// ```
1880    /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1881    /// assert_eq!(v, ["abc", "defXghi"]);
1882    /// ```
1883    #[stable(feature = "rust1", since = "1.0.0")]
1884    #[inline]
1885    pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1886        SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1887    }
1888
1889    /// Returns an iterator over substrings of this string slice, separated by a
1890    /// pattern, starting from the end of the string, restricted to returning at
1891    /// most `n` items.
1892    ///
1893    /// If `n` substrings are returned, the last substring (the `n`th substring)
1894    /// will contain the remainder of the string.
1895    ///
1896    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1897    /// function or closure that determines if a character matches.
1898    ///
1899    /// [`char`]: prim@char
1900    /// [pattern]: self::pattern
1901    ///
1902    /// # Iterator behavior
1903    ///
1904    /// The returned iterator will not be double ended, because it is not
1905    /// efficient to support.
1906    ///
1907    /// For splitting from the front, the [`splitn`] method can be used.
1908    ///
1909    /// [`splitn`]: str::splitn
1910    ///
1911    /// # Examples
1912    ///
1913    /// Simple patterns:
1914    ///
1915    /// ```
1916    /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1917    /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1918    ///
1919    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1920    /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1921    ///
1922    /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1923    /// assert_eq!(v, ["leopard", "lion::tiger"]);
1924    /// ```
1925    ///
1926    /// A more complex pattern, using a closure:
1927    ///
1928    /// ```
1929    /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1930    /// assert_eq!(v, ["ghi", "abc1def"]);
1931    /// ```
1932    #[stable(feature = "rust1", since = "1.0.0")]
1933    #[inline]
1934    pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1935    where
1936        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1937    {
1938        RSplitN(self.splitn(n, pat).0)
1939    }
1940
1941    /// Splits the string on the first occurrence of the specified delimiter and
1942    /// returns prefix before delimiter and suffix after delimiter.
1943    ///
1944    /// # Examples
1945    ///
1946    /// ```
1947    /// assert_eq!("cfg".split_once('='), None);
1948    /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
1949    /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
1950    /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1951    /// ```
1952    #[stable(feature = "str_split_once", since = "1.52.0")]
1953    #[inline]
1954    pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
1955        let (start, end) = delimiter.into_searcher(self).next_match()?;
1956        // SAFETY: `Searcher` is known to return valid indices.
1957        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1958    }
1959
1960    /// Splits the string on the last occurrence of the specified delimiter and
1961    /// returns prefix before delimiter and suffix after delimiter.
1962    ///
1963    /// # Examples
1964    ///
1965    /// ```
1966    /// assert_eq!("cfg".rsplit_once('='), None);
1967    /// assert_eq!("cfg=".rsplit_once('='), Some(("cfg", "")));
1968    /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
1969    /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1970    /// ```
1971    #[stable(feature = "str_split_once", since = "1.52.0")]
1972    #[inline]
1973    pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
1974    where
1975        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1976    {
1977        let (start, end) = delimiter.into_searcher(self).next_match_back()?;
1978        // SAFETY: `Searcher` is known to return valid indices.
1979        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1980    }
1981
1982    /// Returns an iterator over the disjoint matches of a pattern within the
1983    /// given string slice.
1984    ///
1985    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1986    /// function or closure that determines if a character matches.
1987    ///
1988    /// [`char`]: prim@char
1989    /// [pattern]: self::pattern
1990    ///
1991    /// # Iterator behavior
1992    ///
1993    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1994    /// allows a reverse search and forward/reverse search yields the same
1995    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1996    ///
1997    /// If the pattern allows a reverse search but its results might differ
1998    /// from a forward search, the [`rmatches`] method can be used.
1999    ///
2000    /// [`rmatches`]: str::rmatches
2001    ///
2002    /// # Examples
2003    ///
2004    /// ```
2005    /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
2006    /// assert_eq!(v, ["abc", "abc", "abc"]);
2007    ///
2008    /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
2009    /// assert_eq!(v, ["1", "2", "3"]);
2010    /// ```
2011    #[stable(feature = "str_matches", since = "1.2.0")]
2012    #[inline]
2013    pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
2014        Matches(MatchesInternal(pat.into_searcher(self)))
2015    }
2016
2017    /// Returns an iterator over the disjoint matches of a pattern within this
2018    /// string slice, yielded in reverse order.
2019    ///
2020    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2021    /// function or closure that determines if a character matches.
2022    ///
2023    /// [`char`]: prim@char
2024    /// [pattern]: self::pattern
2025    ///
2026    /// # Iterator behavior
2027    ///
2028    /// The returned iterator requires that the pattern supports a reverse
2029    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2030    /// search yields the same elements.
2031    ///
2032    /// For iterating from the front, the [`matches`] method can be used.
2033    ///
2034    /// [`matches`]: str::matches
2035    ///
2036    /// # Examples
2037    ///
2038    /// ```
2039    /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2040    /// assert_eq!(v, ["abc", "abc", "abc"]);
2041    ///
2042    /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2043    /// assert_eq!(v, ["3", "2", "1"]);
2044    /// ```
2045    #[stable(feature = "str_matches", since = "1.2.0")]
2046    #[inline]
2047    pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2048    where
2049        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2050    {
2051        RMatches(self.matches(pat).0)
2052    }
2053
2054    /// Returns an iterator over the disjoint matches of a pattern within this string
2055    /// slice as well as the index that the match starts at.
2056    ///
2057    /// For matches of `pat` within `self` that overlap, only the indices
2058    /// corresponding to the first match are returned.
2059    ///
2060    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2061    /// function or closure that determines if a character matches.
2062    ///
2063    /// [`char`]: prim@char
2064    /// [pattern]: self::pattern
2065    ///
2066    /// # Iterator behavior
2067    ///
2068    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2069    /// allows a reverse search and forward/reverse search yields the same
2070    /// elements. This is true for, e.g., [`char`], but not for `&str`.
2071    ///
2072    /// If the pattern allows a reverse search but its results might differ
2073    /// from a forward search, the [`rmatch_indices`] method can be used.
2074    ///
2075    /// [`rmatch_indices`]: str::rmatch_indices
2076    ///
2077    /// # Examples
2078    ///
2079    /// ```
2080    /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2081    /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2082    ///
2083    /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2084    /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2085    ///
2086    /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2087    /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2088    /// ```
2089    #[stable(feature = "str_match_indices", since = "1.5.0")]
2090    #[inline]
2091    pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2092        MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2093    }
2094
2095    /// Returns an iterator over the disjoint matches of a pattern within `self`,
2096    /// yielded in reverse order along with the index of the match.
2097    ///
2098    /// For matches of `pat` within `self` that overlap, only the indices
2099    /// corresponding to the last match are returned.
2100    ///
2101    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2102    /// function or closure that determines if a character matches.
2103    ///
2104    /// [`char`]: prim@char
2105    /// [pattern]: self::pattern
2106    ///
2107    /// # Iterator behavior
2108    ///
2109    /// The returned iterator requires that the pattern supports a reverse
2110    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2111    /// search yields the same elements.
2112    ///
2113    /// For iterating from the front, the [`match_indices`] method can be used.
2114    ///
2115    /// [`match_indices`]: str::match_indices
2116    ///
2117    /// # Examples
2118    ///
2119    /// ```
2120    /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2121    /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2122    ///
2123    /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2124    /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2125    ///
2126    /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2127    /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2128    /// ```
2129    #[stable(feature = "str_match_indices", since = "1.5.0")]
2130    #[inline]
2131    pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2132    where
2133        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2134    {
2135        RMatchIndices(self.match_indices(pat).0)
2136    }
2137
2138    /// Returns a string slice with leading and trailing whitespace removed.
2139    ///
2140    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2141    /// Core Property `White_Space`, which includes newlines.
2142    ///
2143    /// # Examples
2144    ///
2145    /// ```
2146    /// let s = "\n Hello\tworld\t\n";
2147    ///
2148    /// assert_eq!("Hello\tworld", s.trim());
2149    /// ```
2150    #[inline]
2151    #[must_use = "this returns the trimmed string as a slice, \
2152                  without modifying the original"]
2153    #[stable(feature = "rust1", since = "1.0.0")]
2154    #[rustc_diagnostic_item = "str_trim"]
2155    pub fn trim(&self) -> &str {
2156        self.trim_matches(char::is_whitespace)
2157    }
2158
2159    /// Returns a string slice with leading whitespace removed.
2160    ///
2161    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2162    /// Core Property `White_Space`, which includes newlines.
2163    ///
2164    /// # Text directionality
2165    ///
2166    /// A string is a sequence of bytes. `start` in this context means the first
2167    /// position of that byte string; for a left-to-right language like English or
2168    /// Russian, this will be left side, and for right-to-left languages like
2169    /// Arabic or Hebrew, this will be the right side.
2170    ///
2171    /// # Examples
2172    ///
2173    /// Basic usage:
2174    ///
2175    /// ```
2176    /// let s = "\n Hello\tworld\t\n";
2177    /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2178    /// ```
2179    ///
2180    /// Directionality:
2181    ///
2182    /// ```
2183    /// let s = "  English  ";
2184    /// assert!(Some('E') == s.trim_start().chars().next());
2185    ///
2186    /// let s = "  עברית  ";
2187    /// assert!(Some('ע') == s.trim_start().chars().next());
2188    /// ```
2189    #[inline]
2190    #[must_use = "this returns the trimmed string as a new slice, \
2191                  without modifying the original"]
2192    #[stable(feature = "trim_direction", since = "1.30.0")]
2193    #[rustc_diagnostic_item = "str_trim_start"]
2194    pub fn trim_start(&self) -> &str {
2195        self.trim_start_matches(char::is_whitespace)
2196    }
2197
2198    /// Returns a string slice with trailing whitespace removed.
2199    ///
2200    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2201    /// Core Property `White_Space`, which includes newlines.
2202    ///
2203    /// # Text directionality
2204    ///
2205    /// A string is a sequence of bytes. `end` in this context means the last
2206    /// position of that byte string; for a left-to-right language like English or
2207    /// Russian, this will be right side, and for right-to-left languages like
2208    /// Arabic or Hebrew, this will be the left side.
2209    ///
2210    /// # Examples
2211    ///
2212    /// Basic usage:
2213    ///
2214    /// ```
2215    /// let s = "\n Hello\tworld\t\n";
2216    /// assert_eq!("\n Hello\tworld", s.trim_end());
2217    /// ```
2218    ///
2219    /// Directionality:
2220    ///
2221    /// ```
2222    /// let s = "  English  ";
2223    /// assert!(Some('h') == s.trim_end().chars().rev().next());
2224    ///
2225    /// let s = "  עברית  ";
2226    /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2227    /// ```
2228    #[inline]
2229    #[must_use = "this returns the trimmed string as a new slice, \
2230                  without modifying the original"]
2231    #[stable(feature = "trim_direction", since = "1.30.0")]
2232    #[rustc_diagnostic_item = "str_trim_end"]
2233    pub fn trim_end(&self) -> &str {
2234        self.trim_end_matches(char::is_whitespace)
2235    }
2236
2237    /// Returns a string slice with leading whitespace removed.
2238    ///
2239    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2240    /// Core Property `White_Space`.
2241    ///
2242    /// # Text directionality
2243    ///
2244    /// A string is a sequence of bytes. 'Left' in this context means the first
2245    /// position of that byte string; for a language like Arabic or Hebrew
2246    /// which are 'right to left' rather than 'left to right', this will be
2247    /// the _right_ side, not the left.
2248    ///
2249    /// # Examples
2250    ///
2251    /// Basic usage:
2252    ///
2253    /// ```
2254    /// let s = " Hello\tworld\t";
2255    ///
2256    /// assert_eq!("Hello\tworld\t", s.trim_left());
2257    /// ```
2258    ///
2259    /// Directionality:
2260    ///
2261    /// ```
2262    /// let s = "  English";
2263    /// assert!(Some('E') == s.trim_left().chars().next());
2264    ///
2265    /// let s = "  עברית";
2266    /// assert!(Some('ע') == s.trim_left().chars().next());
2267    /// ```
2268    #[must_use = "this returns the trimmed string as a new slice, \
2269                  without modifying the original"]
2270    #[inline]
2271    #[stable(feature = "rust1", since = "1.0.0")]
2272    #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2273    pub fn trim_left(&self) -> &str {
2274        self.trim_start()
2275    }
2276
2277    /// Returns a string slice with trailing whitespace removed.
2278    ///
2279    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2280    /// Core Property `White_Space`.
2281    ///
2282    /// # Text directionality
2283    ///
2284    /// A string is a sequence of bytes. 'Right' in this context means the last
2285    /// position of that byte string; for a language like Arabic or Hebrew
2286    /// which are 'right to left' rather than 'left to right', this will be
2287    /// the _left_ side, not the right.
2288    ///
2289    /// # Examples
2290    ///
2291    /// Basic usage:
2292    ///
2293    /// ```
2294    /// let s = " Hello\tworld\t";
2295    ///
2296    /// assert_eq!(" Hello\tworld", s.trim_right());
2297    /// ```
2298    ///
2299    /// Directionality:
2300    ///
2301    /// ```
2302    /// let s = "English  ";
2303    /// assert!(Some('h') == s.trim_right().chars().rev().next());
2304    ///
2305    /// let s = "עברית  ";
2306    /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2307    /// ```
2308    #[must_use = "this returns the trimmed string as a new slice, \
2309                  without modifying the original"]
2310    #[inline]
2311    #[stable(feature = "rust1", since = "1.0.0")]
2312    #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2313    pub fn trim_right(&self) -> &str {
2314        self.trim_end()
2315    }
2316
2317    /// Returns a string slice with all prefixes and suffixes that match a
2318    /// pattern repeatedly removed.
2319    ///
2320    /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2321    /// or closure that determines if a character matches.
2322    ///
2323    /// [`char`]: prim@char
2324    /// [pattern]: self::pattern
2325    ///
2326    /// # Examples
2327    ///
2328    /// Simple patterns:
2329    ///
2330    /// ```
2331    /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2332    /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2333    ///
2334    /// let x: &[_] = &['1', '2'];
2335    /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2336    /// ```
2337    ///
2338    /// A more complex pattern, using a closure:
2339    ///
2340    /// ```
2341    /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2342    /// ```
2343    #[must_use = "this returns the trimmed string as a new slice, \
2344                  without modifying the original"]
2345    #[stable(feature = "rust1", since = "1.0.0")]
2346    pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2347    where
2348        for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2349    {
2350        let mut i = 0;
2351        let mut j = 0;
2352        let mut matcher = pat.into_searcher(self);
2353        if let Some((a, b)) = matcher.next_reject() {
2354            i = a;
2355            j = b; // Remember earliest known match, correct it below if
2356            // last match is different
2357        }
2358        if let Some((_, b)) = matcher.next_reject_back() {
2359            j = b;
2360        }
2361        // SAFETY: `Searcher` is known to return valid indices.
2362        unsafe { self.get_unchecked(i..j) }
2363    }
2364
2365    /// Returns a string slice with all prefixes that match a pattern
2366    /// repeatedly removed.
2367    ///
2368    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2369    /// function or closure that determines if a character matches.
2370    ///
2371    /// [`char`]: prim@char
2372    /// [pattern]: self::pattern
2373    ///
2374    /// # Text directionality
2375    ///
2376    /// A string is a sequence of bytes. `start` in this context means the first
2377    /// position of that byte string; for a left-to-right language like English or
2378    /// Russian, this will be left side, and for right-to-left languages like
2379    /// Arabic or Hebrew, this will be the right side.
2380    ///
2381    /// # Examples
2382    ///
2383    /// ```
2384    /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2385    /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2386    ///
2387    /// let x: &[_] = &['1', '2'];
2388    /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2389    /// ```
2390    #[must_use = "this returns the trimmed string as a new slice, \
2391                  without modifying the original"]
2392    #[stable(feature = "trim_direction", since = "1.30.0")]
2393    pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2394        let mut i = self.len();
2395        let mut matcher = pat.into_searcher(self);
2396        if let Some((a, _)) = matcher.next_reject() {
2397            i = a;
2398        }
2399        // SAFETY: `Searcher` is known to return valid indices.
2400        unsafe { self.get_unchecked(i..self.len()) }
2401    }
2402
2403    /// Returns a string slice with the prefix removed.
2404    ///
2405    /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2406    /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2407    ///
2408    /// If the string does not start with `prefix`, returns `None`.
2409    ///
2410    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2411    /// function or closure that determines if a character matches.
2412    ///
2413    /// [`char`]: prim@char
2414    /// [pattern]: self::pattern
2415    /// [`trim_start_matches`]: Self::trim_start_matches
2416    ///
2417    /// # Examples
2418    ///
2419    /// ```
2420    /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2421    /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2422    /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2423    /// ```
2424    #[must_use = "this returns the remaining substring as a new slice, \
2425                  without modifying the original"]
2426    #[stable(feature = "str_strip", since = "1.45.0")]
2427    pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2428        prefix.strip_prefix_of(self)
2429    }
2430
2431    /// Returns a string slice with the suffix removed.
2432    ///
2433    /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2434    /// wrapped in `Some`.  Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2435    ///
2436    /// If the string does not end with `suffix`, returns `None`.
2437    ///
2438    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2439    /// function or closure that determines if a character matches.
2440    ///
2441    /// [`char`]: prim@char
2442    /// [pattern]: self::pattern
2443    /// [`trim_end_matches`]: Self::trim_end_matches
2444    ///
2445    /// # Examples
2446    ///
2447    /// ```
2448    /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2449    /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2450    /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2451    /// ```
2452    #[must_use = "this returns the remaining substring as a new slice, \
2453                  without modifying the original"]
2454    #[stable(feature = "str_strip", since = "1.45.0")]
2455    pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2456    where
2457        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2458    {
2459        suffix.strip_suffix_of(self)
2460    }
2461
2462    /// Returns a string slice with the prefix and suffix removed.
2463    ///
2464    /// If the string starts with the pattern `prefix` and ends with the pattern `suffix`, returns
2465    /// the substring after the prefix and before the suffix, wrapped in `Some`.
2466    /// Unlike [`trim_start_matches`] and [`trim_end_matches`], this method removes both the prefix
2467    /// and suffix exactly once.
2468    ///
2469    /// If the string does not start with `prefix` or does not end with `suffix`, returns `None`.
2470    ///
2471    /// Each [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2472    /// function or closure that determines if a character matches.
2473    ///
2474    /// [`char`]: prim@char
2475    /// [pattern]: self::pattern
2476    /// [`trim_start_matches`]: Self::trim_start_matches
2477    /// [`trim_end_matches`]: Self::trim_end_matches
2478    ///
2479    /// # Examples
2480    ///
2481    /// ```
2482    /// #![feature(strip_circumfix)]
2483    ///
2484    /// assert_eq!("bar:hello:foo".strip_circumfix("bar:", ":foo"), Some("hello"));
2485    /// assert_eq!("bar:foo".strip_circumfix("foo", "foo"), None);
2486    /// assert_eq!("foo:bar;".strip_circumfix("foo:", ';'), Some("bar"));
2487    /// ```
2488    #[must_use = "this returns the remaining substring as a new slice, \
2489                  without modifying the original"]
2490    #[unstable(feature = "strip_circumfix", issue = "147946")]
2491    pub fn strip_circumfix<P: Pattern, S: Pattern>(&self, prefix: P, suffix: S) -> Option<&str>
2492    where
2493        for<'a> S::Searcher<'a>: ReverseSearcher<'a>,
2494    {
2495        self.strip_prefix(prefix)?.strip_suffix(suffix)
2496    }
2497
2498    /// Returns a string slice with the optional prefix removed.
2499    ///
2500    /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2501    /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2502    /// instead of returning [`Option<&str>`].
2503    ///
2504    /// If the string does not start with `prefix`, returns the original string unchanged.
2505    ///
2506    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2507    /// function or closure that determines if a character matches.
2508    ///
2509    /// [`char`]: prim@char
2510    /// [pattern]: self::pattern
2511    /// [`strip_prefix`]: Self::strip_prefix
2512    ///
2513    /// # Examples
2514    ///
2515    /// ```
2516    /// #![feature(trim_prefix_suffix)]
2517    ///
2518    /// // Prefix present - removes it
2519    /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2520    /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2521    ///
2522    /// // Prefix absent - returns original string
2523    /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2524    ///
2525    /// // Method chaining example
2526    /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2527    /// ```
2528    #[must_use = "this returns the remaining substring as a new slice, \
2529                  without modifying the original"]
2530    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2531    pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2532        prefix.strip_prefix_of(self).unwrap_or(self)
2533    }
2534
2535    /// Returns a string slice with the optional suffix removed.
2536    ///
2537    /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2538    /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2539    /// instead of returning [`Option<&str>`].
2540    ///
2541    /// If the string does not end with `suffix`, returns the original string unchanged.
2542    ///
2543    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2544    /// function or closure that determines if a character matches.
2545    ///
2546    /// [`char`]: prim@char
2547    /// [pattern]: self::pattern
2548    /// [`strip_suffix`]: Self::strip_suffix
2549    ///
2550    /// # Examples
2551    ///
2552    /// ```
2553    /// #![feature(trim_prefix_suffix)]
2554    ///
2555    /// // Suffix present - removes it
2556    /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2557    /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2558    ///
2559    /// // Suffix absent - returns original string
2560    /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2561    ///
2562    /// // Method chaining example
2563    /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2564    /// ```
2565    #[must_use = "this returns the remaining substring as a new slice, \
2566                  without modifying the original"]
2567    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2568    pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2569    where
2570        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2571    {
2572        suffix.strip_suffix_of(self).unwrap_or(self)
2573    }
2574
2575    /// Returns a string slice with all suffixes that match a pattern
2576    /// repeatedly removed.
2577    ///
2578    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2579    /// function or closure that determines if a character matches.
2580    ///
2581    /// [`char`]: prim@char
2582    /// [pattern]: self::pattern
2583    ///
2584    /// # Text directionality
2585    ///
2586    /// A string is a sequence of bytes. `end` in this context means the last
2587    /// position of that byte string; for a left-to-right language like English or
2588    /// Russian, this will be right side, and for right-to-left languages like
2589    /// Arabic or Hebrew, this will be the left side.
2590    ///
2591    /// # Examples
2592    ///
2593    /// Simple patterns:
2594    ///
2595    /// ```
2596    /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2597    /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2598    ///
2599    /// let x: &[_] = &['1', '2'];
2600    /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2601    /// ```
2602    ///
2603    /// A more complex pattern, using a closure:
2604    ///
2605    /// ```
2606    /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2607    /// ```
2608    #[must_use = "this returns the trimmed string as a new slice, \
2609                  without modifying the original"]
2610    #[stable(feature = "trim_direction", since = "1.30.0")]
2611    pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2612    where
2613        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2614    {
2615        let mut j = 0;
2616        let mut matcher = pat.into_searcher(self);
2617        if let Some((_, b)) = matcher.next_reject_back() {
2618            j = b;
2619        }
2620        // SAFETY: `Searcher` is known to return valid indices.
2621        unsafe { self.get_unchecked(0..j) }
2622    }
2623
2624    /// Returns a string slice with all prefixes that match a pattern
2625    /// repeatedly removed.
2626    ///
2627    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2628    /// function or closure that determines if a character matches.
2629    ///
2630    /// [`char`]: prim@char
2631    /// [pattern]: self::pattern
2632    ///
2633    /// # Text directionality
2634    ///
2635    /// A string is a sequence of bytes. 'Left' in this context means the first
2636    /// position of that byte string; for a language like Arabic or Hebrew
2637    /// which are 'right to left' rather than 'left to right', this will be
2638    /// the _right_ side, not the left.
2639    ///
2640    /// # Examples
2641    ///
2642    /// ```
2643    /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2644    /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2645    ///
2646    /// let x: &[_] = &['1', '2'];
2647    /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2648    /// ```
2649    #[stable(feature = "rust1", since = "1.0.0")]
2650    #[deprecated(
2651        since = "1.33.0",
2652        note = "superseded by `trim_start_matches`",
2653        suggestion = "trim_start_matches"
2654    )]
2655    pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2656        self.trim_start_matches(pat)
2657    }
2658
2659    /// Returns a string slice with all suffixes that match a pattern
2660    /// repeatedly removed.
2661    ///
2662    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2663    /// function or closure that determines if a character matches.
2664    ///
2665    /// [`char`]: prim@char
2666    /// [pattern]: self::pattern
2667    ///
2668    /// # Text directionality
2669    ///
2670    /// A string is a sequence of bytes. 'Right' in this context means the last
2671    /// position of that byte string; for a language like Arabic or Hebrew
2672    /// which are 'right to left' rather than 'left to right', this will be
2673    /// the _left_ side, not the right.
2674    ///
2675    /// # Examples
2676    ///
2677    /// Simple patterns:
2678    ///
2679    /// ```
2680    /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2681    /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2682    ///
2683    /// let x: &[_] = &['1', '2'];
2684    /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2685    /// ```
2686    ///
2687    /// A more complex pattern, using a closure:
2688    ///
2689    /// ```
2690    /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2691    /// ```
2692    #[stable(feature = "rust1", since = "1.0.0")]
2693    #[deprecated(
2694        since = "1.33.0",
2695        note = "superseded by `trim_end_matches`",
2696        suggestion = "trim_end_matches"
2697    )]
2698    pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2699    where
2700        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2701    {
2702        self.trim_end_matches(pat)
2703    }
2704
2705    /// Parses this string slice into another type.
2706    ///
2707    /// Because `parse` is so general, it can cause problems with type
2708    /// inference. As such, `parse` is one of the few times you'll see
2709    /// the syntax affectionately known as the 'turbofish': `::<>`. This
2710    /// helps the inference algorithm understand specifically which type
2711    /// you're trying to parse into.
2712    ///
2713    /// `parse` can parse into any type that implements the [`FromStr`] trait.
2714    ///
2715    /// # Errors
2716    ///
2717    /// Will return [`Err`] if it's not possible to parse this string slice into
2718    /// the desired type.
2719    ///
2720    /// [`Err`]: FromStr::Err
2721    ///
2722    /// # Examples
2723    ///
2724    /// Basic usage:
2725    ///
2726    /// ```
2727    /// let four: u32 = "4".parse().unwrap();
2728    ///
2729    /// assert_eq!(4, four);
2730    /// ```
2731    ///
2732    /// Using the 'turbofish' instead of annotating `four`:
2733    ///
2734    /// ```
2735    /// let four = "4".parse::<u32>();
2736    ///
2737    /// assert_eq!(Ok(4), four);
2738    /// ```
2739    ///
2740    /// Failing to parse:
2741    ///
2742    /// ```
2743    /// let nope = "j".parse::<u32>();
2744    ///
2745    /// assert!(nope.is_err());
2746    /// ```
2747    #[inline]
2748    #[stable(feature = "rust1", since = "1.0.0")]
2749    pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2750        FromStr::from_str(self)
2751    }
2752
2753    /// Checks if all characters in this string are within the ASCII range.
2754    ///
2755    /// An empty string returns `true`.
2756    ///
2757    /// # Examples
2758    ///
2759    /// ```
2760    /// let ascii = "hello!\n";
2761    /// let non_ascii = "Grüße, Jürgen ❤";
2762    ///
2763    /// assert!(ascii.is_ascii());
2764    /// assert!(!non_ascii.is_ascii());
2765    /// ```
2766    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2767    #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2768    #[must_use]
2769    #[inline]
2770    pub const fn is_ascii(&self) -> bool {
2771        // We can treat each byte as character here: all multibyte characters
2772        // start with a byte that is not in the ASCII range, so we will stop
2773        // there already.
2774        self.as_bytes().is_ascii()
2775    }
2776
2777    /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2778    /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2779    #[unstable(feature = "ascii_char", issue = "110998")]
2780    #[must_use]
2781    #[inline]
2782    pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2783        // Like in `is_ascii`, we can work on the bytes directly.
2784        self.as_bytes().as_ascii()
2785    }
2786
2787    /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2788    /// without checking whether they are valid.
2789    ///
2790    /// # Safety
2791    ///
2792    /// Every character in this string must be ASCII, or else this is UB.
2793    #[unstable(feature = "ascii_char", issue = "110998")]
2794    #[must_use]
2795    #[inline]
2796    pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2797        assert_unsafe_precondition!(
2798            check_library_ub,
2799            "as_ascii_unchecked requires that the string is valid ASCII",
2800            (it: &str = self) => it.is_ascii()
2801        );
2802
2803        // SAFETY: the caller promised that every byte of this string slice
2804        // is ASCII.
2805        unsafe { self.as_bytes().as_ascii_unchecked() }
2806    }
2807
2808    /// Checks that two strings are an ASCII case-insensitive match.
2809    ///
2810    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2811    /// but without allocating and copying temporaries.
2812    ///
2813    /// # Examples
2814    ///
2815    /// ```
2816    /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2817    /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2818    /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2819    /// ```
2820    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2821    #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2822    #[must_use]
2823    #[inline]
2824    pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2825        self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2826    }
2827
2828    /// Converts this string to its ASCII upper case equivalent in-place.
2829    ///
2830    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2831    /// but non-ASCII letters are unchanged.
2832    ///
2833    /// To return a new uppercased value without modifying the existing one, use
2834    /// [`to_ascii_uppercase()`].
2835    ///
2836    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2837    ///
2838    /// # Examples
2839    ///
2840    /// ```
2841    /// let mut s = String::from("Grüße, Jürgen ❤");
2842    ///
2843    /// s.make_ascii_uppercase();
2844    ///
2845    /// assert_eq!("GRüßE, JüRGEN ❤", s);
2846    /// ```
2847    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2848    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2849    #[inline]
2850    pub const fn make_ascii_uppercase(&mut self) {
2851        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2852        let me = unsafe { self.as_bytes_mut() };
2853        me.make_ascii_uppercase()
2854    }
2855
2856    /// Converts this string to its ASCII lower case equivalent in-place.
2857    ///
2858    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2859    /// but non-ASCII letters are unchanged.
2860    ///
2861    /// To return a new lowercased value without modifying the existing one, use
2862    /// [`to_ascii_lowercase()`].
2863    ///
2864    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2865    ///
2866    /// # Examples
2867    ///
2868    /// ```
2869    /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2870    ///
2871    /// s.make_ascii_lowercase();
2872    ///
2873    /// assert_eq!("grÜße, jÜrgen ❤", s);
2874    /// ```
2875    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2876    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2877    #[inline]
2878    pub const fn make_ascii_lowercase(&mut self) {
2879        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2880        let me = unsafe { self.as_bytes_mut() };
2881        me.make_ascii_lowercase()
2882    }
2883
2884    /// Returns a string slice with leading ASCII whitespace removed.
2885    ///
2886    /// 'Whitespace' refers to the definition used by
2887    /// [`u8::is_ascii_whitespace`].
2888    ///
2889    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2890    ///
2891    /// # Examples
2892    ///
2893    /// ```
2894    /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2895    /// assert_eq!("  ".trim_ascii_start(), "");
2896    /// assert_eq!("".trim_ascii_start(), "");
2897    /// ```
2898    #[must_use = "this returns the trimmed string as a new slice, \
2899                  without modifying the original"]
2900    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2901    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2902    #[inline]
2903    pub const fn trim_ascii_start(&self) -> &str {
2904        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2905        // UTF-8.
2906        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2907    }
2908
2909    /// Returns a string slice with trailing ASCII whitespace removed.
2910    ///
2911    /// 'Whitespace' refers to the definition used by
2912    /// [`u8::is_ascii_whitespace`].
2913    ///
2914    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2915    ///
2916    /// # Examples
2917    ///
2918    /// ```
2919    /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
2920    /// assert_eq!("  ".trim_ascii_end(), "");
2921    /// assert_eq!("".trim_ascii_end(), "");
2922    /// ```
2923    #[must_use = "this returns the trimmed string as a new slice, \
2924                  without modifying the original"]
2925    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2926    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2927    #[inline]
2928    pub const fn trim_ascii_end(&self) -> &str {
2929        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2930        // UTF-8.
2931        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
2932    }
2933
2934    /// Returns a string slice with leading and trailing ASCII whitespace
2935    /// removed.
2936    ///
2937    /// 'Whitespace' refers to the definition used by
2938    /// [`u8::is_ascii_whitespace`].
2939    ///
2940    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2941    ///
2942    /// # Examples
2943    ///
2944    /// ```
2945    /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
2946    /// assert_eq!("  ".trim_ascii(), "");
2947    /// assert_eq!("".trim_ascii(), "");
2948    /// ```
2949    #[must_use = "this returns the trimmed string as a new slice, \
2950                  without modifying the original"]
2951    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2952    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2953    #[inline]
2954    pub const fn trim_ascii(&self) -> &str {
2955        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2956        // UTF-8.
2957        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
2958    }
2959
2960    /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
2961    ///
2962    /// Note: only extended grapheme codepoints that begin the string will be
2963    /// escaped.
2964    ///
2965    /// # Examples
2966    ///
2967    /// As an iterator:
2968    ///
2969    /// ```
2970    /// for c in "❤\n!".escape_debug() {
2971    ///     print!("{c}");
2972    /// }
2973    /// println!();
2974    /// ```
2975    ///
2976    /// Using `println!` directly:
2977    ///
2978    /// ```
2979    /// println!("{}", "❤\n!".escape_debug());
2980    /// ```
2981    ///
2982    ///
2983    /// Both are equivalent to:
2984    ///
2985    /// ```
2986    /// println!("❤\\n!");
2987    /// ```
2988    ///
2989    /// Using `to_string`:
2990    ///
2991    /// ```
2992    /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
2993    /// ```
2994    #[must_use = "this returns the escaped string as an iterator, \
2995                  without modifying the original"]
2996    #[stable(feature = "str_escape", since = "1.34.0")]
2997    pub fn escape_debug(&self) -> EscapeDebug<'_> {
2998        let mut chars = self.chars();
2999        EscapeDebug {
3000            inner: chars
3001                .next()
3002                .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
3003                .into_iter()
3004                .flatten()
3005                .chain(chars.flat_map(CharEscapeDebugContinue)),
3006        }
3007    }
3008
3009    /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
3010    ///
3011    /// # Examples
3012    ///
3013    /// As an iterator:
3014    ///
3015    /// ```
3016    /// for c in "❤\n!".escape_default() {
3017    ///     print!("{c}");
3018    /// }
3019    /// println!();
3020    /// ```
3021    ///
3022    /// Using `println!` directly:
3023    ///
3024    /// ```
3025    /// println!("{}", "❤\n!".escape_default());
3026    /// ```
3027    ///
3028    ///
3029    /// Both are equivalent to:
3030    ///
3031    /// ```
3032    /// println!("\\u{{2764}}\\n!");
3033    /// ```
3034    ///
3035    /// Using `to_string`:
3036    ///
3037    /// ```
3038    /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
3039    /// ```
3040    #[must_use = "this returns the escaped string as an iterator, \
3041                  without modifying the original"]
3042    #[stable(feature = "str_escape", since = "1.34.0")]
3043    pub fn escape_default(&self) -> EscapeDefault<'_> {
3044        EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
3045    }
3046
3047    /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
3048    ///
3049    /// # Examples
3050    ///
3051    /// As an iterator:
3052    ///
3053    /// ```
3054    /// for c in "❤\n!".escape_unicode() {
3055    ///     print!("{c}");
3056    /// }
3057    /// println!();
3058    /// ```
3059    ///
3060    /// Using `println!` directly:
3061    ///
3062    /// ```
3063    /// println!("{}", "❤\n!".escape_unicode());
3064    /// ```
3065    ///
3066    ///
3067    /// Both are equivalent to:
3068    ///
3069    /// ```
3070    /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3071    /// ```
3072    ///
3073    /// Using `to_string`:
3074    ///
3075    /// ```
3076    /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3077    /// ```
3078    #[must_use = "this returns the escaped string as an iterator, \
3079                  without modifying the original"]
3080    #[stable(feature = "str_escape", since = "1.34.0")]
3081    pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3082        EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3083    }
3084
3085    /// Returns the range that a substring points to.
3086    ///
3087    /// Returns `None` if `substr` does not point within `self`.
3088    ///
3089    /// Unlike [`str::find`], **this does not search through the string**.
3090    /// Instead, it uses pointer arithmetic to find where in the string
3091    /// `substr` is derived from.
3092    ///
3093    /// This is useful for extending [`str::split`] and similar methods.
3094    ///
3095    /// Note that this method may return false positives (typically either
3096    /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3097    /// zero-length `str` that points at the beginning or end of another,
3098    /// independent, `str`.
3099    ///
3100    /// # Examples
3101    /// ```
3102    /// #![feature(substr_range)]
3103    ///
3104    /// let data = "a, b, b, a";
3105    /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3106    ///
3107    /// assert_eq!(iter.next(), Some(0..1));
3108    /// assert_eq!(iter.next(), Some(3..4));
3109    /// assert_eq!(iter.next(), Some(6..7));
3110    /// assert_eq!(iter.next(), Some(9..10));
3111    /// ```
3112    #[must_use]
3113    #[unstable(feature = "substr_range", issue = "126769")]
3114    pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3115        self.as_bytes().subslice_range(substr.as_bytes())
3116    }
3117
3118    /// Returns the same string as a string slice `&str`.
3119    ///
3120    /// This method is redundant when used directly on `&str`, but
3121    /// it helps dereferencing other string-like types to string slices,
3122    /// for example references to `Box<str>` or `Arc<str>`.
3123    #[inline]
3124    #[unstable(feature = "str_as_str", issue = "130366")]
3125    pub const fn as_str(&self) -> &str {
3126        self
3127    }
3128}
3129
3130#[stable(feature = "rust1", since = "1.0.0")]
3131#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
3132impl const AsRef<[u8]> for str {
3133    #[inline]
3134    fn as_ref(&self) -> &[u8] {
3135        self.as_bytes()
3136    }
3137}
3138
3139#[stable(feature = "rust1", since = "1.0.0")]
3140#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3141impl const Default for &str {
3142    /// Creates an empty str
3143    #[inline]
3144    fn default() -> Self {
3145        ""
3146    }
3147}
3148
3149#[stable(feature = "default_mut_str", since = "1.28.0")]
3150#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3151impl const Default for &mut str {
3152    /// Creates an empty mutable str
3153    #[inline]
3154    fn default() -> Self {
3155        // SAFETY: The empty string is valid UTF-8.
3156        unsafe { from_utf8_unchecked_mut(&mut []) }
3157    }
3158}
3159
3160impl_fn_for_zst! {
3161    /// A nameable, cloneable fn type
3162    #[derive(Clone)]
3163    struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3164        let Some(line) = line.strip_suffix('\n') else { return line };
3165        let Some(line) = line.strip_suffix('\r') else { return line };
3166        line
3167    };
3168
3169    #[derive(Clone)]
3170    struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3171        c.escape_debug_ext(EscapeDebugExtArgs {
3172            escape_grapheme_extended: false,
3173            escape_single_quote: true,
3174            escape_double_quote: true
3175        })
3176    };
3177
3178    #[derive(Clone)]
3179    struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3180        c.escape_unicode()
3181    };
3182    #[derive(Clone)]
3183    struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3184        c.escape_default()
3185    };
3186
3187    #[derive(Clone)]
3188    struct IsWhitespace impl Fn = |c: char| -> bool {
3189        c.is_whitespace()
3190    };
3191
3192    #[derive(Clone)]
3193    struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3194        byte.is_ascii_whitespace()
3195    };
3196
3197    #[derive(Clone)]
3198    struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3199        !s.is_empty()
3200    };
3201
3202    #[derive(Clone)]
3203    struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3204        !s.is_empty()
3205    };
3206
3207    #[derive(Clone)]
3208    struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3209        // SAFETY: not safe
3210        unsafe { from_utf8_unchecked(bytes) }
3211    };
3212}
3213
3214// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3215#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3216impl !crate::error::Error for &str {}