core/slice/
mod.rs

1//! Slice management and manipulation.
2//!
3//! For more details see [`std::slice`].
4//!
5//! [`std::slice`]: ../../std/slice/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9use crate::clone::TrivialClone;
10use crate::cmp::Ordering::{self, Equal, Greater, Less};
11use crate::intrinsics::{exact_div, unchecked_sub};
12use crate::mem::{self, MaybeUninit, SizedTypeProperties};
13use crate::num::NonZero;
14use crate::ops::{OneSidedRange, OneSidedRangeBound, Range, RangeBounds, RangeInclusive};
15use crate::panic::const_panic;
16use crate::simd::{self, Simd};
17use crate::ub_checks::assert_unsafe_precondition;
18use crate::{fmt, hint, ptr, range, slice};
19
20#[unstable(
21    feature = "slice_internals",
22    issue = "none",
23    reason = "exposed from core to be reused in std; use the memchr crate"
24)]
25#[doc(hidden)]
26/// Pure Rust memchr implementation, taken from rust-memchr
27pub mod memchr;
28
29#[unstable(
30    feature = "slice_internals",
31    issue = "none",
32    reason = "exposed from core to be reused in std;"
33)]
34#[doc(hidden)]
35pub mod sort;
36
37mod ascii;
38mod cmp;
39pub(crate) mod index;
40mod iter;
41mod raw;
42mod rotate;
43mod specialize;
44
45#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
46pub use ascii::EscapeAscii;
47#[unstable(feature = "str_internals", issue = "none")]
48#[doc(hidden)]
49pub use ascii::is_ascii_simple;
50#[stable(feature = "slice_get_slice", since = "1.28.0")]
51pub use index::SliceIndex;
52#[unstable(feature = "slice_range", issue = "76393")]
53pub use index::{range, try_range};
54#[stable(feature = "array_windows", since = "CURRENT_RUSTC_VERSION")]
55pub use iter::ArrayWindows;
56#[stable(feature = "slice_group_by", since = "1.77.0")]
57pub use iter::{ChunkBy, ChunkByMut};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use iter::{Chunks, ChunksMut, Windows};
60#[stable(feature = "chunks_exact", since = "1.31.0")]
61pub use iter::{ChunksExact, ChunksExactMut};
62#[stable(feature = "rust1", since = "1.0.0")]
63pub use iter::{Iter, IterMut};
64#[stable(feature = "rchunks", since = "1.31.0")]
65pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
66#[stable(feature = "slice_rsplit", since = "1.27.0")]
67pub use iter::{RSplit, RSplitMut};
68#[stable(feature = "rust1", since = "1.0.0")]
69pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
70#[stable(feature = "split_inclusive", since = "1.51.0")]
71pub use iter::{SplitInclusive, SplitInclusiveMut};
72#[stable(feature = "from_ref", since = "1.28.0")]
73pub use raw::{from_mut, from_ref};
74#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
75pub use raw::{from_mut_ptr_range, from_ptr_range};
76#[stable(feature = "rust1", since = "1.0.0")]
77pub use raw::{from_raw_parts, from_raw_parts_mut};
78
79/// Calculates the direction and split point of a one-sided range.
80///
81/// This is a helper function for `split_off` and `split_off_mut` that returns
82/// the direction of the split (front or back) as well as the index at
83/// which to split. Returns `None` if the split index would overflow.
84#[inline]
85fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
86    use OneSidedRangeBound::{End, EndInclusive, StartInclusive};
87
88    Some(match range.bound() {
89        (StartInclusive, i) => (Direction::Back, i),
90        (End, i) => (Direction::Front, i),
91        (EndInclusive, i) => (Direction::Front, i.checked_add(1)?),
92    })
93}
94
95enum Direction {
96    Front,
97    Back,
98}
99
100impl<T> [T] {
101    /// Returns the number of elements in the slice.
102    ///
103    /// # Examples
104    ///
105    /// ```
106    /// let a = [1, 2, 3];
107    /// assert_eq!(a.len(), 3);
108    /// ```
109    #[lang = "slice_len_fn"]
110    #[stable(feature = "rust1", since = "1.0.0")]
111    #[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
112    #[rustc_no_implicit_autorefs]
113    #[inline]
114    #[must_use]
115    pub const fn len(&self) -> usize {
116        ptr::metadata(self)
117    }
118
119    /// Returns `true` if the slice has a length of 0.
120    ///
121    /// # Examples
122    ///
123    /// ```
124    /// let a = [1, 2, 3];
125    /// assert!(!a.is_empty());
126    ///
127    /// let b: &[i32] = &[];
128    /// assert!(b.is_empty());
129    /// ```
130    #[stable(feature = "rust1", since = "1.0.0")]
131    #[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
132    #[rustc_no_implicit_autorefs]
133    #[inline]
134    #[must_use]
135    pub const fn is_empty(&self) -> bool {
136        self.len() == 0
137    }
138
139    /// Returns the first element of the slice, or `None` if it is empty.
140    ///
141    /// # Examples
142    ///
143    /// ```
144    /// let v = [10, 40, 30];
145    /// assert_eq!(Some(&10), v.first());
146    ///
147    /// let w: &[i32] = &[];
148    /// assert_eq!(None, w.first());
149    /// ```
150    #[stable(feature = "rust1", since = "1.0.0")]
151    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
152    #[inline]
153    #[must_use]
154    pub const fn first(&self) -> Option<&T> {
155        if let [first, ..] = self { Some(first) } else { None }
156    }
157
158    /// Returns a mutable reference to the first element of the slice, or `None` if it is empty.
159    ///
160    /// # Examples
161    ///
162    /// ```
163    /// let x = &mut [0, 1, 2];
164    ///
165    /// if let Some(first) = x.first_mut() {
166    ///     *first = 5;
167    /// }
168    /// assert_eq!(x, &[5, 1, 2]);
169    ///
170    /// let y: &mut [i32] = &mut [];
171    /// assert_eq!(None, y.first_mut());
172    /// ```
173    #[stable(feature = "rust1", since = "1.0.0")]
174    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
175    #[inline]
176    #[must_use]
177    pub const fn first_mut(&mut self) -> Option<&mut T> {
178        if let [first, ..] = self { Some(first) } else { None }
179    }
180
181    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
182    ///
183    /// # Examples
184    ///
185    /// ```
186    /// let x = &[0, 1, 2];
187    ///
188    /// if let Some((first, elements)) = x.split_first() {
189    ///     assert_eq!(first, &0);
190    ///     assert_eq!(elements, &[1, 2]);
191    /// }
192    /// ```
193    #[stable(feature = "slice_splits", since = "1.5.0")]
194    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
195    #[inline]
196    #[must_use]
197    pub const fn split_first(&self) -> Option<(&T, &[T])> {
198        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
199    }
200
201    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
202    ///
203    /// # Examples
204    ///
205    /// ```
206    /// let x = &mut [0, 1, 2];
207    ///
208    /// if let Some((first, elements)) = x.split_first_mut() {
209    ///     *first = 3;
210    ///     elements[0] = 4;
211    ///     elements[1] = 5;
212    /// }
213    /// assert_eq!(x, &[3, 4, 5]);
214    /// ```
215    #[stable(feature = "slice_splits", since = "1.5.0")]
216    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
217    #[inline]
218    #[must_use]
219    pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
220        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
221    }
222
223    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
224    ///
225    /// # Examples
226    ///
227    /// ```
228    /// let x = &[0, 1, 2];
229    ///
230    /// if let Some((last, elements)) = x.split_last() {
231    ///     assert_eq!(last, &2);
232    ///     assert_eq!(elements, &[0, 1]);
233    /// }
234    /// ```
235    #[stable(feature = "slice_splits", since = "1.5.0")]
236    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
237    #[inline]
238    #[must_use]
239    pub const fn split_last(&self) -> Option<(&T, &[T])> {
240        if let [init @ .., last] = self { Some((last, init)) } else { None }
241    }
242
243    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
244    ///
245    /// # Examples
246    ///
247    /// ```
248    /// let x = &mut [0, 1, 2];
249    ///
250    /// if let Some((last, elements)) = x.split_last_mut() {
251    ///     *last = 3;
252    ///     elements[0] = 4;
253    ///     elements[1] = 5;
254    /// }
255    /// assert_eq!(x, &[4, 5, 3]);
256    /// ```
257    #[stable(feature = "slice_splits", since = "1.5.0")]
258    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
259    #[inline]
260    #[must_use]
261    pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
262        if let [init @ .., last] = self { Some((last, init)) } else { None }
263    }
264
265    /// Returns the last element of the slice, or `None` if it is empty.
266    ///
267    /// # Examples
268    ///
269    /// ```
270    /// let v = [10, 40, 30];
271    /// assert_eq!(Some(&30), v.last());
272    ///
273    /// let w: &[i32] = &[];
274    /// assert_eq!(None, w.last());
275    /// ```
276    #[stable(feature = "rust1", since = "1.0.0")]
277    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
278    #[inline]
279    #[must_use]
280    pub const fn last(&self) -> Option<&T> {
281        if let [.., last] = self { Some(last) } else { None }
282    }
283
284    /// Returns a mutable reference to the last item in the slice, or `None` if it is empty.
285    ///
286    /// # Examples
287    ///
288    /// ```
289    /// let x = &mut [0, 1, 2];
290    ///
291    /// if let Some(last) = x.last_mut() {
292    ///     *last = 10;
293    /// }
294    /// assert_eq!(x, &[0, 1, 10]);
295    ///
296    /// let y: &mut [i32] = &mut [];
297    /// assert_eq!(None, y.last_mut());
298    /// ```
299    #[stable(feature = "rust1", since = "1.0.0")]
300    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
301    #[inline]
302    #[must_use]
303    pub const fn last_mut(&mut self) -> Option<&mut T> {
304        if let [.., last] = self { Some(last) } else { None }
305    }
306
307    /// Returns an array reference to the first `N` items in the slice.
308    ///
309    /// If the slice is not at least `N` in length, this will return `None`.
310    ///
311    /// # Examples
312    ///
313    /// ```
314    /// let u = [10, 40, 30];
315    /// assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
316    ///
317    /// let v: &[i32] = &[10];
318    /// assert_eq!(None, v.first_chunk::<2>());
319    ///
320    /// let w: &[i32] = &[];
321    /// assert_eq!(Some(&[]), w.first_chunk::<0>());
322    /// ```
323    #[inline]
324    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
325    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
326    pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]> {
327        if self.len() < N {
328            None
329        } else {
330            // SAFETY: We explicitly check for the correct number of elements,
331            //   and do not let the reference outlive the slice.
332            Some(unsafe { &*(self.as_ptr().cast_array()) })
333        }
334    }
335
336    /// Returns a mutable array reference to the first `N` items in the slice.
337    ///
338    /// If the slice is not at least `N` in length, this will return `None`.
339    ///
340    /// # Examples
341    ///
342    /// ```
343    /// let x = &mut [0, 1, 2];
344    ///
345    /// if let Some(first) = x.first_chunk_mut::<2>() {
346    ///     first[0] = 5;
347    ///     first[1] = 4;
348    /// }
349    /// assert_eq!(x, &[5, 4, 2]);
350    ///
351    /// assert_eq!(None, x.first_chunk_mut::<4>());
352    /// ```
353    #[inline]
354    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
355    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
356    pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
357        if self.len() < N {
358            None
359        } else {
360            // SAFETY: We explicitly check for the correct number of elements,
361            //   do not let the reference outlive the slice,
362            //   and require exclusive access to the entire slice to mutate the chunk.
363            Some(unsafe { &mut *(self.as_mut_ptr().cast_array()) })
364        }
365    }
366
367    /// Returns an array reference to the first `N` items in the slice and the remaining slice.
368    ///
369    /// If the slice is not at least `N` in length, this will return `None`.
370    ///
371    /// # Examples
372    ///
373    /// ```
374    /// let x = &[0, 1, 2];
375    ///
376    /// if let Some((first, elements)) = x.split_first_chunk::<2>() {
377    ///     assert_eq!(first, &[0, 1]);
378    ///     assert_eq!(elements, &[2]);
379    /// }
380    ///
381    /// assert_eq!(None, x.split_first_chunk::<4>());
382    /// ```
383    #[inline]
384    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
385    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
386    pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> {
387        let Some((first, tail)) = self.split_at_checked(N) else { return None };
388
389        // SAFETY: We explicitly check for the correct number of elements,
390        //   and do not let the references outlive the slice.
391        Some((unsafe { &*(first.as_ptr().cast_array()) }, tail))
392    }
393
394    /// Returns a mutable array reference to the first `N` items in the slice and the remaining
395    /// slice.
396    ///
397    /// If the slice is not at least `N` in length, this will return `None`.
398    ///
399    /// # Examples
400    ///
401    /// ```
402    /// let x = &mut [0, 1, 2];
403    ///
404    /// if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
405    ///     first[0] = 3;
406    ///     first[1] = 4;
407    ///     elements[0] = 5;
408    /// }
409    /// assert_eq!(x, &[3, 4, 5]);
410    ///
411    /// assert_eq!(None, x.split_first_chunk_mut::<4>());
412    /// ```
413    #[inline]
414    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
415    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
416    pub const fn split_first_chunk_mut<const N: usize>(
417        &mut self,
418    ) -> Option<(&mut [T; N], &mut [T])> {
419        let Some((first, tail)) = self.split_at_mut_checked(N) else { return None };
420
421        // SAFETY: We explicitly check for the correct number of elements,
422        //   do not let the reference outlive the slice,
423        //   and enforce exclusive mutability of the chunk by the split.
424        Some((unsafe { &mut *(first.as_mut_ptr().cast_array()) }, tail))
425    }
426
427    /// Returns an array reference to the last `N` items in the slice and the remaining slice.
428    ///
429    /// If the slice is not at least `N` in length, this will return `None`.
430    ///
431    /// # Examples
432    ///
433    /// ```
434    /// let x = &[0, 1, 2];
435    ///
436    /// if let Some((elements, last)) = x.split_last_chunk::<2>() {
437    ///     assert_eq!(elements, &[0]);
438    ///     assert_eq!(last, &[1, 2]);
439    /// }
440    ///
441    /// assert_eq!(None, x.split_last_chunk::<4>());
442    /// ```
443    #[inline]
444    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
445    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
446    pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])> {
447        let Some(index) = self.len().checked_sub(N) else { return None };
448        let (init, last) = self.split_at(index);
449
450        // SAFETY: We explicitly check for the correct number of elements,
451        //   and do not let the references outlive the slice.
452        Some((init, unsafe { &*(last.as_ptr().cast_array()) }))
453    }
454
455    /// Returns a mutable array reference to the last `N` items in the slice and the remaining
456    /// slice.
457    ///
458    /// If the slice is not at least `N` in length, this will return `None`.
459    ///
460    /// # Examples
461    ///
462    /// ```
463    /// let x = &mut [0, 1, 2];
464    ///
465    /// if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
466    ///     last[0] = 3;
467    ///     last[1] = 4;
468    ///     elements[0] = 5;
469    /// }
470    /// assert_eq!(x, &[5, 3, 4]);
471    ///
472    /// assert_eq!(None, x.split_last_chunk_mut::<4>());
473    /// ```
474    #[inline]
475    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
476    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
477    pub const fn split_last_chunk_mut<const N: usize>(
478        &mut self,
479    ) -> Option<(&mut [T], &mut [T; N])> {
480        let Some(index) = self.len().checked_sub(N) else { return None };
481        let (init, last) = self.split_at_mut(index);
482
483        // SAFETY: We explicitly check for the correct number of elements,
484        //   do not let the reference outlive the slice,
485        //   and enforce exclusive mutability of the chunk by the split.
486        Some((init, unsafe { &mut *(last.as_mut_ptr().cast_array()) }))
487    }
488
489    /// Returns an array reference to the last `N` items in the slice.
490    ///
491    /// If the slice is not at least `N` in length, this will return `None`.
492    ///
493    /// # Examples
494    ///
495    /// ```
496    /// let u = [10, 40, 30];
497    /// assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
498    ///
499    /// let v: &[i32] = &[10];
500    /// assert_eq!(None, v.last_chunk::<2>());
501    ///
502    /// let w: &[i32] = &[];
503    /// assert_eq!(Some(&[]), w.last_chunk::<0>());
504    /// ```
505    #[inline]
506    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
507    #[rustc_const_stable(feature = "const_slice_last_chunk", since = "1.80.0")]
508    pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]> {
509        // FIXME(const-hack): Without const traits, we need this instead of `get`.
510        let Some(index) = self.len().checked_sub(N) else { return None };
511        let (_, last) = self.split_at(index);
512
513        // SAFETY: We explicitly check for the correct number of elements,
514        //   and do not let the references outlive the slice.
515        Some(unsafe { &*(last.as_ptr().cast_array()) })
516    }
517
518    /// Returns a mutable array reference to the last `N` items in the slice.
519    ///
520    /// If the slice is not at least `N` in length, this will return `None`.
521    ///
522    /// # Examples
523    ///
524    /// ```
525    /// let x = &mut [0, 1, 2];
526    ///
527    /// if let Some(last) = x.last_chunk_mut::<2>() {
528    ///     last[0] = 10;
529    ///     last[1] = 20;
530    /// }
531    /// assert_eq!(x, &[0, 10, 20]);
532    ///
533    /// assert_eq!(None, x.last_chunk_mut::<4>());
534    /// ```
535    #[inline]
536    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
537    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
538    pub const fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
539        // FIXME(const-hack): Without const traits, we need this instead of `get`.
540        let Some(index) = self.len().checked_sub(N) else { return None };
541        let (_, last) = self.split_at_mut(index);
542
543        // SAFETY: We explicitly check for the correct number of elements,
544        //   do not let the reference outlive the slice,
545        //   and require exclusive access to the entire slice to mutate the chunk.
546        Some(unsafe { &mut *(last.as_mut_ptr().cast_array()) })
547    }
548
549    /// Returns a reference to an element or subslice depending on the type of
550    /// index.
551    ///
552    /// - If given a position, returns a reference to the element at that
553    ///   position or `None` if out of bounds.
554    /// - If given a range, returns the subslice corresponding to that range,
555    ///   or `None` if out of bounds.
556    ///
557    /// # Examples
558    ///
559    /// ```
560    /// let v = [10, 40, 30];
561    /// assert_eq!(Some(&40), v.get(1));
562    /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
563    /// assert_eq!(None, v.get(3));
564    /// assert_eq!(None, v.get(0..4));
565    /// ```
566    #[stable(feature = "rust1", since = "1.0.0")]
567    #[rustc_no_implicit_autorefs]
568    #[inline]
569    #[must_use]
570    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
571    pub const fn get<I>(&self, index: I) -> Option<&I::Output>
572    where
573        I: [const] SliceIndex<Self>,
574    {
575        index.get(self)
576    }
577
578    /// Returns a mutable reference to an element or subslice depending on the
579    /// type of index (see [`get`]) or `None` if the index is out of bounds.
580    ///
581    /// [`get`]: slice::get
582    ///
583    /// # Examples
584    ///
585    /// ```
586    /// let x = &mut [0, 1, 2];
587    ///
588    /// if let Some(elem) = x.get_mut(1) {
589    ///     *elem = 42;
590    /// }
591    /// assert_eq!(x, &[0, 42, 2]);
592    /// ```
593    #[stable(feature = "rust1", since = "1.0.0")]
594    #[rustc_no_implicit_autorefs]
595    #[inline]
596    #[must_use]
597    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
598    pub const fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
599    where
600        I: [const] SliceIndex<Self>,
601    {
602        index.get_mut(self)
603    }
604
605    /// Returns a reference to an element or subslice, without doing bounds
606    /// checking.
607    ///
608    /// For a safe alternative see [`get`].
609    ///
610    /// # Safety
611    ///
612    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
613    /// even if the resulting reference is not used.
614    ///
615    /// You can think of this like `.get(index).unwrap_unchecked()`.  It's UB
616    /// to call `.get_unchecked(len)`, even if you immediately convert to a
617    /// pointer.  And it's UB to call `.get_unchecked(..len + 1)`,
618    /// `.get_unchecked(..=len)`, or similar.
619    ///
620    /// [`get`]: slice::get
621    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
622    ///
623    /// # Examples
624    ///
625    /// ```
626    /// let x = &[1, 2, 4];
627    ///
628    /// unsafe {
629    ///     assert_eq!(x.get_unchecked(1), &2);
630    /// }
631    /// ```
632    #[stable(feature = "rust1", since = "1.0.0")]
633    #[rustc_no_implicit_autorefs]
634    #[inline]
635    #[must_use]
636    #[track_caller]
637    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
638    pub const unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
639    where
640        I: [const] SliceIndex<Self>,
641    {
642        // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
643        // the slice is dereferenceable because `self` is a safe reference.
644        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
645        unsafe { &*index.get_unchecked(self) }
646    }
647
648    /// Returns a mutable reference to an element or subslice, without doing
649    /// bounds checking.
650    ///
651    /// For a safe alternative see [`get_mut`].
652    ///
653    /// # Safety
654    ///
655    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
656    /// even if the resulting reference is not used.
657    ///
658    /// You can think of this like `.get_mut(index).unwrap_unchecked()`.  It's
659    /// UB to call `.get_unchecked_mut(len)`, even if you immediately convert
660    /// to a pointer.  And it's UB to call `.get_unchecked_mut(..len + 1)`,
661    /// `.get_unchecked_mut(..=len)`, or similar.
662    ///
663    /// [`get_mut`]: slice::get_mut
664    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
665    ///
666    /// # Examples
667    ///
668    /// ```
669    /// let x = &mut [1, 2, 4];
670    ///
671    /// unsafe {
672    ///     let elem = x.get_unchecked_mut(1);
673    ///     *elem = 13;
674    /// }
675    /// assert_eq!(x, &[1, 13, 4]);
676    /// ```
677    #[stable(feature = "rust1", since = "1.0.0")]
678    #[rustc_no_implicit_autorefs]
679    #[inline]
680    #[must_use]
681    #[track_caller]
682    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
683    pub const unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
684    where
685        I: [const] SliceIndex<Self>,
686    {
687        // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
688        // the slice is dereferenceable because `self` is a safe reference.
689        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
690        unsafe { &mut *index.get_unchecked_mut(self) }
691    }
692
693    /// Returns a raw pointer to the slice's buffer.
694    ///
695    /// The caller must ensure that the slice outlives the pointer this
696    /// function returns, or else it will end up dangling.
697    ///
698    /// The caller must also ensure that the memory the pointer (non-transitively) points to
699    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
700    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
701    ///
702    /// Modifying the container referenced by this slice may cause its buffer
703    /// to be reallocated, which would also make any pointers to it invalid.
704    ///
705    /// # Examples
706    ///
707    /// ```
708    /// let x = &[1, 2, 4];
709    /// let x_ptr = x.as_ptr();
710    ///
711    /// unsafe {
712    ///     for i in 0..x.len() {
713    ///         assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
714    ///     }
715    /// }
716    /// ```
717    ///
718    /// [`as_mut_ptr`]: slice::as_mut_ptr
719    #[stable(feature = "rust1", since = "1.0.0")]
720    #[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
721    #[rustc_never_returns_null_ptr]
722    #[rustc_as_ptr]
723    #[inline(always)]
724    #[must_use]
725    pub const fn as_ptr(&self) -> *const T {
726        self as *const [T] as *const T
727    }
728
729    /// Returns an unsafe mutable pointer to the slice's buffer.
730    ///
731    /// The caller must ensure that the slice outlives the pointer this
732    /// function returns, or else it will end up dangling.
733    ///
734    /// Modifying the container referenced by this slice may cause its buffer
735    /// to be reallocated, which would also make any pointers to it invalid.
736    ///
737    /// # Examples
738    ///
739    /// ```
740    /// let x = &mut [1, 2, 4];
741    /// let x_ptr = x.as_mut_ptr();
742    ///
743    /// unsafe {
744    ///     for i in 0..x.len() {
745    ///         *x_ptr.add(i) += 2;
746    ///     }
747    /// }
748    /// assert_eq!(x, &[3, 4, 6]);
749    /// ```
750    #[stable(feature = "rust1", since = "1.0.0")]
751    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
752    #[rustc_never_returns_null_ptr]
753    #[rustc_as_ptr]
754    #[inline(always)]
755    #[must_use]
756    pub const fn as_mut_ptr(&mut self) -> *mut T {
757        self as *mut [T] as *mut T
758    }
759
760    /// Returns the two raw pointers spanning the slice.
761    ///
762    /// The returned range is half-open, which means that the end pointer
763    /// points *one past* the last element of the slice. This way, an empty
764    /// slice is represented by two equal pointers, and the difference between
765    /// the two pointers represents the size of the slice.
766    ///
767    /// See [`as_ptr`] for warnings on using these pointers. The end pointer
768    /// requires extra caution, as it does not point to a valid element in the
769    /// slice.
770    ///
771    /// This function is useful for interacting with foreign interfaces which
772    /// use two pointers to refer to a range of elements in memory, as is
773    /// common in C++.
774    ///
775    /// It can also be useful to check if a pointer to an element refers to an
776    /// element of this slice:
777    ///
778    /// ```
779    /// let a = [1, 2, 3];
780    /// let x = &a[1] as *const _;
781    /// let y = &5 as *const _;
782    ///
783    /// assert!(a.as_ptr_range().contains(&x));
784    /// assert!(!a.as_ptr_range().contains(&y));
785    /// ```
786    ///
787    /// [`as_ptr`]: slice::as_ptr
788    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
789    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
790    #[inline]
791    #[must_use]
792    pub const fn as_ptr_range(&self) -> Range<*const T> {
793        let start = self.as_ptr();
794        // SAFETY: The `add` here is safe, because:
795        //
796        //   - Both pointers are part of the same object, as pointing directly
797        //     past the object also counts.
798        //
799        //   - The size of the slice is never larger than `isize::MAX` bytes, as
800        //     noted here:
801        //       - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
802        //       - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
803        //       - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
804        //     (This doesn't seem normative yet, but the very same assumption is
805        //     made in many places, including the Index implementation of slices.)
806        //
807        //   - There is no wrapping around involved, as slices do not wrap past
808        //     the end of the address space.
809        //
810        // See the documentation of [`pointer::add`].
811        let end = unsafe { start.add(self.len()) };
812        start..end
813    }
814
815    /// Returns the two unsafe mutable pointers spanning the slice.
816    ///
817    /// The returned range is half-open, which means that the end pointer
818    /// points *one past* the last element of the slice. This way, an empty
819    /// slice is represented by two equal pointers, and the difference between
820    /// the two pointers represents the size of the slice.
821    ///
822    /// See [`as_mut_ptr`] for warnings on using these pointers. The end
823    /// pointer requires extra caution, as it does not point to a valid element
824    /// in the slice.
825    ///
826    /// This function is useful for interacting with foreign interfaces which
827    /// use two pointers to refer to a range of elements in memory, as is
828    /// common in C++.
829    ///
830    /// [`as_mut_ptr`]: slice::as_mut_ptr
831    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
832    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
833    #[inline]
834    #[must_use]
835    pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
836        let start = self.as_mut_ptr();
837        // SAFETY: See as_ptr_range() above for why `add` here is safe.
838        let end = unsafe { start.add(self.len()) };
839        start..end
840    }
841
842    /// Gets a reference to the underlying array.
843    ///
844    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
845    #[stable(feature = "core_slice_as_array", since = "CURRENT_RUSTC_VERSION")]
846    #[rustc_const_stable(feature = "core_slice_as_array", since = "CURRENT_RUSTC_VERSION")]
847    #[inline]
848    #[must_use]
849    pub const fn as_array<const N: usize>(&self) -> Option<&[T; N]> {
850        if self.len() == N {
851            let ptr = self.as_ptr().cast_array();
852
853            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
854            let me = unsafe { &*ptr };
855            Some(me)
856        } else {
857            None
858        }
859    }
860
861    /// Gets a mutable reference to the slice's underlying array.
862    ///
863    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
864    #[stable(feature = "core_slice_as_array", since = "CURRENT_RUSTC_VERSION")]
865    #[rustc_const_stable(feature = "core_slice_as_array", since = "CURRENT_RUSTC_VERSION")]
866    #[inline]
867    #[must_use]
868    pub const fn as_mut_array<const N: usize>(&mut self) -> Option<&mut [T; N]> {
869        if self.len() == N {
870            let ptr = self.as_mut_ptr().cast_array();
871
872            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
873            let me = unsafe { &mut *ptr };
874            Some(me)
875        } else {
876            None
877        }
878    }
879
880    /// Swaps two elements in the slice.
881    ///
882    /// If `a` equals to `b`, it's guaranteed that elements won't change value.
883    ///
884    /// # Arguments
885    ///
886    /// * a - The index of the first element
887    /// * b - The index of the second element
888    ///
889    /// # Panics
890    ///
891    /// Panics if `a` or `b` are out of bounds.
892    ///
893    /// # Examples
894    ///
895    /// ```
896    /// let mut v = ["a", "b", "c", "d", "e"];
897    /// v.swap(2, 4);
898    /// assert!(v == ["a", "b", "e", "d", "c"]);
899    /// ```
900    #[stable(feature = "rust1", since = "1.0.0")]
901    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
902    #[inline]
903    #[track_caller]
904    pub const fn swap(&mut self, a: usize, b: usize) {
905        // FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
906        // Can't take two mutable loans from one vector, so instead use raw pointers.
907        let pa = &raw mut self[a];
908        let pb = &raw mut self[b];
909        // SAFETY: `pa` and `pb` have been created from safe mutable references and refer
910        // to elements in the slice and therefore are guaranteed to be valid and aligned.
911        // Note that accessing the elements behind `a` and `b` is checked and will
912        // panic when out of bounds.
913        unsafe {
914            ptr::swap(pa, pb);
915        }
916    }
917
918    /// Swaps two elements in the slice, without doing bounds checking.
919    ///
920    /// For a safe alternative see [`swap`].
921    ///
922    /// # Arguments
923    ///
924    /// * a - The index of the first element
925    /// * b - The index of the second element
926    ///
927    /// # Safety
928    ///
929    /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
930    /// The caller has to ensure that `a < self.len()` and `b < self.len()`.
931    ///
932    /// # Examples
933    ///
934    /// ```
935    /// #![feature(slice_swap_unchecked)]
936    ///
937    /// let mut v = ["a", "b", "c", "d"];
938    /// // SAFETY: we know that 1 and 3 are both indices of the slice
939    /// unsafe { v.swap_unchecked(1, 3) };
940    /// assert!(v == ["a", "d", "c", "b"]);
941    /// ```
942    ///
943    /// [`swap`]: slice::swap
944    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
945    #[unstable(feature = "slice_swap_unchecked", issue = "88539")]
946    #[track_caller]
947    pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
948        assert_unsafe_precondition!(
949            check_library_ub,
950            "slice::swap_unchecked requires that the indices are within the slice",
951            (
952                len: usize = self.len(),
953                a: usize = a,
954                b: usize = b,
955            ) => a < len && b < len,
956        );
957
958        let ptr = self.as_mut_ptr();
959        // SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
960        unsafe {
961            ptr::swap(ptr.add(a), ptr.add(b));
962        }
963    }
964
965    /// Reverses the order of elements in the slice, in place.
966    ///
967    /// # Examples
968    ///
969    /// ```
970    /// let mut v = [1, 2, 3];
971    /// v.reverse();
972    /// assert!(v == [3, 2, 1]);
973    /// ```
974    #[stable(feature = "rust1", since = "1.0.0")]
975    #[rustc_const_stable(feature = "const_slice_reverse", since = "1.90.0")]
976    #[inline]
977    pub const fn reverse(&mut self) {
978        let half_len = self.len() / 2;
979        let Range { start, end } = self.as_mut_ptr_range();
980
981        // These slices will skip the middle item for an odd length,
982        // since that one doesn't need to move.
983        let (front_half, back_half) =
984            // SAFETY: Both are subparts of the original slice, so the memory
985            // range is valid, and they don't overlap because they're each only
986            // half (or less) of the original slice.
987            unsafe {
988                (
989                    slice::from_raw_parts_mut(start, half_len),
990                    slice::from_raw_parts_mut(end.sub(half_len), half_len),
991                )
992            };
993
994        // Introducing a function boundary here means that the two halves
995        // get `noalias` markers, allowing better optimization as LLVM
996        // knows that they're disjoint, unlike in the original slice.
997        revswap(front_half, back_half, half_len);
998
999        #[inline]
1000        const fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
1001            debug_assert!(a.len() == n);
1002            debug_assert!(b.len() == n);
1003
1004            // Because this function is first compiled in isolation,
1005            // this check tells LLVM that the indexing below is
1006            // in-bounds. Then after inlining -- once the actual
1007            // lengths of the slices are known -- it's removed.
1008            // FIXME(const_trait_impl) replace with let (a, b) = (&mut a[..n], &mut b[..n]);
1009            let (a, _) = a.split_at_mut(n);
1010            let (b, _) = b.split_at_mut(n);
1011
1012            let mut i = 0;
1013            while i < n {
1014                mem::swap(&mut a[i], &mut b[n - 1 - i]);
1015                i += 1;
1016            }
1017        }
1018    }
1019
1020    /// Returns an iterator over the slice.
1021    ///
1022    /// The iterator yields all items from start to end.
1023    ///
1024    /// # Examples
1025    ///
1026    /// ```
1027    /// let x = &[1, 2, 4];
1028    /// let mut iterator = x.iter();
1029    ///
1030    /// assert_eq!(iterator.next(), Some(&1));
1031    /// assert_eq!(iterator.next(), Some(&2));
1032    /// assert_eq!(iterator.next(), Some(&4));
1033    /// assert_eq!(iterator.next(), None);
1034    /// ```
1035    #[stable(feature = "rust1", since = "1.0.0")]
1036    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1037    #[inline]
1038    #[rustc_diagnostic_item = "slice_iter"]
1039    pub const fn iter(&self) -> Iter<'_, T> {
1040        Iter::new(self)
1041    }
1042
1043    /// Returns an iterator that allows modifying each value.
1044    ///
1045    /// The iterator yields all items from start to end.
1046    ///
1047    /// # Examples
1048    ///
1049    /// ```
1050    /// let x = &mut [1, 2, 4];
1051    /// for elem in x.iter_mut() {
1052    ///     *elem += 2;
1053    /// }
1054    /// assert_eq!(x, &[3, 4, 6]);
1055    /// ```
1056    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1057    #[stable(feature = "rust1", since = "1.0.0")]
1058    #[inline]
1059    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1060        IterMut::new(self)
1061    }
1062
1063    /// Returns an iterator over all contiguous windows of length
1064    /// `size`. The windows overlap. If the slice is shorter than
1065    /// `size`, the iterator returns no values.
1066    ///
1067    /// # Panics
1068    ///
1069    /// Panics if `size` is zero.
1070    ///
1071    /// # Examples
1072    ///
1073    /// ```
1074    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1075    /// let mut iter = slice.windows(3);
1076    /// assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
1077    /// assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
1078    /// assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
1079    /// assert!(iter.next().is_none());
1080    /// ```
1081    ///
1082    /// If the slice is shorter than `size`:
1083    ///
1084    /// ```
1085    /// let slice = ['f', 'o', 'o'];
1086    /// let mut iter = slice.windows(4);
1087    /// assert!(iter.next().is_none());
1088    /// ```
1089    ///
1090    /// Because the [Iterator] trait cannot represent the required lifetimes,
1091    /// there is no `windows_mut` analog to `windows`;
1092    /// `[0,1,2].windows_mut(2).collect()` would violate [the rules of references]
1093    /// (though a [LendingIterator] analog is possible). You can sometimes use
1094    /// [`Cell::as_slice_of_cells`](crate::cell::Cell::as_slice_of_cells) in
1095    /// conjunction with `windows` instead:
1096    ///
1097    /// [the rules of references]: https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html#the-rules-of-references
1098    /// [LendingIterator]: https://blog.rust-lang.org/2022/10/28/gats-stabilization.html
1099    /// ```
1100    /// use std::cell::Cell;
1101    ///
1102    /// let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
1103    /// let slice = &mut array[..];
1104    /// let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
1105    /// for w in slice_of_cells.windows(3) {
1106    ///     Cell::swap(&w[0], &w[2]);
1107    /// }
1108    /// assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1109    /// ```
1110    #[stable(feature = "rust1", since = "1.0.0")]
1111    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1112    #[inline]
1113    #[track_caller]
1114    pub const fn windows(&self, size: usize) -> Windows<'_, T> {
1115        let size = NonZero::new(size).expect("window size must be non-zero");
1116        Windows::new(self, size)
1117    }
1118
1119    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1120    /// beginning of the slice.
1121    ///
1122    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1123    /// slice, then the last chunk will not have length `chunk_size`.
1124    ///
1125    /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
1126    /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
1127    /// slice.
1128    ///
1129    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1130    /// give references to arrays of exactly that length, rather than slices.
1131    ///
1132    /// # Panics
1133    ///
1134    /// Panics if `chunk_size` is zero.
1135    ///
1136    /// # Examples
1137    ///
1138    /// ```
1139    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1140    /// let mut iter = slice.chunks(2);
1141    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1142    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1143    /// assert_eq!(iter.next().unwrap(), &['m']);
1144    /// assert!(iter.next().is_none());
1145    /// ```
1146    ///
1147    /// [`chunks_exact`]: slice::chunks_exact
1148    /// [`rchunks`]: slice::rchunks
1149    /// [`as_chunks`]: slice::as_chunks
1150    #[stable(feature = "rust1", since = "1.0.0")]
1151    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1152    #[inline]
1153    #[track_caller]
1154    pub const fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
1155        assert!(chunk_size != 0, "chunk size must be non-zero");
1156        Chunks::new(self, chunk_size)
1157    }
1158
1159    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1160    /// beginning of the slice.
1161    ///
1162    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1163    /// length of the slice, then the last chunk will not have length `chunk_size`.
1164    ///
1165    /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
1166    /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
1167    /// the end of the slice.
1168    ///
1169    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1170    /// give references to arrays of exactly that length, rather than slices.
1171    ///
1172    /// # Panics
1173    ///
1174    /// Panics if `chunk_size` is zero.
1175    ///
1176    /// # Examples
1177    ///
1178    /// ```
1179    /// let v = &mut [0, 0, 0, 0, 0];
1180    /// let mut count = 1;
1181    ///
1182    /// for chunk in v.chunks_mut(2) {
1183    ///     for elem in chunk.iter_mut() {
1184    ///         *elem += count;
1185    ///     }
1186    ///     count += 1;
1187    /// }
1188    /// assert_eq!(v, &[1, 1, 2, 2, 3]);
1189    /// ```
1190    ///
1191    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1192    /// [`rchunks_mut`]: slice::rchunks_mut
1193    /// [`as_chunks_mut`]: slice::as_chunks_mut
1194    #[stable(feature = "rust1", since = "1.0.0")]
1195    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1196    #[inline]
1197    #[track_caller]
1198    pub const fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
1199        assert!(chunk_size != 0, "chunk size must be non-zero");
1200        ChunksMut::new(self, chunk_size)
1201    }
1202
1203    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1204    /// beginning of the slice.
1205    ///
1206    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1207    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1208    /// from the `remainder` function of the iterator.
1209    ///
1210    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1211    /// resulting code better than in the case of [`chunks`].
1212    ///
1213    /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
1214    /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
1215    ///
1216    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1217    /// give references to arrays of exactly that length, rather than slices.
1218    ///
1219    /// # Panics
1220    ///
1221    /// Panics if `chunk_size` is zero.
1222    ///
1223    /// # Examples
1224    ///
1225    /// ```
1226    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1227    /// let mut iter = slice.chunks_exact(2);
1228    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1229    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1230    /// assert!(iter.next().is_none());
1231    /// assert_eq!(iter.remainder(), &['m']);
1232    /// ```
1233    ///
1234    /// [`chunks`]: slice::chunks
1235    /// [`rchunks_exact`]: slice::rchunks_exact
1236    /// [`as_chunks`]: slice::as_chunks
1237    #[stable(feature = "chunks_exact", since = "1.31.0")]
1238    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1239    #[inline]
1240    #[track_caller]
1241    pub const fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
1242        assert!(chunk_size != 0, "chunk size must be non-zero");
1243        ChunksExact::new(self, chunk_size)
1244    }
1245
1246    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1247    /// beginning of the slice.
1248    ///
1249    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1250    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1251    /// retrieved from the `into_remainder` function of the iterator.
1252    ///
1253    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1254    /// resulting code better than in the case of [`chunks_mut`].
1255    ///
1256    /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
1257    /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
1258    /// the slice.
1259    ///
1260    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1261    /// give references to arrays of exactly that length, rather than slices.
1262    ///
1263    /// # Panics
1264    ///
1265    /// Panics if `chunk_size` is zero.
1266    ///
1267    /// # Examples
1268    ///
1269    /// ```
1270    /// let v = &mut [0, 0, 0, 0, 0];
1271    /// let mut count = 1;
1272    ///
1273    /// for chunk in v.chunks_exact_mut(2) {
1274    ///     for elem in chunk.iter_mut() {
1275    ///         *elem += count;
1276    ///     }
1277    ///     count += 1;
1278    /// }
1279    /// assert_eq!(v, &[1, 1, 2, 2, 0]);
1280    /// ```
1281    ///
1282    /// [`chunks_mut`]: slice::chunks_mut
1283    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1284    /// [`as_chunks_mut`]: slice::as_chunks_mut
1285    #[stable(feature = "chunks_exact", since = "1.31.0")]
1286    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1287    #[inline]
1288    #[track_caller]
1289    pub const fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
1290        assert!(chunk_size != 0, "chunk size must be non-zero");
1291        ChunksExactMut::new(self, chunk_size)
1292    }
1293
1294    /// Splits the slice into a slice of `N`-element arrays,
1295    /// assuming that there's no remainder.
1296    ///
1297    /// This is the inverse operation to [`as_flattened`].
1298    ///
1299    /// [`as_flattened`]: slice::as_flattened
1300    ///
1301    /// As this is `unsafe`, consider whether you could use [`as_chunks`] or
1302    /// [`as_rchunks`] instead, perhaps via something like
1303    /// `if let (chunks, []) = slice.as_chunks()` or
1304    /// `let (chunks, []) = slice.as_chunks() else { unreachable!() };`.
1305    ///
1306    /// [`as_chunks`]: slice::as_chunks
1307    /// [`as_rchunks`]: slice::as_rchunks
1308    ///
1309    /// # Safety
1310    ///
1311    /// This may only be called when
1312    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1313    /// - `N != 0`.
1314    ///
1315    /// # Examples
1316    ///
1317    /// ```
1318    /// let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
1319    /// let chunks: &[[char; 1]] =
1320    ///     // SAFETY: 1-element chunks never have remainder
1321    ///     unsafe { slice.as_chunks_unchecked() };
1322    /// assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1323    /// let chunks: &[[char; 3]] =
1324    ///     // SAFETY: The slice length (6) is a multiple of 3
1325    ///     unsafe { slice.as_chunks_unchecked() };
1326    /// assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
1327    ///
1328    /// // These would be unsound:
1329    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
1330    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
1331    /// ```
1332    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1333    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1334    #[inline]
1335    #[must_use]
1336    #[track_caller]
1337    pub const unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] {
1338        assert_unsafe_precondition!(
1339            check_language_ub,
1340            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1341            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n),
1342        );
1343        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1344        let new_len = unsafe { exact_div(self.len(), N) };
1345        // SAFETY: We cast a slice of `new_len * N` elements into
1346        // a slice of `new_len` many `N` elements chunks.
1347        unsafe { from_raw_parts(self.as_ptr().cast(), new_len) }
1348    }
1349
1350    /// Splits the slice into a slice of `N`-element arrays,
1351    /// starting at the beginning of the slice,
1352    /// and a remainder slice with length strictly less than `N`.
1353    ///
1354    /// The remainder is meaningful in the division sense.  Given
1355    /// `let (chunks, remainder) = slice.as_chunks()`, then:
1356    /// - `chunks.len()` equals `slice.len() / N`,
1357    /// - `remainder.len()` equals `slice.len() % N`, and
1358    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1359    ///
1360    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1361    ///
1362    /// [`as_flattened`]: slice::as_flattened
1363    ///
1364    /// # Panics
1365    ///
1366    /// Panics if `N` is zero.
1367    ///
1368    /// Note that this check is against a const generic parameter, not a runtime
1369    /// value, and thus a particular monomorphization will either always panic
1370    /// or it will never panic.
1371    ///
1372    /// # Examples
1373    ///
1374    /// ```
1375    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1376    /// let (chunks, remainder) = slice.as_chunks();
1377    /// assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
1378    /// assert_eq!(remainder, &['m']);
1379    /// ```
1380    ///
1381    /// If you expect the slice to be an exact multiple, you can combine
1382    /// `let`-`else` with an empty slice pattern:
1383    /// ```
1384    /// let slice = ['R', 'u', 's', 't'];
1385    /// let (chunks, []) = slice.as_chunks::<2>() else {
1386    ///     panic!("slice didn't have even length")
1387    /// };
1388    /// assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
1389    /// ```
1390    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1391    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1392    #[inline]
1393    #[track_caller]
1394    #[must_use]
1395    pub const fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) {
1396        assert!(N != 0, "chunk size must be non-zero");
1397        let len_rounded_down = self.len() / N * N;
1398        // SAFETY: The rounded-down value is always the same or smaller than the
1399        // original length, and thus must be in-bounds of the slice.
1400        let (multiple_of_n, remainder) = unsafe { self.split_at_unchecked(len_rounded_down) };
1401        // SAFETY: We already panicked for zero, and ensured by construction
1402        // that the length of the subslice is a multiple of N.
1403        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1404        (array_slice, remainder)
1405    }
1406
1407    /// Splits the slice into a slice of `N`-element arrays,
1408    /// starting at the end of the slice,
1409    /// and a remainder slice with length strictly less than `N`.
1410    ///
1411    /// The remainder is meaningful in the division sense.  Given
1412    /// `let (remainder, chunks) = slice.as_rchunks()`, then:
1413    /// - `remainder.len()` equals `slice.len() % N`,
1414    /// - `chunks.len()` equals `slice.len() / N`, and
1415    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1416    ///
1417    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1418    ///
1419    /// [`as_flattened`]: slice::as_flattened
1420    ///
1421    /// # Panics
1422    ///
1423    /// Panics if `N` is zero.
1424    ///
1425    /// Note that this check is against a const generic parameter, not a runtime
1426    /// value, and thus a particular monomorphization will either always panic
1427    /// or it will never panic.
1428    ///
1429    /// # Examples
1430    ///
1431    /// ```
1432    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1433    /// let (remainder, chunks) = slice.as_rchunks();
1434    /// assert_eq!(remainder, &['l']);
1435    /// assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
1436    /// ```
1437    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1438    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1439    #[inline]
1440    #[track_caller]
1441    #[must_use]
1442    pub const fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) {
1443        assert!(N != 0, "chunk size must be non-zero");
1444        let len = self.len() / N;
1445        let (remainder, multiple_of_n) = self.split_at(self.len() - len * N);
1446        // SAFETY: We already panicked for zero, and ensured by construction
1447        // that the length of the subslice is a multiple of N.
1448        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1449        (remainder, array_slice)
1450    }
1451
1452    /// Splits the slice into a slice of `N`-element arrays,
1453    /// assuming that there's no remainder.
1454    ///
1455    /// This is the inverse operation to [`as_flattened_mut`].
1456    ///
1457    /// [`as_flattened_mut`]: slice::as_flattened_mut
1458    ///
1459    /// As this is `unsafe`, consider whether you could use [`as_chunks_mut`] or
1460    /// [`as_rchunks_mut`] instead, perhaps via something like
1461    /// `if let (chunks, []) = slice.as_chunks_mut()` or
1462    /// `let (chunks, []) = slice.as_chunks_mut() else { unreachable!() };`.
1463    ///
1464    /// [`as_chunks_mut`]: slice::as_chunks_mut
1465    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1466    ///
1467    /// # Safety
1468    ///
1469    /// This may only be called when
1470    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1471    /// - `N != 0`.
1472    ///
1473    /// # Examples
1474    ///
1475    /// ```
1476    /// let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
1477    /// let chunks: &mut [[char; 1]] =
1478    ///     // SAFETY: 1-element chunks never have remainder
1479    ///     unsafe { slice.as_chunks_unchecked_mut() };
1480    /// chunks[0] = ['L'];
1481    /// assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1482    /// let chunks: &mut [[char; 3]] =
1483    ///     // SAFETY: The slice length (6) is a multiple of 3
1484    ///     unsafe { slice.as_chunks_unchecked_mut() };
1485    /// chunks[1] = ['a', 'x', '?'];
1486    /// assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
1487    ///
1488    /// // These would be unsound:
1489    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
1490    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
1491    /// ```
1492    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1493    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1494    #[inline]
1495    #[must_use]
1496    #[track_caller]
1497    pub const unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] {
1498        assert_unsafe_precondition!(
1499            check_language_ub,
1500            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1501            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n)
1502        );
1503        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1504        let new_len = unsafe { exact_div(self.len(), N) };
1505        // SAFETY: We cast a slice of `new_len * N` elements into
1506        // a slice of `new_len` many `N` elements chunks.
1507        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) }
1508    }
1509
1510    /// Splits the slice into a slice of `N`-element arrays,
1511    /// starting at the beginning of the slice,
1512    /// and a remainder slice with length strictly less than `N`.
1513    ///
1514    /// The remainder is meaningful in the division sense.  Given
1515    /// `let (chunks, remainder) = slice.as_chunks_mut()`, then:
1516    /// - `chunks.len()` equals `slice.len() / N`,
1517    /// - `remainder.len()` equals `slice.len() % N`, and
1518    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1519    ///
1520    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1521    ///
1522    /// [`as_flattened_mut`]: slice::as_flattened_mut
1523    ///
1524    /// # Panics
1525    ///
1526    /// Panics if `N` is zero.
1527    ///
1528    /// Note that this check is against a const generic parameter, not a runtime
1529    /// value, and thus a particular monomorphization will either always panic
1530    /// or it will never panic.
1531    ///
1532    /// # Examples
1533    ///
1534    /// ```
1535    /// let v = &mut [0, 0, 0, 0, 0];
1536    /// let mut count = 1;
1537    ///
1538    /// let (chunks, remainder) = v.as_chunks_mut();
1539    /// remainder[0] = 9;
1540    /// for chunk in chunks {
1541    ///     *chunk = [count; 2];
1542    ///     count += 1;
1543    /// }
1544    /// assert_eq!(v, &[1, 1, 2, 2, 9]);
1545    /// ```
1546    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1547    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1548    #[inline]
1549    #[track_caller]
1550    #[must_use]
1551    pub const fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) {
1552        assert!(N != 0, "chunk size must be non-zero");
1553        let len_rounded_down = self.len() / N * N;
1554        // SAFETY: The rounded-down value is always the same or smaller than the
1555        // original length, and thus must be in-bounds of the slice.
1556        let (multiple_of_n, remainder) = unsafe { self.split_at_mut_unchecked(len_rounded_down) };
1557        // SAFETY: We already panicked for zero, and ensured by construction
1558        // that the length of the subslice is a multiple of N.
1559        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1560        (array_slice, remainder)
1561    }
1562
1563    /// Splits the slice into a slice of `N`-element arrays,
1564    /// starting at the end of the slice,
1565    /// and a remainder slice with length strictly less than `N`.
1566    ///
1567    /// The remainder is meaningful in the division sense.  Given
1568    /// `let (remainder, chunks) = slice.as_rchunks_mut()`, then:
1569    /// - `remainder.len()` equals `slice.len() % N`,
1570    /// - `chunks.len()` equals `slice.len() / N`, and
1571    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1572    ///
1573    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1574    ///
1575    /// [`as_flattened_mut`]: slice::as_flattened_mut
1576    ///
1577    /// # Panics
1578    ///
1579    /// Panics if `N` is zero.
1580    ///
1581    /// Note that this check is against a const generic parameter, not a runtime
1582    /// value, and thus a particular monomorphization will either always panic
1583    /// or it will never panic.
1584    ///
1585    /// # Examples
1586    ///
1587    /// ```
1588    /// let v = &mut [0, 0, 0, 0, 0];
1589    /// let mut count = 1;
1590    ///
1591    /// let (remainder, chunks) = v.as_rchunks_mut();
1592    /// remainder[0] = 9;
1593    /// for chunk in chunks {
1594    ///     *chunk = [count; 2];
1595    ///     count += 1;
1596    /// }
1597    /// assert_eq!(v, &[9, 1, 1, 2, 2]);
1598    /// ```
1599    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1600    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1601    #[inline]
1602    #[track_caller]
1603    #[must_use]
1604    pub const fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) {
1605        assert!(N != 0, "chunk size must be non-zero");
1606        let len = self.len() / N;
1607        let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N);
1608        // SAFETY: We already panicked for zero, and ensured by construction
1609        // that the length of the subslice is a multiple of N.
1610        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1611        (remainder, array_slice)
1612    }
1613
1614    /// Returns an iterator over overlapping windows of `N` elements of a slice,
1615    /// starting at the beginning of the slice.
1616    ///
1617    /// This is the const generic equivalent of [`windows`].
1618    ///
1619    /// If `N` is greater than the size of the slice, it will return no windows.
1620    ///
1621    /// # Panics
1622    ///
1623    /// Panics if `N` is zero.
1624    ///
1625    /// Note that this check is against a const generic parameter, not a runtime
1626    /// value, and thus a particular monomorphization will either always panic
1627    /// or it will never panic.
1628    ///
1629    /// # Examples
1630    ///
1631    /// ```
1632    /// let slice = [0, 1, 2, 3];
1633    /// let mut iter = slice.array_windows();
1634    /// assert_eq!(iter.next().unwrap(), &[0, 1]);
1635    /// assert_eq!(iter.next().unwrap(), &[1, 2]);
1636    /// assert_eq!(iter.next().unwrap(), &[2, 3]);
1637    /// assert!(iter.next().is_none());
1638    /// ```
1639    ///
1640    /// [`windows`]: slice::windows
1641    #[stable(feature = "array_windows", since = "CURRENT_RUSTC_VERSION")]
1642    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1643    #[inline]
1644    #[track_caller]
1645    pub const fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> {
1646        assert!(N != 0, "window size must be non-zero");
1647        ArrayWindows::new(self)
1648    }
1649
1650    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1651    /// of the slice.
1652    ///
1653    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1654    /// slice, then the last chunk will not have length `chunk_size`.
1655    ///
1656    /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
1657    /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
1658    /// of the slice.
1659    ///
1660    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1661    /// give references to arrays of exactly that length, rather than slices.
1662    ///
1663    /// # Panics
1664    ///
1665    /// Panics if `chunk_size` is zero.
1666    ///
1667    /// # Examples
1668    ///
1669    /// ```
1670    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1671    /// let mut iter = slice.rchunks(2);
1672    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1673    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1674    /// assert_eq!(iter.next().unwrap(), &['l']);
1675    /// assert!(iter.next().is_none());
1676    /// ```
1677    ///
1678    /// [`rchunks_exact`]: slice::rchunks_exact
1679    /// [`chunks`]: slice::chunks
1680    /// [`as_rchunks`]: slice::as_rchunks
1681    #[stable(feature = "rchunks", since = "1.31.0")]
1682    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1683    #[inline]
1684    #[track_caller]
1685    pub const fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
1686        assert!(chunk_size != 0, "chunk size must be non-zero");
1687        RChunks::new(self, chunk_size)
1688    }
1689
1690    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1691    /// of the slice.
1692    ///
1693    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1694    /// length of the slice, then the last chunk will not have length `chunk_size`.
1695    ///
1696    /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
1697    /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
1698    /// beginning of the slice.
1699    ///
1700    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1701    /// give references to arrays of exactly that length, rather than slices.
1702    ///
1703    /// # Panics
1704    ///
1705    /// Panics if `chunk_size` is zero.
1706    ///
1707    /// # Examples
1708    ///
1709    /// ```
1710    /// let v = &mut [0, 0, 0, 0, 0];
1711    /// let mut count = 1;
1712    ///
1713    /// for chunk in v.rchunks_mut(2) {
1714    ///     for elem in chunk.iter_mut() {
1715    ///         *elem += count;
1716    ///     }
1717    ///     count += 1;
1718    /// }
1719    /// assert_eq!(v, &[3, 2, 2, 1, 1]);
1720    /// ```
1721    ///
1722    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1723    /// [`chunks_mut`]: slice::chunks_mut
1724    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1725    #[stable(feature = "rchunks", since = "1.31.0")]
1726    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1727    #[inline]
1728    #[track_caller]
1729    pub const fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
1730        assert!(chunk_size != 0, "chunk size must be non-zero");
1731        RChunksMut::new(self, chunk_size)
1732    }
1733
1734    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1735    /// end of the slice.
1736    ///
1737    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1738    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1739    /// from the `remainder` function of the iterator.
1740    ///
1741    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1742    /// resulting code better than in the case of [`rchunks`].
1743    ///
1744    /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
1745    /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
1746    /// slice.
1747    ///
1748    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1749    /// give references to arrays of exactly that length, rather than slices.
1750    ///
1751    /// # Panics
1752    ///
1753    /// Panics if `chunk_size` is zero.
1754    ///
1755    /// # Examples
1756    ///
1757    /// ```
1758    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1759    /// let mut iter = slice.rchunks_exact(2);
1760    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1761    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1762    /// assert!(iter.next().is_none());
1763    /// assert_eq!(iter.remainder(), &['l']);
1764    /// ```
1765    ///
1766    /// [`chunks`]: slice::chunks
1767    /// [`rchunks`]: slice::rchunks
1768    /// [`chunks_exact`]: slice::chunks_exact
1769    /// [`as_rchunks`]: slice::as_rchunks
1770    #[stable(feature = "rchunks", since = "1.31.0")]
1771    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1772    #[inline]
1773    #[track_caller]
1774    pub const fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
1775        assert!(chunk_size != 0, "chunk size must be non-zero");
1776        RChunksExact::new(self, chunk_size)
1777    }
1778
1779    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1780    /// of the slice.
1781    ///
1782    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1783    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1784    /// retrieved from the `into_remainder` function of the iterator.
1785    ///
1786    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1787    /// resulting code better than in the case of [`chunks_mut`].
1788    ///
1789    /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
1790    /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
1791    /// of the slice.
1792    ///
1793    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1794    /// give references to arrays of exactly that length, rather than slices.
1795    ///
1796    /// # Panics
1797    ///
1798    /// Panics if `chunk_size` is zero.
1799    ///
1800    /// # Examples
1801    ///
1802    /// ```
1803    /// let v = &mut [0, 0, 0, 0, 0];
1804    /// let mut count = 1;
1805    ///
1806    /// for chunk in v.rchunks_exact_mut(2) {
1807    ///     for elem in chunk.iter_mut() {
1808    ///         *elem += count;
1809    ///     }
1810    ///     count += 1;
1811    /// }
1812    /// assert_eq!(v, &[0, 2, 2, 1, 1]);
1813    /// ```
1814    ///
1815    /// [`chunks_mut`]: slice::chunks_mut
1816    /// [`rchunks_mut`]: slice::rchunks_mut
1817    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1818    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1819    #[stable(feature = "rchunks", since = "1.31.0")]
1820    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1821    #[inline]
1822    #[track_caller]
1823    pub const fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
1824        assert!(chunk_size != 0, "chunk size must be non-zero");
1825        RChunksExactMut::new(self, chunk_size)
1826    }
1827
1828    /// Returns an iterator over the slice producing non-overlapping runs
1829    /// of elements using the predicate to separate them.
1830    ///
1831    /// The predicate is called for every pair of consecutive elements,
1832    /// meaning that it is called on `slice[0]` and `slice[1]`,
1833    /// followed by `slice[1]` and `slice[2]`, and so on.
1834    ///
1835    /// # Examples
1836    ///
1837    /// ```
1838    /// let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
1839    ///
1840    /// let mut iter = slice.chunk_by(|a, b| a == b);
1841    ///
1842    /// assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
1843    /// assert_eq!(iter.next(), Some(&[3, 3][..]));
1844    /// assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
1845    /// assert_eq!(iter.next(), None);
1846    /// ```
1847    ///
1848    /// This method can be used to extract the sorted subslices:
1849    ///
1850    /// ```
1851    /// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
1852    ///
1853    /// let mut iter = slice.chunk_by(|a, b| a <= b);
1854    ///
1855    /// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
1856    /// assert_eq!(iter.next(), Some(&[2, 3][..]));
1857    /// assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
1858    /// assert_eq!(iter.next(), None);
1859    /// ```
1860    #[stable(feature = "slice_group_by", since = "1.77.0")]
1861    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1862    #[inline]
1863    pub const fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
1864    where
1865        F: FnMut(&T, &T) -> bool,
1866    {
1867        ChunkBy::new(self, pred)
1868    }
1869
1870    /// Returns an iterator over the slice producing non-overlapping mutable
1871    /// runs of elements using the predicate to separate them.
1872    ///
1873    /// The predicate is called for every pair of consecutive elements,
1874    /// meaning that it is called on `slice[0]` and `slice[1]`,
1875    /// followed by `slice[1]` and `slice[2]`, and so on.
1876    ///
1877    /// # Examples
1878    ///
1879    /// ```
1880    /// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
1881    ///
1882    /// let mut iter = slice.chunk_by_mut(|a, b| a == b);
1883    ///
1884    /// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
1885    /// assert_eq!(iter.next(), Some(&mut [3, 3][..]));
1886    /// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
1887    /// assert_eq!(iter.next(), None);
1888    /// ```
1889    ///
1890    /// This method can be used to extract the sorted subslices:
1891    ///
1892    /// ```
1893    /// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
1894    ///
1895    /// let mut iter = slice.chunk_by_mut(|a, b| a <= b);
1896    ///
1897    /// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
1898    /// assert_eq!(iter.next(), Some(&mut [2, 3][..]));
1899    /// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
1900    /// assert_eq!(iter.next(), None);
1901    /// ```
1902    #[stable(feature = "slice_group_by", since = "1.77.0")]
1903    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1904    #[inline]
1905    pub const fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
1906    where
1907        F: FnMut(&T, &T) -> bool,
1908    {
1909        ChunkByMut::new(self, pred)
1910    }
1911
1912    /// Divides one slice into two at an index.
1913    ///
1914    /// The first will contain all indices from `[0, mid)` (excluding
1915    /// the index `mid` itself) and the second will contain all
1916    /// indices from `[mid, len)` (excluding the index `len` itself).
1917    ///
1918    /// # Panics
1919    ///
1920    /// Panics if `mid > len`.  For a non-panicking alternative see
1921    /// [`split_at_checked`](slice::split_at_checked).
1922    ///
1923    /// # Examples
1924    ///
1925    /// ```
1926    /// let v = ['a', 'b', 'c'];
1927    ///
1928    /// {
1929    ///    let (left, right) = v.split_at(0);
1930    ///    assert_eq!(left, []);
1931    ///    assert_eq!(right, ['a', 'b', 'c']);
1932    /// }
1933    ///
1934    /// {
1935    ///     let (left, right) = v.split_at(2);
1936    ///     assert_eq!(left, ['a', 'b']);
1937    ///     assert_eq!(right, ['c']);
1938    /// }
1939    ///
1940    /// {
1941    ///     let (left, right) = v.split_at(3);
1942    ///     assert_eq!(left, ['a', 'b', 'c']);
1943    ///     assert_eq!(right, []);
1944    /// }
1945    /// ```
1946    #[stable(feature = "rust1", since = "1.0.0")]
1947    #[rustc_const_stable(feature = "const_slice_split_at_not_mut", since = "1.71.0")]
1948    #[inline]
1949    #[track_caller]
1950    #[must_use]
1951    pub const fn split_at(&self, mid: usize) -> (&[T], &[T]) {
1952        match self.split_at_checked(mid) {
1953            Some(pair) => pair,
1954            None => panic!("mid > len"),
1955        }
1956    }
1957
1958    /// Divides one mutable slice into two at an index.
1959    ///
1960    /// The first will contain all indices from `[0, mid)` (excluding
1961    /// the index `mid` itself) and the second will contain all
1962    /// indices from `[mid, len)` (excluding the index `len` itself).
1963    ///
1964    /// # Panics
1965    ///
1966    /// Panics if `mid > len`.  For a non-panicking alternative see
1967    /// [`split_at_mut_checked`](slice::split_at_mut_checked).
1968    ///
1969    /// # Examples
1970    ///
1971    /// ```
1972    /// let mut v = [1, 0, 3, 0, 5, 6];
1973    /// let (left, right) = v.split_at_mut(2);
1974    /// assert_eq!(left, [1, 0]);
1975    /// assert_eq!(right, [3, 0, 5, 6]);
1976    /// left[1] = 2;
1977    /// right[1] = 4;
1978    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1979    /// ```
1980    #[stable(feature = "rust1", since = "1.0.0")]
1981    #[inline]
1982    #[track_caller]
1983    #[must_use]
1984    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
1985    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
1986        match self.split_at_mut_checked(mid) {
1987            Some(pair) => pair,
1988            None => panic!("mid > len"),
1989        }
1990    }
1991
1992    /// Divides one slice into two at an index, without doing bounds checking.
1993    ///
1994    /// The first will contain all indices from `[0, mid)` (excluding
1995    /// the index `mid` itself) and the second will contain all
1996    /// indices from `[mid, len)` (excluding the index `len` itself).
1997    ///
1998    /// For a safe alternative see [`split_at`].
1999    ///
2000    /// # Safety
2001    ///
2002    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2003    /// even if the resulting reference is not used. The caller has to ensure that
2004    /// `0 <= mid <= self.len()`.
2005    ///
2006    /// [`split_at`]: slice::split_at
2007    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2008    ///
2009    /// # Examples
2010    ///
2011    /// ```
2012    /// let v = ['a', 'b', 'c'];
2013    ///
2014    /// unsafe {
2015    ///    let (left, right) = v.split_at_unchecked(0);
2016    ///    assert_eq!(left, []);
2017    ///    assert_eq!(right, ['a', 'b', 'c']);
2018    /// }
2019    ///
2020    /// unsafe {
2021    ///     let (left, right) = v.split_at_unchecked(2);
2022    ///     assert_eq!(left, ['a', 'b']);
2023    ///     assert_eq!(right, ['c']);
2024    /// }
2025    ///
2026    /// unsafe {
2027    ///     let (left, right) = v.split_at_unchecked(3);
2028    ///     assert_eq!(left, ['a', 'b', 'c']);
2029    ///     assert_eq!(right, []);
2030    /// }
2031    /// ```
2032    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2033    #[rustc_const_stable(feature = "const_slice_split_at_unchecked", since = "1.77.0")]
2034    #[inline]
2035    #[must_use]
2036    #[track_caller]
2037    pub const unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) {
2038        // FIXME(const-hack): the const function `from_raw_parts` is used to make this
2039        // function const; previously the implementation used
2040        // `(self.get_unchecked(..mid), self.get_unchecked(mid..))`
2041
2042        let len = self.len();
2043        let ptr = self.as_ptr();
2044
2045        assert_unsafe_precondition!(
2046            check_library_ub,
2047            "slice::split_at_unchecked requires the index to be within the slice",
2048            (mid: usize = mid, len: usize = len) => mid <= len,
2049        );
2050
2051        // SAFETY: Caller has to check that `0 <= mid <= self.len()`
2052        unsafe { (from_raw_parts(ptr, mid), from_raw_parts(ptr.add(mid), unchecked_sub(len, mid))) }
2053    }
2054
2055    /// Divides one mutable slice into two at an index, without doing bounds checking.
2056    ///
2057    /// The first will contain all indices from `[0, mid)` (excluding
2058    /// the index `mid` itself) and the second will contain all
2059    /// indices from `[mid, len)` (excluding the index `len` itself).
2060    ///
2061    /// For a safe alternative see [`split_at_mut`].
2062    ///
2063    /// # Safety
2064    ///
2065    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2066    /// even if the resulting reference is not used. The caller has to ensure that
2067    /// `0 <= mid <= self.len()`.
2068    ///
2069    /// [`split_at_mut`]: slice::split_at_mut
2070    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2071    ///
2072    /// # Examples
2073    ///
2074    /// ```
2075    /// let mut v = [1, 0, 3, 0, 5, 6];
2076    /// // scoped to restrict the lifetime of the borrows
2077    /// unsafe {
2078    ///     let (left, right) = v.split_at_mut_unchecked(2);
2079    ///     assert_eq!(left, [1, 0]);
2080    ///     assert_eq!(right, [3, 0, 5, 6]);
2081    ///     left[1] = 2;
2082    ///     right[1] = 4;
2083    /// }
2084    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2085    /// ```
2086    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2087    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2088    #[inline]
2089    #[must_use]
2090    #[track_caller]
2091    pub const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2092        let len = self.len();
2093        let ptr = self.as_mut_ptr();
2094
2095        assert_unsafe_precondition!(
2096            check_library_ub,
2097            "slice::split_at_mut_unchecked requires the index to be within the slice",
2098            (mid: usize = mid, len: usize = len) => mid <= len,
2099        );
2100
2101        // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
2102        //
2103        // `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference
2104        // is fine.
2105        unsafe {
2106            (
2107                from_raw_parts_mut(ptr, mid),
2108                from_raw_parts_mut(ptr.add(mid), unchecked_sub(len, mid)),
2109            )
2110        }
2111    }
2112
2113    /// Divides one slice into two at an index, returning `None` if the slice is
2114    /// too short.
2115    ///
2116    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2117    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2118    /// second will contain all indices from `[mid, len)` (excluding the index
2119    /// `len` itself).
2120    ///
2121    /// Otherwise, if `mid > len`, returns `None`.
2122    ///
2123    /// # Examples
2124    ///
2125    /// ```
2126    /// let v = [1, -2, 3, -4, 5, -6];
2127    ///
2128    /// {
2129    ///    let (left, right) = v.split_at_checked(0).unwrap();
2130    ///    assert_eq!(left, []);
2131    ///    assert_eq!(right, [1, -2, 3, -4, 5, -6]);
2132    /// }
2133    ///
2134    /// {
2135    ///     let (left, right) = v.split_at_checked(2).unwrap();
2136    ///     assert_eq!(left, [1, -2]);
2137    ///     assert_eq!(right, [3, -4, 5, -6]);
2138    /// }
2139    ///
2140    /// {
2141    ///     let (left, right) = v.split_at_checked(6).unwrap();
2142    ///     assert_eq!(left, [1, -2, 3, -4, 5, -6]);
2143    ///     assert_eq!(right, []);
2144    /// }
2145    ///
2146    /// assert_eq!(None, v.split_at_checked(7));
2147    /// ```
2148    #[stable(feature = "split_at_checked", since = "1.80.0")]
2149    #[rustc_const_stable(feature = "split_at_checked", since = "1.80.0")]
2150    #[inline]
2151    #[must_use]
2152    pub const fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])> {
2153        if mid <= self.len() {
2154            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2155            // fulfills the requirements of `split_at_unchecked`.
2156            Some(unsafe { self.split_at_unchecked(mid) })
2157        } else {
2158            None
2159        }
2160    }
2161
2162    /// Divides one mutable slice into two at an index, returning `None` if the
2163    /// slice is too short.
2164    ///
2165    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2166    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2167    /// second will contain all indices from `[mid, len)` (excluding the index
2168    /// `len` itself).
2169    ///
2170    /// Otherwise, if `mid > len`, returns `None`.
2171    ///
2172    /// # Examples
2173    ///
2174    /// ```
2175    /// let mut v = [1, 0, 3, 0, 5, 6];
2176    ///
2177    /// if let Some((left, right)) = v.split_at_mut_checked(2) {
2178    ///     assert_eq!(left, [1, 0]);
2179    ///     assert_eq!(right, [3, 0, 5, 6]);
2180    ///     left[1] = 2;
2181    ///     right[1] = 4;
2182    /// }
2183    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2184    ///
2185    /// assert_eq!(None, v.split_at_mut_checked(7));
2186    /// ```
2187    #[stable(feature = "split_at_checked", since = "1.80.0")]
2188    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2189    #[inline]
2190    #[must_use]
2191    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut [T], &mut [T])> {
2192        if mid <= self.len() {
2193            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2194            // fulfills the requirements of `split_at_unchecked`.
2195            Some(unsafe { self.split_at_mut_unchecked(mid) })
2196        } else {
2197            None
2198        }
2199    }
2200
2201    /// Returns an iterator over subslices separated by elements that match
2202    /// `pred`. The matched element is not contained in the subslices.
2203    ///
2204    /// # Examples
2205    ///
2206    /// ```
2207    /// let slice = [10, 40, 33, 20];
2208    /// let mut iter = slice.split(|num| num % 3 == 0);
2209    ///
2210    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2211    /// assert_eq!(iter.next().unwrap(), &[20]);
2212    /// assert!(iter.next().is_none());
2213    /// ```
2214    ///
2215    /// If the first element is matched, an empty slice will be the first item
2216    /// returned by the iterator. Similarly, if the last element in the slice
2217    /// is matched, an empty slice will be the last item returned by the
2218    /// iterator:
2219    ///
2220    /// ```
2221    /// let slice = [10, 40, 33];
2222    /// let mut iter = slice.split(|num| num % 3 == 0);
2223    ///
2224    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2225    /// assert_eq!(iter.next().unwrap(), &[]);
2226    /// assert!(iter.next().is_none());
2227    /// ```
2228    ///
2229    /// If two matched elements are directly adjacent, an empty slice will be
2230    /// present between them:
2231    ///
2232    /// ```
2233    /// let slice = [10, 6, 33, 20];
2234    /// let mut iter = slice.split(|num| num % 3 == 0);
2235    ///
2236    /// assert_eq!(iter.next().unwrap(), &[10]);
2237    /// assert_eq!(iter.next().unwrap(), &[]);
2238    /// assert_eq!(iter.next().unwrap(), &[20]);
2239    /// assert!(iter.next().is_none());
2240    /// ```
2241    #[stable(feature = "rust1", since = "1.0.0")]
2242    #[inline]
2243    pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
2244    where
2245        F: FnMut(&T) -> bool,
2246    {
2247        Split::new(self, pred)
2248    }
2249
2250    /// Returns an iterator over mutable subslices separated by elements that
2251    /// match `pred`. The matched element is not contained in the subslices.
2252    ///
2253    /// # Examples
2254    ///
2255    /// ```
2256    /// let mut v = [10, 40, 30, 20, 60, 50];
2257    ///
2258    /// for group in v.split_mut(|num| *num % 3 == 0) {
2259    ///     group[0] = 1;
2260    /// }
2261    /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
2262    /// ```
2263    #[stable(feature = "rust1", since = "1.0.0")]
2264    #[inline]
2265    pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
2266    where
2267        F: FnMut(&T) -> bool,
2268    {
2269        SplitMut::new(self, pred)
2270    }
2271
2272    /// Returns an iterator over subslices separated by elements that match
2273    /// `pred`. The matched element is contained in the end of the previous
2274    /// subslice as a terminator.
2275    ///
2276    /// # Examples
2277    ///
2278    /// ```
2279    /// let slice = [10, 40, 33, 20];
2280    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2281    ///
2282    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2283    /// assert_eq!(iter.next().unwrap(), &[20]);
2284    /// assert!(iter.next().is_none());
2285    /// ```
2286    ///
2287    /// If the last element of the slice is matched,
2288    /// that element will be considered the terminator of the preceding slice.
2289    /// That slice will be the last item returned by the iterator.
2290    ///
2291    /// ```
2292    /// let slice = [3, 10, 40, 33];
2293    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2294    ///
2295    /// assert_eq!(iter.next().unwrap(), &[3]);
2296    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2297    /// assert!(iter.next().is_none());
2298    /// ```
2299    #[stable(feature = "split_inclusive", since = "1.51.0")]
2300    #[inline]
2301    pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
2302    where
2303        F: FnMut(&T) -> bool,
2304    {
2305        SplitInclusive::new(self, pred)
2306    }
2307
2308    /// Returns an iterator over mutable subslices separated by elements that
2309    /// match `pred`. The matched element is contained in the previous
2310    /// subslice as a terminator.
2311    ///
2312    /// # Examples
2313    ///
2314    /// ```
2315    /// let mut v = [10, 40, 30, 20, 60, 50];
2316    ///
2317    /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
2318    ///     let terminator_idx = group.len()-1;
2319    ///     group[terminator_idx] = 1;
2320    /// }
2321    /// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
2322    /// ```
2323    #[stable(feature = "split_inclusive", since = "1.51.0")]
2324    #[inline]
2325    pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
2326    where
2327        F: FnMut(&T) -> bool,
2328    {
2329        SplitInclusiveMut::new(self, pred)
2330    }
2331
2332    /// Returns an iterator over subslices separated by elements that match
2333    /// `pred`, starting at the end of the slice and working backwards.
2334    /// The matched element is not contained in the subslices.
2335    ///
2336    /// # Examples
2337    ///
2338    /// ```
2339    /// let slice = [11, 22, 33, 0, 44, 55];
2340    /// let mut iter = slice.rsplit(|num| *num == 0);
2341    ///
2342    /// assert_eq!(iter.next().unwrap(), &[44, 55]);
2343    /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
2344    /// assert_eq!(iter.next(), None);
2345    /// ```
2346    ///
2347    /// As with `split()`, if the first or last element is matched, an empty
2348    /// slice will be the first (or last) item returned by the iterator.
2349    ///
2350    /// ```
2351    /// let v = &[0, 1, 1, 2, 3, 5, 8];
2352    /// let mut it = v.rsplit(|n| *n % 2 == 0);
2353    /// assert_eq!(it.next().unwrap(), &[]);
2354    /// assert_eq!(it.next().unwrap(), &[3, 5]);
2355    /// assert_eq!(it.next().unwrap(), &[1, 1]);
2356    /// assert_eq!(it.next().unwrap(), &[]);
2357    /// assert_eq!(it.next(), None);
2358    /// ```
2359    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2360    #[inline]
2361    pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
2362    where
2363        F: FnMut(&T) -> bool,
2364    {
2365        RSplit::new(self, pred)
2366    }
2367
2368    /// Returns an iterator over mutable subslices separated by elements that
2369    /// match `pred`, starting at the end of the slice and working
2370    /// backwards. The matched element is not contained in the subslices.
2371    ///
2372    /// # Examples
2373    ///
2374    /// ```
2375    /// let mut v = [100, 400, 300, 200, 600, 500];
2376    ///
2377    /// let mut count = 0;
2378    /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
2379    ///     count += 1;
2380    ///     group[0] = count;
2381    /// }
2382    /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
2383    /// ```
2384    ///
2385    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2386    #[inline]
2387    pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
2388    where
2389        F: FnMut(&T) -> bool,
2390    {
2391        RSplitMut::new(self, pred)
2392    }
2393
2394    /// Returns an iterator over subslices separated by elements that match
2395    /// `pred`, limited to returning at most `n` items. The matched element is
2396    /// not contained in the subslices.
2397    ///
2398    /// The last element returned, if any, will contain the remainder of the
2399    /// slice.
2400    ///
2401    /// # Examples
2402    ///
2403    /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
2404    /// `[20, 60, 50]`):
2405    ///
2406    /// ```
2407    /// let v = [10, 40, 30, 20, 60, 50];
2408    ///
2409    /// for group in v.splitn(2, |num| *num % 3 == 0) {
2410    ///     println!("{group:?}");
2411    /// }
2412    /// ```
2413    #[stable(feature = "rust1", since = "1.0.0")]
2414    #[inline]
2415    pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
2416    where
2417        F: FnMut(&T) -> bool,
2418    {
2419        SplitN::new(self.split(pred), n)
2420    }
2421
2422    /// Returns an iterator over mutable subslices separated by elements that match
2423    /// `pred`, limited to returning at most `n` items. The matched element is
2424    /// not contained in the subslices.
2425    ///
2426    /// The last element returned, if any, will contain the remainder of the
2427    /// slice.
2428    ///
2429    /// # Examples
2430    ///
2431    /// ```
2432    /// let mut v = [10, 40, 30, 20, 60, 50];
2433    ///
2434    /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
2435    ///     group[0] = 1;
2436    /// }
2437    /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
2438    /// ```
2439    #[stable(feature = "rust1", since = "1.0.0")]
2440    #[inline]
2441    pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
2442    where
2443        F: FnMut(&T) -> bool,
2444    {
2445        SplitNMut::new(self.split_mut(pred), n)
2446    }
2447
2448    /// Returns an iterator over subslices separated by elements that match
2449    /// `pred` limited to returning at most `n` items. This starts at the end of
2450    /// the slice and works backwards. The matched element is not contained in
2451    /// the subslices.
2452    ///
2453    /// The last element returned, if any, will contain the remainder of the
2454    /// slice.
2455    ///
2456    /// # Examples
2457    ///
2458    /// Print the slice split once, starting from the end, by numbers divisible
2459    /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
2460    ///
2461    /// ```
2462    /// let v = [10, 40, 30, 20, 60, 50];
2463    ///
2464    /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
2465    ///     println!("{group:?}");
2466    /// }
2467    /// ```
2468    #[stable(feature = "rust1", since = "1.0.0")]
2469    #[inline]
2470    pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
2471    where
2472        F: FnMut(&T) -> bool,
2473    {
2474        RSplitN::new(self.rsplit(pred), n)
2475    }
2476
2477    /// Returns an iterator over subslices separated by elements that match
2478    /// `pred` limited to returning at most `n` items. This starts at the end of
2479    /// the slice and works backwards. The matched element is not contained in
2480    /// the subslices.
2481    ///
2482    /// The last element returned, if any, will contain the remainder of the
2483    /// slice.
2484    ///
2485    /// # Examples
2486    ///
2487    /// ```
2488    /// let mut s = [10, 40, 30, 20, 60, 50];
2489    ///
2490    /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
2491    ///     group[0] = 1;
2492    /// }
2493    /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
2494    /// ```
2495    #[stable(feature = "rust1", since = "1.0.0")]
2496    #[inline]
2497    pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
2498    where
2499        F: FnMut(&T) -> bool,
2500    {
2501        RSplitNMut::new(self.rsplit_mut(pred), n)
2502    }
2503
2504    /// Splits the slice on the first element that matches the specified
2505    /// predicate.
2506    ///
2507    /// If any matching elements are present in the slice, returns the prefix
2508    /// before the match and suffix after. The matching element itself is not
2509    /// included. If no elements match, returns `None`.
2510    ///
2511    /// # Examples
2512    ///
2513    /// ```
2514    /// #![feature(slice_split_once)]
2515    /// let s = [1, 2, 3, 2, 4];
2516    /// assert_eq!(s.split_once(|&x| x == 2), Some((
2517    ///     &[1][..],
2518    ///     &[3, 2, 4][..]
2519    /// )));
2520    /// assert_eq!(s.split_once(|&x| x == 0), None);
2521    /// ```
2522    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2523    #[inline]
2524    pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2525    where
2526        F: FnMut(&T) -> bool,
2527    {
2528        let index = self.iter().position(pred)?;
2529        Some((&self[..index], &self[index + 1..]))
2530    }
2531
2532    /// Splits the slice on the last element that matches the specified
2533    /// predicate.
2534    ///
2535    /// If any matching elements are present in the slice, returns the prefix
2536    /// before the match and suffix after. The matching element itself is not
2537    /// included. If no elements match, returns `None`.
2538    ///
2539    /// # Examples
2540    ///
2541    /// ```
2542    /// #![feature(slice_split_once)]
2543    /// let s = [1, 2, 3, 2, 4];
2544    /// assert_eq!(s.rsplit_once(|&x| x == 2), Some((
2545    ///     &[1, 2, 3][..],
2546    ///     &[4][..]
2547    /// )));
2548    /// assert_eq!(s.rsplit_once(|&x| x == 0), None);
2549    /// ```
2550    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2551    #[inline]
2552    pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2553    where
2554        F: FnMut(&T) -> bool,
2555    {
2556        let index = self.iter().rposition(pred)?;
2557        Some((&self[..index], &self[index + 1..]))
2558    }
2559
2560    /// Returns `true` if the slice contains an element with the given value.
2561    ///
2562    /// This operation is *O*(*n*).
2563    ///
2564    /// Note that if you have a sorted slice, [`binary_search`] may be faster.
2565    ///
2566    /// [`binary_search`]: slice::binary_search
2567    ///
2568    /// # Examples
2569    ///
2570    /// ```
2571    /// let v = [10, 40, 30];
2572    /// assert!(v.contains(&30));
2573    /// assert!(!v.contains(&50));
2574    /// ```
2575    ///
2576    /// If you do not have a `&T`, but some other value that you can compare
2577    /// with one (for example, `String` implements `PartialEq<str>`), you can
2578    /// use `iter().any`:
2579    ///
2580    /// ```
2581    /// let v = [String::from("hello"), String::from("world")]; // slice of `String`
2582    /// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
2583    /// assert!(!v.iter().any(|e| e == "hi"));
2584    /// ```
2585    #[stable(feature = "rust1", since = "1.0.0")]
2586    #[inline]
2587    #[must_use]
2588    pub fn contains(&self, x: &T) -> bool
2589    where
2590        T: PartialEq,
2591    {
2592        cmp::SliceContains::slice_contains(x, self)
2593    }
2594
2595    /// Returns `true` if `needle` is a prefix of the slice or equal to the slice.
2596    ///
2597    /// # Examples
2598    ///
2599    /// ```
2600    /// let v = [10, 40, 30];
2601    /// assert!(v.starts_with(&[10]));
2602    /// assert!(v.starts_with(&[10, 40]));
2603    /// assert!(v.starts_with(&v));
2604    /// assert!(!v.starts_with(&[50]));
2605    /// assert!(!v.starts_with(&[10, 50]));
2606    /// ```
2607    ///
2608    /// Always returns `true` if `needle` is an empty slice:
2609    ///
2610    /// ```
2611    /// let v = &[10, 40, 30];
2612    /// assert!(v.starts_with(&[]));
2613    /// let v: &[u8] = &[];
2614    /// assert!(v.starts_with(&[]));
2615    /// ```
2616    #[stable(feature = "rust1", since = "1.0.0")]
2617    #[must_use]
2618    pub fn starts_with(&self, needle: &[T]) -> bool
2619    where
2620        T: PartialEq,
2621    {
2622        let n = needle.len();
2623        self.len() >= n && needle == &self[..n]
2624    }
2625
2626    /// Returns `true` if `needle` is a suffix of the slice or equal to the slice.
2627    ///
2628    /// # Examples
2629    ///
2630    /// ```
2631    /// let v = [10, 40, 30];
2632    /// assert!(v.ends_with(&[30]));
2633    /// assert!(v.ends_with(&[40, 30]));
2634    /// assert!(v.ends_with(&v));
2635    /// assert!(!v.ends_with(&[50]));
2636    /// assert!(!v.ends_with(&[50, 30]));
2637    /// ```
2638    ///
2639    /// Always returns `true` if `needle` is an empty slice:
2640    ///
2641    /// ```
2642    /// let v = &[10, 40, 30];
2643    /// assert!(v.ends_with(&[]));
2644    /// let v: &[u8] = &[];
2645    /// assert!(v.ends_with(&[]));
2646    /// ```
2647    #[stable(feature = "rust1", since = "1.0.0")]
2648    #[must_use]
2649    pub fn ends_with(&self, needle: &[T]) -> bool
2650    where
2651        T: PartialEq,
2652    {
2653        let (m, n) = (self.len(), needle.len());
2654        m >= n && needle == &self[m - n..]
2655    }
2656
2657    /// Returns a subslice with the prefix removed.
2658    ///
2659    /// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`.
2660    /// If `prefix` is empty, simply returns the original slice. If `prefix` is equal to the
2661    /// original slice, returns an empty slice.
2662    ///
2663    /// If the slice does not start with `prefix`, returns `None`.
2664    ///
2665    /// # Examples
2666    ///
2667    /// ```
2668    /// let v = &[10, 40, 30];
2669    /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
2670    /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
2671    /// assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
2672    /// assert_eq!(v.strip_prefix(&[50]), None);
2673    /// assert_eq!(v.strip_prefix(&[10, 50]), None);
2674    ///
2675    /// let prefix : &str = "he";
2676    /// assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
2677    ///            Some(b"llo".as_ref()));
2678    /// ```
2679    #[must_use = "returns the subslice without modifying the original"]
2680    #[stable(feature = "slice_strip", since = "1.51.0")]
2681    pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]>
2682    where
2683        T: PartialEq,
2684    {
2685        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2686        let prefix = prefix.as_slice();
2687        let n = prefix.len();
2688        if n <= self.len() {
2689            let (head, tail) = self.split_at(n);
2690            if head == prefix {
2691                return Some(tail);
2692            }
2693        }
2694        None
2695    }
2696
2697    /// Returns a subslice with the suffix removed.
2698    ///
2699    /// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`.
2700    /// If `suffix` is empty, simply returns the original slice. If `suffix` is equal to the
2701    /// original slice, returns an empty slice.
2702    ///
2703    /// If the slice does not end with `suffix`, returns `None`.
2704    ///
2705    /// # Examples
2706    ///
2707    /// ```
2708    /// let v = &[10, 40, 30];
2709    /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
2710    /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
2711    /// assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
2712    /// assert_eq!(v.strip_suffix(&[50]), None);
2713    /// assert_eq!(v.strip_suffix(&[50, 30]), None);
2714    /// ```
2715    #[must_use = "returns the subslice without modifying the original"]
2716    #[stable(feature = "slice_strip", since = "1.51.0")]
2717    pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]>
2718    where
2719        T: PartialEq,
2720    {
2721        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2722        let suffix = suffix.as_slice();
2723        let (len, n) = (self.len(), suffix.len());
2724        if n <= len {
2725            let (head, tail) = self.split_at(len - n);
2726            if tail == suffix {
2727                return Some(head);
2728            }
2729        }
2730        None
2731    }
2732
2733    /// Returns a subslice with the prefix and suffix removed.
2734    ///
2735    /// If the slice starts with `prefix` and ends with `suffix`, returns the subslice after the
2736    /// prefix and before the suffix, wrapped in `Some`.
2737    ///
2738    /// If the slice does not start with `prefix` or does not end with `suffix`, returns `None`.
2739    ///
2740    /// # Examples
2741    ///
2742    /// ```
2743    /// #![feature(strip_circumfix)]
2744    ///
2745    /// let v = &[10, 50, 40, 30];
2746    /// assert_eq!(v.strip_circumfix(&[10], &[30]), Some(&[50, 40][..]));
2747    /// assert_eq!(v.strip_circumfix(&[10], &[40, 30]), Some(&[50][..]));
2748    /// assert_eq!(v.strip_circumfix(&[10, 50], &[40, 30]), Some(&[][..]));
2749    /// assert_eq!(v.strip_circumfix(&[50], &[30]), None);
2750    /// assert_eq!(v.strip_circumfix(&[10], &[40]), None);
2751    /// assert_eq!(v.strip_circumfix(&[], &[40, 30]), Some(&[10, 50][..]));
2752    /// assert_eq!(v.strip_circumfix(&[10, 50], &[]), Some(&[40, 30][..]));
2753    /// ```
2754    #[must_use = "returns the subslice without modifying the original"]
2755    #[unstable(feature = "strip_circumfix", issue = "147946")]
2756    pub fn strip_circumfix<S, P>(&self, prefix: &P, suffix: &S) -> Option<&[T]>
2757    where
2758        T: PartialEq,
2759        S: SlicePattern<Item = T> + ?Sized,
2760        P: SlicePattern<Item = T> + ?Sized,
2761    {
2762        self.strip_prefix(prefix)?.strip_suffix(suffix)
2763    }
2764
2765    /// Returns a subslice with the optional prefix removed.
2766    ///
2767    /// If the slice starts with `prefix`, returns the subslice after the prefix.  If `prefix`
2768    /// is empty or the slice does not start with `prefix`, simply returns the original slice.
2769    /// If `prefix` is equal to the original slice, returns an empty slice.
2770    ///
2771    /// # Examples
2772    ///
2773    /// ```
2774    /// #![feature(trim_prefix_suffix)]
2775    ///
2776    /// let v = &[10, 40, 30];
2777    ///
2778    /// // Prefix present - removes it
2779    /// assert_eq!(v.trim_prefix(&[10]), &[40, 30][..]);
2780    /// assert_eq!(v.trim_prefix(&[10, 40]), &[30][..]);
2781    /// assert_eq!(v.trim_prefix(&[10, 40, 30]), &[][..]);
2782    ///
2783    /// // Prefix absent - returns original slice
2784    /// assert_eq!(v.trim_prefix(&[50]), &[10, 40, 30][..]);
2785    /// assert_eq!(v.trim_prefix(&[10, 50]), &[10, 40, 30][..]);
2786    ///
2787    /// let prefix : &str = "he";
2788    /// assert_eq!(b"hello".trim_prefix(prefix.as_bytes()), b"llo".as_ref());
2789    /// ```
2790    #[must_use = "returns the subslice without modifying the original"]
2791    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2792    pub fn trim_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> &[T]
2793    where
2794        T: PartialEq,
2795    {
2796        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2797        let prefix = prefix.as_slice();
2798        let n = prefix.len();
2799        if n <= self.len() {
2800            let (head, tail) = self.split_at(n);
2801            if head == prefix {
2802                return tail;
2803            }
2804        }
2805        self
2806    }
2807
2808    /// Returns a subslice with the optional suffix removed.
2809    ///
2810    /// If the slice ends with `suffix`, returns the subslice before the suffix.  If `suffix`
2811    /// is empty or the slice does not end with `suffix`, simply returns the original slice.
2812    /// If `suffix` is equal to the original slice, returns an empty slice.
2813    ///
2814    /// # Examples
2815    ///
2816    /// ```
2817    /// #![feature(trim_prefix_suffix)]
2818    ///
2819    /// let v = &[10, 40, 30];
2820    ///
2821    /// // Suffix present - removes it
2822    /// assert_eq!(v.trim_suffix(&[30]), &[10, 40][..]);
2823    /// assert_eq!(v.trim_suffix(&[40, 30]), &[10][..]);
2824    /// assert_eq!(v.trim_suffix(&[10, 40, 30]), &[][..]);
2825    ///
2826    /// // Suffix absent - returns original slice
2827    /// assert_eq!(v.trim_suffix(&[50]), &[10, 40, 30][..]);
2828    /// assert_eq!(v.trim_suffix(&[50, 30]), &[10, 40, 30][..]);
2829    /// ```
2830    #[must_use = "returns the subslice without modifying the original"]
2831    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2832    pub fn trim_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> &[T]
2833    where
2834        T: PartialEq,
2835    {
2836        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2837        let suffix = suffix.as_slice();
2838        let (len, n) = (self.len(), suffix.len());
2839        if n <= len {
2840            let (head, tail) = self.split_at(len - n);
2841            if tail == suffix {
2842                return head;
2843            }
2844        }
2845        self
2846    }
2847
2848    /// Binary searches this slice for a given element.
2849    /// If the slice is not sorted, the returned result is unspecified and
2850    /// meaningless.
2851    ///
2852    /// If the value is found then [`Result::Ok`] is returned, containing the
2853    /// index of the matching element. If there are multiple matches, then any
2854    /// one of the matches could be returned. The index is chosen
2855    /// deterministically, but is subject to change in future versions of Rust.
2856    /// If the value is not found then [`Result::Err`] is returned, containing
2857    /// the index where a matching element could be inserted while maintaining
2858    /// sorted order.
2859    ///
2860    /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
2861    ///
2862    /// [`binary_search_by`]: slice::binary_search_by
2863    /// [`binary_search_by_key`]: slice::binary_search_by_key
2864    /// [`partition_point`]: slice::partition_point
2865    ///
2866    /// # Examples
2867    ///
2868    /// Looks up a series of four elements. The first is found, with a
2869    /// uniquely determined position; the second and third are not
2870    /// found; the fourth could match any position in `[1, 4]`.
2871    ///
2872    /// ```
2873    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2874    ///
2875    /// assert_eq!(s.binary_search(&13),  Ok(9));
2876    /// assert_eq!(s.binary_search(&4),   Err(7));
2877    /// assert_eq!(s.binary_search(&100), Err(13));
2878    /// let r = s.binary_search(&1);
2879    /// assert!(match r { Ok(1..=4) => true, _ => false, });
2880    /// ```
2881    ///
2882    /// If you want to find that whole *range* of matching items, rather than
2883    /// an arbitrary matching one, that can be done using [`partition_point`]:
2884    /// ```
2885    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2886    ///
2887    /// let low = s.partition_point(|x| x < &1);
2888    /// assert_eq!(low, 1);
2889    /// let high = s.partition_point(|x| x <= &1);
2890    /// assert_eq!(high, 5);
2891    /// let r = s.binary_search(&1);
2892    /// assert!((low..high).contains(&r.unwrap()));
2893    ///
2894    /// assert!(s[..low].iter().all(|&x| x < 1));
2895    /// assert!(s[low..high].iter().all(|&x| x == 1));
2896    /// assert!(s[high..].iter().all(|&x| x > 1));
2897    ///
2898    /// // For something not found, the "range" of equal items is empty
2899    /// assert_eq!(s.partition_point(|x| x < &11), 9);
2900    /// assert_eq!(s.partition_point(|x| x <= &11), 9);
2901    /// assert_eq!(s.binary_search(&11), Err(9));
2902    /// ```
2903    ///
2904    /// If you want to insert an item to a sorted vector, while maintaining
2905    /// sort order, consider using [`partition_point`]:
2906    ///
2907    /// ```
2908    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2909    /// let num = 42;
2910    /// let idx = s.partition_point(|&x| x <= num);
2911    /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
2912    /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
2913    /// // to shift less elements.
2914    /// s.insert(idx, num);
2915    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2916    /// ```
2917    #[stable(feature = "rust1", since = "1.0.0")]
2918    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
2919    where
2920        T: Ord,
2921    {
2922        self.binary_search_by(|p| p.cmp(x))
2923    }
2924
2925    /// Binary searches this slice with a comparator function.
2926    ///
2927    /// The comparator function should return an order code that indicates
2928    /// whether its argument is `Less`, `Equal` or `Greater` the desired
2929    /// target.
2930    /// If the slice is not sorted or if the comparator function does not
2931    /// implement an order consistent with the sort order of the underlying
2932    /// slice, the returned result is unspecified and meaningless.
2933    ///
2934    /// If the value is found then [`Result::Ok`] is returned, containing the
2935    /// index of the matching element. If there are multiple matches, then any
2936    /// one of the matches could be returned. The index is chosen
2937    /// deterministically, but is subject to change in future versions of Rust.
2938    /// If the value is not found then [`Result::Err`] is returned, containing
2939    /// the index where a matching element could be inserted while maintaining
2940    /// sorted order.
2941    ///
2942    /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
2943    ///
2944    /// [`binary_search`]: slice::binary_search
2945    /// [`binary_search_by_key`]: slice::binary_search_by_key
2946    /// [`partition_point`]: slice::partition_point
2947    ///
2948    /// # Examples
2949    ///
2950    /// Looks up a series of four elements. The first is found, with a
2951    /// uniquely determined position; the second and third are not
2952    /// found; the fourth could match any position in `[1, 4]`.
2953    ///
2954    /// ```
2955    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2956    ///
2957    /// let seek = 13;
2958    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
2959    /// let seek = 4;
2960    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
2961    /// let seek = 100;
2962    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
2963    /// let seek = 1;
2964    /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
2965    /// assert!(match r { Ok(1..=4) => true, _ => false, });
2966    /// ```
2967    #[stable(feature = "rust1", since = "1.0.0")]
2968    #[inline]
2969    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
2970    where
2971        F: FnMut(&'a T) -> Ordering,
2972    {
2973        let mut size = self.len();
2974        if size == 0 {
2975            return Err(0);
2976        }
2977        let mut base = 0usize;
2978
2979        // This loop intentionally doesn't have an early exit if the comparison
2980        // returns Equal. We want the number of loop iterations to depend *only*
2981        // on the size of the input slice so that the CPU can reliably predict
2982        // the loop count.
2983        while size > 1 {
2984            let half = size / 2;
2985            let mid = base + half;
2986
2987            // SAFETY: the call is made safe by the following invariants:
2988            // - `mid >= 0`: by definition
2989            // - `mid < size`: `mid = size / 2 + size / 4 + size / 8 ...`
2990            let cmp = f(unsafe { self.get_unchecked(mid) });
2991
2992            // Binary search interacts poorly with branch prediction, so force
2993            // the compiler to use conditional moves if supported by the target
2994            // architecture.
2995            base = hint::select_unpredictable(cmp == Greater, base, mid);
2996
2997            // This is imprecise in the case where `size` is odd and the
2998            // comparison returns Greater: the mid element still gets included
2999            // by `size` even though it's known to be larger than the element
3000            // being searched for.
3001            //
3002            // This is fine though: we gain more performance by keeping the
3003            // loop iteration count invariant (and thus predictable) than we
3004            // lose from considering one additional element.
3005            size -= half;
3006        }
3007
3008        // SAFETY: base is always in [0, size) because base <= mid.
3009        let cmp = f(unsafe { self.get_unchecked(base) });
3010        if cmp == Equal {
3011            // SAFETY: same as the `get_unchecked` above.
3012            unsafe { hint::assert_unchecked(base < self.len()) };
3013            Ok(base)
3014        } else {
3015            let result = base + (cmp == Less) as usize;
3016            // SAFETY: same as the `get_unchecked` above.
3017            // Note that this is `<=`, unlike the assume in the `Ok` path.
3018            unsafe { hint::assert_unchecked(result <= self.len()) };
3019            Err(result)
3020        }
3021    }
3022
3023    /// Binary searches this slice with a key extraction function.
3024    ///
3025    /// Assumes that the slice is sorted by the key, for instance with
3026    /// [`sort_by_key`] using the same key extraction function.
3027    /// If the slice is not sorted by the key, the returned result is
3028    /// unspecified and meaningless.
3029    ///
3030    /// If the value is found then [`Result::Ok`] is returned, containing the
3031    /// index of the matching element. If there are multiple matches, then any
3032    /// one of the matches could be returned. The index is chosen
3033    /// deterministically, but is subject to change in future versions of Rust.
3034    /// If the value is not found then [`Result::Err`] is returned, containing
3035    /// the index where a matching element could be inserted while maintaining
3036    /// sorted order.
3037    ///
3038    /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
3039    ///
3040    /// [`sort_by_key`]: slice::sort_by_key
3041    /// [`binary_search`]: slice::binary_search
3042    /// [`binary_search_by`]: slice::binary_search_by
3043    /// [`partition_point`]: slice::partition_point
3044    ///
3045    /// # Examples
3046    ///
3047    /// Looks up a series of four elements in a slice of pairs sorted by
3048    /// their second elements. The first is found, with a uniquely
3049    /// determined position; the second and third are not found; the
3050    /// fourth could match any position in `[1, 4]`.
3051    ///
3052    /// ```
3053    /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
3054    ///          (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
3055    ///          (1, 21), (2, 34), (4, 55)];
3056    ///
3057    /// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
3058    /// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
3059    /// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
3060    /// let r = s.binary_search_by_key(&1, |&(a, b)| b);
3061    /// assert!(match r { Ok(1..=4) => true, _ => false, });
3062    /// ```
3063    // Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is
3064    // in crate `alloc`, and as such doesn't exists yet when building `core`: #74481.
3065    // This breaks links when slice is displayed in core, but changing it to use relative links
3066    // would break when the item is re-exported. So allow the core links to be broken for now.
3067    #[allow(rustdoc::broken_intra_doc_links)]
3068    #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
3069    #[inline]
3070    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
3071    where
3072        F: FnMut(&'a T) -> B,
3073        B: Ord,
3074    {
3075        self.binary_search_by(|k| f(k).cmp(b))
3076    }
3077
3078    /// Sorts the slice in ascending order **without** preserving the initial order of equal elements.
3079    ///
3080    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3081    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3082    ///
3083    /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
3084    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3085    /// is unspecified. See also the note on panicking below.
3086    ///
3087    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3088    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3089    /// examples see the [`Ord`] documentation.
3090    ///
3091    ///
3092    /// All original elements will remain in the slice and any possible modifications via interior
3093    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `T` panics.
3094    ///
3095    /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
3096    /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
3097    /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
3098    /// `slice::sort_unstable_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a
3099    /// [total order] users can sort slices containing floating-point values. Alternatively, if all
3100    /// values in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`]
3101    /// forms a [total order], it's possible to sort the slice with `sort_unstable_by(|a, b|
3102    /// a.partial_cmp(b).unwrap())`.
3103    ///
3104    /// # Current implementation
3105    ///
3106    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3107    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3108    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3109    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3110    ///
3111    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3112    /// slice is partially sorted.
3113    ///
3114    /// # Panics
3115    ///
3116    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
3117    /// the [`Ord`] implementation panics.
3118    ///
3119    /// # Examples
3120    ///
3121    /// ```
3122    /// let mut v = [4, -5, 1, -3, 2];
3123    ///
3124    /// v.sort_unstable();
3125    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3126    /// ```
3127    ///
3128    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3129    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3130    #[stable(feature = "sort_unstable", since = "1.20.0")]
3131    #[inline]
3132    pub fn sort_unstable(&mut self)
3133    where
3134        T: Ord,
3135    {
3136        sort::unstable::sort(self, &mut T::lt);
3137    }
3138
3139    /// Sorts the slice in ascending order with a comparison function, **without** preserving the
3140    /// initial order of equal elements.
3141    ///
3142    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3143    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3144    ///
3145    /// If the comparison function `compare` does not implement a [total order], the function
3146    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3147    /// is unspecified. See also the note on panicking below.
3148    ///
3149    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3150    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3151    /// examples see the [`Ord`] documentation.
3152    ///
3153    /// All original elements will remain in the slice and any possible modifications via interior
3154    /// mutability are observed in the input. Same is true if `compare` panics.
3155    ///
3156    /// # Current implementation
3157    ///
3158    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3159    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3160    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3161    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3162    ///
3163    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3164    /// slice is partially sorted.
3165    ///
3166    /// # Panics
3167    ///
3168    /// May panic if the `compare` does not implement a [total order], or if
3169    /// the `compare` itself panics.
3170    ///
3171    /// # Examples
3172    ///
3173    /// ```
3174    /// let mut v = [4, -5, 1, -3, 2];
3175    /// v.sort_unstable_by(|a, b| a.cmp(b));
3176    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3177    ///
3178    /// // reverse sorting
3179    /// v.sort_unstable_by(|a, b| b.cmp(a));
3180    /// assert_eq!(v, [4, 2, 1, -3, -5]);
3181    /// ```
3182    ///
3183    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3184    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3185    #[stable(feature = "sort_unstable", since = "1.20.0")]
3186    #[inline]
3187    pub fn sort_unstable_by<F>(&mut self, mut compare: F)
3188    where
3189        F: FnMut(&T, &T) -> Ordering,
3190    {
3191        sort::unstable::sort(self, &mut |a, b| compare(a, b) == Ordering::Less);
3192    }
3193
3194    /// Sorts the slice in ascending order with a key extraction function, **without** preserving
3195    /// the initial order of equal elements.
3196    ///
3197    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3198    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3199    ///
3200    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
3201    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3202    /// is unspecified. See also the note on panicking below.
3203    ///
3204    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3205    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3206    /// examples see the [`Ord`] documentation.
3207    ///
3208    /// All original elements will remain in the slice and any possible modifications via interior
3209    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `K` panics.
3210    ///
3211    /// # Current implementation
3212    ///
3213    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3214    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3215    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3216    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3217    ///
3218    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3219    /// slice is partially sorted.
3220    ///
3221    /// # Panics
3222    ///
3223    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
3224    /// the [`Ord`] implementation panics.
3225    ///
3226    /// # Examples
3227    ///
3228    /// ```
3229    /// let mut v = [4i32, -5, 1, -3, 2];
3230    ///
3231    /// v.sort_unstable_by_key(|k| k.abs());
3232    /// assert_eq!(v, [1, 2, -3, 4, -5]);
3233    /// ```
3234    ///
3235    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3236    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3237    #[stable(feature = "sort_unstable", since = "1.20.0")]
3238    #[inline]
3239    pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
3240    where
3241        F: FnMut(&T) -> K,
3242        K: Ord,
3243    {
3244        sort::unstable::sort(self, &mut |a, b| f(a).lt(&f(b)));
3245    }
3246
3247    /// Reorders the slice such that the element at `index` is at a sort-order position. All
3248    /// elements before `index` will be `<=` to this value, and all elements after will be `>=` to
3249    /// it.
3250    ///
3251    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3252    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3253    /// function is also known as "kth element" in other libraries.
3254    ///
3255    /// Returns a triple that partitions the reordered slice:
3256    ///
3257    /// * The unsorted subslice before `index`, whose elements all satisfy `x <= self[index]`.
3258    ///
3259    /// * The element at `index`.
3260    ///
3261    /// * The unsorted subslice after `index`, whose elements all satisfy `x >= self[index]`.
3262    ///
3263    /// # Current implementation
3264    ///
3265    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3266    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3267    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3268    /// for all inputs.
3269    ///
3270    /// [`sort_unstable`]: slice::sort_unstable
3271    ///
3272    /// # Panics
3273    ///
3274    /// Panics when `index >= len()`, and so always panics on empty slices.
3275    ///
3276    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order].
3277    ///
3278    /// # Examples
3279    ///
3280    /// ```
3281    /// let mut v = [-5i32, 4, 2, -3, 1];
3282    ///
3283    /// // Find the items `<=` to the median, the median itself, and the items `>=` to it.
3284    /// let (lesser, median, greater) = v.select_nth_unstable(2);
3285    ///
3286    /// assert!(lesser == [-3, -5] || lesser == [-5, -3]);
3287    /// assert_eq!(median, &mut 1);
3288    /// assert!(greater == [4, 2] || greater == [2, 4]);
3289    ///
3290    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3291    /// // about the specified index.
3292    /// assert!(v == [-3, -5, 1, 2, 4] ||
3293    ///         v == [-5, -3, 1, 2, 4] ||
3294    ///         v == [-3, -5, 1, 4, 2] ||
3295    ///         v == [-5, -3, 1, 4, 2]);
3296    /// ```
3297    ///
3298    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3299    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3300    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3301    #[inline]
3302    pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
3303    where
3304        T: Ord,
3305    {
3306        sort::select::partition_at_index(self, index, T::lt)
3307    }
3308
3309    /// Reorders the slice with a comparator function such that the element at `index` is at a
3310    /// sort-order position. All elements before `index` will be `<=` to this value, and all
3311    /// elements after will be `>=` to it, according to the comparator function.
3312    ///
3313    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3314    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3315    /// function is also known as "kth element" in other libraries.
3316    ///
3317    /// Returns a triple partitioning the reordered slice:
3318    ///
3319    /// * The unsorted subslice before `index`, whose elements all satisfy
3320    ///   `compare(x, self[index]).is_le()`.
3321    ///
3322    /// * The element at `index`.
3323    ///
3324    /// * The unsorted subslice after `index`, whose elements all satisfy
3325    ///   `compare(x, self[index]).is_ge()`.
3326    ///
3327    /// # Current implementation
3328    ///
3329    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3330    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3331    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3332    /// for all inputs.
3333    ///
3334    /// [`sort_unstable`]: slice::sort_unstable
3335    ///
3336    /// # Panics
3337    ///
3338    /// Panics when `index >= len()`, and so always panics on empty slices.
3339    ///
3340    /// May panic if `compare` does not implement a [total order].
3341    ///
3342    /// # Examples
3343    ///
3344    /// ```
3345    /// let mut v = [-5i32, 4, 2, -3, 1];
3346    ///
3347    /// // Find the items `>=` to the median, the median itself, and the items `<=` to it, by using
3348    /// // a reversed comparator.
3349    /// let (before, median, after) = v.select_nth_unstable_by(2, |a, b| b.cmp(a));
3350    ///
3351    /// assert!(before == [4, 2] || before == [2, 4]);
3352    /// assert_eq!(median, &mut 1);
3353    /// assert!(after == [-3, -5] || after == [-5, -3]);
3354    ///
3355    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3356    /// // about the specified index.
3357    /// assert!(v == [2, 4, 1, -5, -3] ||
3358    ///         v == [2, 4, 1, -3, -5] ||
3359    ///         v == [4, 2, 1, -5, -3] ||
3360    ///         v == [4, 2, 1, -3, -5]);
3361    /// ```
3362    ///
3363    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3364    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3365    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3366    #[inline]
3367    pub fn select_nth_unstable_by<F>(
3368        &mut self,
3369        index: usize,
3370        mut compare: F,
3371    ) -> (&mut [T], &mut T, &mut [T])
3372    where
3373        F: FnMut(&T, &T) -> Ordering,
3374    {
3375        sort::select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
3376    }
3377
3378    /// Reorders the slice with a key extraction function such that the element at `index` is at a
3379    /// sort-order position. All elements before `index` will have keys `<=` to the key at `index`,
3380    /// and all elements after will have keys `>=` to it.
3381    ///
3382    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3383    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3384    /// function is also known as "kth element" in other libraries.
3385    ///
3386    /// Returns a triple partitioning the reordered slice:
3387    ///
3388    /// * The unsorted subslice before `index`, whose elements all satisfy `f(x) <= f(self[index])`.
3389    ///
3390    /// * The element at `index`.
3391    ///
3392    /// * The unsorted subslice after `index`, whose elements all satisfy `f(x) >= f(self[index])`.
3393    ///
3394    /// # Current implementation
3395    ///
3396    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3397    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3398    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3399    /// for all inputs.
3400    ///
3401    /// [`sort_unstable`]: slice::sort_unstable
3402    ///
3403    /// # Panics
3404    ///
3405    /// Panics when `index >= len()`, meaning it always panics on empty slices.
3406    ///
3407    /// May panic if `K: Ord` does not implement a total order.
3408    ///
3409    /// # Examples
3410    ///
3411    /// ```
3412    /// let mut v = [-5i32, 4, 1, -3, 2];
3413    ///
3414    /// // Find the items `<=` to the absolute median, the absolute median itself, and the items
3415    /// // `>=` to it.
3416    /// let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs());
3417    ///
3418    /// assert!(lesser == [1, 2] || lesser == [2, 1]);
3419    /// assert_eq!(median, &mut -3);
3420    /// assert!(greater == [4, -5] || greater == [-5, 4]);
3421    ///
3422    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3423    /// // about the specified index.
3424    /// assert!(v == [1, 2, -3, 4, -5] ||
3425    ///         v == [1, 2, -3, -5, 4] ||
3426    ///         v == [2, 1, -3, 4, -5] ||
3427    ///         v == [2, 1, -3, -5, 4]);
3428    /// ```
3429    ///
3430    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3431    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3432    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3433    #[inline]
3434    pub fn select_nth_unstable_by_key<K, F>(
3435        &mut self,
3436        index: usize,
3437        mut f: F,
3438    ) -> (&mut [T], &mut T, &mut [T])
3439    where
3440        F: FnMut(&T) -> K,
3441        K: Ord,
3442    {
3443        sort::select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
3444    }
3445
3446    /// Moves all consecutive repeated elements to the end of the slice according to the
3447    /// [`PartialEq`] trait implementation.
3448    ///
3449    /// Returns two slices. The first contains no consecutive repeated elements.
3450    /// The second contains all the duplicates in no specified order.
3451    ///
3452    /// If the slice is sorted, the first returned slice contains no duplicates.
3453    ///
3454    /// # Examples
3455    ///
3456    /// ```
3457    /// #![feature(slice_partition_dedup)]
3458    ///
3459    /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
3460    ///
3461    /// let (dedup, duplicates) = slice.partition_dedup();
3462    ///
3463    /// assert_eq!(dedup, [1, 2, 3, 2, 1]);
3464    /// assert_eq!(duplicates, [2, 3, 1]);
3465    /// ```
3466    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3467    #[inline]
3468    pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
3469    where
3470        T: PartialEq,
3471    {
3472        self.partition_dedup_by(|a, b| a == b)
3473    }
3474
3475    /// Moves all but the first of consecutive elements to the end of the slice satisfying
3476    /// a given equality relation.
3477    ///
3478    /// Returns two slices. The first contains no consecutive repeated elements.
3479    /// The second contains all the duplicates in no specified order.
3480    ///
3481    /// The `same_bucket` function is passed references to two elements from the slice and
3482    /// must determine if the elements compare equal. The elements are passed in opposite order
3483    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
3484    /// at the end of the slice.
3485    ///
3486    /// If the slice is sorted, the first returned slice contains no duplicates.
3487    ///
3488    /// # Examples
3489    ///
3490    /// ```
3491    /// #![feature(slice_partition_dedup)]
3492    ///
3493    /// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
3494    ///
3495    /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
3496    ///
3497    /// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
3498    /// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
3499    /// ```
3500    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3501    #[inline]
3502    pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
3503    where
3504        F: FnMut(&mut T, &mut T) -> bool,
3505    {
3506        // Although we have a mutable reference to `self`, we cannot make
3507        // *arbitrary* changes. The `same_bucket` calls could panic, so we
3508        // must ensure that the slice is in a valid state at all times.
3509        //
3510        // The way that we handle this is by using swaps; we iterate
3511        // over all the elements, swapping as we go so that at the end
3512        // the elements we wish to keep are in the front, and those we
3513        // wish to reject are at the back. We can then split the slice.
3514        // This operation is still `O(n)`.
3515        //
3516        // Example: We start in this state, where `r` represents "next
3517        // read" and `w` represents "next_write".
3518        //
3519        //           r
3520        //     +---+---+---+---+---+---+
3521        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3522        //     +---+---+---+---+---+---+
3523        //           w
3524        //
3525        // Comparing self[r] against self[w-1], this is not a duplicate, so
3526        // we swap self[r] and self[w] (no effect as r==w) and then increment both
3527        // r and w, leaving us with:
3528        //
3529        //               r
3530        //     +---+---+---+---+---+---+
3531        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3532        //     +---+---+---+---+---+---+
3533        //               w
3534        //
3535        // Comparing self[r] against self[w-1], this value is a duplicate,
3536        // so we increment `r` but leave everything else unchanged:
3537        //
3538        //                   r
3539        //     +---+---+---+---+---+---+
3540        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3541        //     +---+---+---+---+---+---+
3542        //               w
3543        //
3544        // Comparing self[r] against self[w-1], this is not a duplicate,
3545        // so swap self[r] and self[w] and advance r and w:
3546        //
3547        //                       r
3548        //     +---+---+---+---+---+---+
3549        //     | 0 | 1 | 2 | 1 | 3 | 3 |
3550        //     +---+---+---+---+---+---+
3551        //                   w
3552        //
3553        // Not a duplicate, repeat:
3554        //
3555        //                           r
3556        //     +---+---+---+---+---+---+
3557        //     | 0 | 1 | 2 | 3 | 1 | 3 |
3558        //     +---+---+---+---+---+---+
3559        //                       w
3560        //
3561        // Duplicate, advance r. End of slice. Split at w.
3562
3563        let len = self.len();
3564        if len <= 1 {
3565            return (self, &mut []);
3566        }
3567
3568        let ptr = self.as_mut_ptr();
3569        let mut next_read: usize = 1;
3570        let mut next_write: usize = 1;
3571
3572        // SAFETY: the `while` condition guarantees `next_read` and `next_write`
3573        // are less than `len`, thus are inside `self`. `prev_ptr_write` points to
3574        // one element before `ptr_write`, but `next_write` starts at 1, so
3575        // `prev_ptr_write` is never less than 0 and is inside the slice.
3576        // This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write`
3577        // and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)`
3578        // and `prev_ptr_write.offset(1)`.
3579        //
3580        // `next_write` is also incremented at most once per loop at most meaning
3581        // no element is skipped when it may need to be swapped.
3582        //
3583        // `ptr_read` and `prev_ptr_write` never point to the same element. This
3584        // is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe.
3585        // The explanation is simply that `next_read >= next_write` is always true,
3586        // thus `next_read > next_write - 1` is too.
3587        unsafe {
3588            // Avoid bounds checks by using raw pointers.
3589            while next_read < len {
3590                let ptr_read = ptr.add(next_read);
3591                let prev_ptr_write = ptr.add(next_write - 1);
3592                if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
3593                    if next_read != next_write {
3594                        let ptr_write = prev_ptr_write.add(1);
3595                        mem::swap(&mut *ptr_read, &mut *ptr_write);
3596                    }
3597                    next_write += 1;
3598                }
3599                next_read += 1;
3600            }
3601        }
3602
3603        self.split_at_mut(next_write)
3604    }
3605
3606    /// Moves all but the first of consecutive elements to the end of the slice that resolve
3607    /// to the same key.
3608    ///
3609    /// Returns two slices. The first contains no consecutive repeated elements.
3610    /// The second contains all the duplicates in no specified order.
3611    ///
3612    /// If the slice is sorted, the first returned slice contains no duplicates.
3613    ///
3614    /// # Examples
3615    ///
3616    /// ```
3617    /// #![feature(slice_partition_dedup)]
3618    ///
3619    /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
3620    ///
3621    /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
3622    ///
3623    /// assert_eq!(dedup, [10, 20, 30, 20, 11]);
3624    /// assert_eq!(duplicates, [21, 30, 13]);
3625    /// ```
3626    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3627    #[inline]
3628    pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
3629    where
3630        F: FnMut(&mut T) -> K,
3631        K: PartialEq,
3632    {
3633        self.partition_dedup_by(|a, b| key(a) == key(b))
3634    }
3635
3636    /// Rotates the slice in-place such that the first `mid` elements of the
3637    /// slice move to the end while the last `self.len() - mid` elements move to
3638    /// the front.
3639    ///
3640    /// After calling `rotate_left`, the element previously at index `mid` will
3641    /// become the first element in the slice.
3642    ///
3643    /// # Panics
3644    ///
3645    /// This function will panic if `mid` is greater than the length of the
3646    /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
3647    /// rotation.
3648    ///
3649    /// # Complexity
3650    ///
3651    /// Takes linear (in `self.len()`) time.
3652    ///
3653    /// # Examples
3654    ///
3655    /// ```
3656    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3657    /// a.rotate_left(2);
3658    /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
3659    /// ```
3660    ///
3661    /// Rotating a subslice:
3662    ///
3663    /// ```
3664    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3665    /// a[1..5].rotate_left(1);
3666    /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
3667    /// ```
3668    #[stable(feature = "slice_rotate", since = "1.26.0")]
3669    #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3670    pub const fn rotate_left(&mut self, mid: usize) {
3671        assert!(mid <= self.len());
3672        let k = self.len() - mid;
3673        let p = self.as_mut_ptr();
3674
3675        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3676        // valid for reading and writing, as required by `ptr_rotate`.
3677        unsafe {
3678            rotate::ptr_rotate(mid, p.add(mid), k);
3679        }
3680    }
3681
3682    /// Rotates the slice in-place such that the first `self.len() - k`
3683    /// elements of the slice move to the end while the last `k` elements move
3684    /// to the front.
3685    ///
3686    /// After calling `rotate_right`, the element previously at index
3687    /// `self.len() - k` will become the first element in the slice.
3688    ///
3689    /// # Panics
3690    ///
3691    /// This function will panic if `k` is greater than the length of the
3692    /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
3693    /// rotation.
3694    ///
3695    /// # Complexity
3696    ///
3697    /// Takes linear (in `self.len()`) time.
3698    ///
3699    /// # Examples
3700    ///
3701    /// ```
3702    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3703    /// a.rotate_right(2);
3704    /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
3705    /// ```
3706    ///
3707    /// Rotating a subslice:
3708    ///
3709    /// ```
3710    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3711    /// a[1..5].rotate_right(1);
3712    /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
3713    /// ```
3714    #[stable(feature = "slice_rotate", since = "1.26.0")]
3715    #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3716    pub const fn rotate_right(&mut self, k: usize) {
3717        assert!(k <= self.len());
3718        let mid = self.len() - k;
3719        let p = self.as_mut_ptr();
3720
3721        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3722        // valid for reading and writing, as required by `ptr_rotate`.
3723        unsafe {
3724            rotate::ptr_rotate(mid, p.add(mid), k);
3725        }
3726    }
3727
3728    /// Fills `self` with elements by cloning `value`.
3729    ///
3730    /// # Examples
3731    ///
3732    /// ```
3733    /// let mut buf = vec![0; 10];
3734    /// buf.fill(1);
3735    /// assert_eq!(buf, vec![1; 10]);
3736    /// ```
3737    #[doc(alias = "memset")]
3738    #[stable(feature = "slice_fill", since = "1.50.0")]
3739    pub fn fill(&mut self, value: T)
3740    where
3741        T: Clone,
3742    {
3743        specialize::SpecFill::spec_fill(self, value);
3744    }
3745
3746    /// Fills `self` with elements returned by calling a closure repeatedly.
3747    ///
3748    /// This method uses a closure to create new values. If you'd rather
3749    /// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`]
3750    /// trait to generate values, you can pass [`Default::default`] as the
3751    /// argument.
3752    ///
3753    /// [`fill`]: slice::fill
3754    ///
3755    /// # Examples
3756    ///
3757    /// ```
3758    /// let mut buf = vec![1; 10];
3759    /// buf.fill_with(Default::default);
3760    /// assert_eq!(buf, vec![0; 10]);
3761    /// ```
3762    #[stable(feature = "slice_fill_with", since = "1.51.0")]
3763    pub fn fill_with<F>(&mut self, mut f: F)
3764    where
3765        F: FnMut() -> T,
3766    {
3767        for el in self {
3768            *el = f();
3769        }
3770    }
3771
3772    /// Copies the elements from `src` into `self`.
3773    ///
3774    /// The length of `src` must be the same as `self`.
3775    ///
3776    /// # Panics
3777    ///
3778    /// This function will panic if the two slices have different lengths.
3779    ///
3780    /// # Examples
3781    ///
3782    /// Cloning two elements from a slice into another:
3783    ///
3784    /// ```
3785    /// let src = [1, 2, 3, 4];
3786    /// let mut dst = [0, 0];
3787    ///
3788    /// // Because the slices have to be the same length,
3789    /// // we slice the source slice from four elements
3790    /// // to two. It will panic if we don't do this.
3791    /// dst.clone_from_slice(&src[2..]);
3792    ///
3793    /// assert_eq!(src, [1, 2, 3, 4]);
3794    /// assert_eq!(dst, [3, 4]);
3795    /// ```
3796    ///
3797    /// Rust enforces that there can only be one mutable reference with no
3798    /// immutable references to a particular piece of data in a particular
3799    /// scope. Because of this, attempting to use `clone_from_slice` on a
3800    /// single slice will result in a compile failure:
3801    ///
3802    /// ```compile_fail
3803    /// let mut slice = [1, 2, 3, 4, 5];
3804    ///
3805    /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
3806    /// ```
3807    ///
3808    /// To work around this, we can use [`split_at_mut`] to create two distinct
3809    /// sub-slices from a slice:
3810    ///
3811    /// ```
3812    /// let mut slice = [1, 2, 3, 4, 5];
3813    ///
3814    /// {
3815    ///     let (left, right) = slice.split_at_mut(2);
3816    ///     left.clone_from_slice(&right[1..]);
3817    /// }
3818    ///
3819    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3820    /// ```
3821    ///
3822    /// [`copy_from_slice`]: slice::copy_from_slice
3823    /// [`split_at_mut`]: slice::split_at_mut
3824    #[stable(feature = "clone_from_slice", since = "1.7.0")]
3825    #[track_caller]
3826    pub fn clone_from_slice(&mut self, src: &[T])
3827    where
3828        T: Clone,
3829    {
3830        self.spec_clone_from(src);
3831    }
3832
3833    /// Copies all elements from `src` into `self`, using a memcpy.
3834    ///
3835    /// The length of `src` must be the same as `self`.
3836    ///
3837    /// If `T` does not implement `Copy`, use [`clone_from_slice`].
3838    ///
3839    /// # Panics
3840    ///
3841    /// This function will panic if the two slices have different lengths.
3842    ///
3843    /// # Examples
3844    ///
3845    /// Copying two elements from a slice into another:
3846    ///
3847    /// ```
3848    /// let src = [1, 2, 3, 4];
3849    /// let mut dst = [0, 0];
3850    ///
3851    /// // Because the slices have to be the same length,
3852    /// // we slice the source slice from four elements
3853    /// // to two. It will panic if we don't do this.
3854    /// dst.copy_from_slice(&src[2..]);
3855    ///
3856    /// assert_eq!(src, [1, 2, 3, 4]);
3857    /// assert_eq!(dst, [3, 4]);
3858    /// ```
3859    ///
3860    /// Rust enforces that there can only be one mutable reference with no
3861    /// immutable references to a particular piece of data in a particular
3862    /// scope. Because of this, attempting to use `copy_from_slice` on a
3863    /// single slice will result in a compile failure:
3864    ///
3865    /// ```compile_fail
3866    /// let mut slice = [1, 2, 3, 4, 5];
3867    ///
3868    /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
3869    /// ```
3870    ///
3871    /// To work around this, we can use [`split_at_mut`] to create two distinct
3872    /// sub-slices from a slice:
3873    ///
3874    /// ```
3875    /// let mut slice = [1, 2, 3, 4, 5];
3876    ///
3877    /// {
3878    ///     let (left, right) = slice.split_at_mut(2);
3879    ///     left.copy_from_slice(&right[1..]);
3880    /// }
3881    ///
3882    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3883    /// ```
3884    ///
3885    /// [`clone_from_slice`]: slice::clone_from_slice
3886    /// [`split_at_mut`]: slice::split_at_mut
3887    #[doc(alias = "memcpy")]
3888    #[inline]
3889    #[stable(feature = "copy_from_slice", since = "1.9.0")]
3890    #[rustc_const_stable(feature = "const_copy_from_slice", since = "1.87.0")]
3891    #[track_caller]
3892    pub const fn copy_from_slice(&mut self, src: &[T])
3893    where
3894        T: Copy,
3895    {
3896        // SAFETY: `T` implements `Copy`.
3897        unsafe { copy_from_slice_impl(self, src) }
3898    }
3899
3900    /// Copies elements from one part of the slice to another part of itself,
3901    /// using a memmove.
3902    ///
3903    /// `src` is the range within `self` to copy from. `dest` is the starting
3904    /// index of the range within `self` to copy to, which will have the same
3905    /// length as `src`. The two ranges may overlap. The ends of the two ranges
3906    /// must be less than or equal to `self.len()`.
3907    ///
3908    /// # Panics
3909    ///
3910    /// This function will panic if either range exceeds the end of the slice,
3911    /// or if the end of `src` is before the start.
3912    ///
3913    /// # Examples
3914    ///
3915    /// Copying four bytes within a slice:
3916    ///
3917    /// ```
3918    /// let mut bytes = *b"Hello, World!";
3919    ///
3920    /// bytes.copy_within(1..5, 8);
3921    ///
3922    /// assert_eq!(&bytes, b"Hello, Wello!");
3923    /// ```
3924    #[stable(feature = "copy_within", since = "1.37.0")]
3925    #[track_caller]
3926    pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize)
3927    where
3928        T: Copy,
3929    {
3930        let Range { start: src_start, end: src_end } = slice::range(src, ..self.len());
3931        let count = src_end - src_start;
3932        assert!(dest <= self.len() - count, "dest is out of bounds");
3933        // SAFETY: the conditions for `ptr::copy` have all been checked above,
3934        // as have those for `ptr::add`.
3935        unsafe {
3936            // Derive both `src_ptr` and `dest_ptr` from the same loan
3937            let ptr = self.as_mut_ptr();
3938            let src_ptr = ptr.add(src_start);
3939            let dest_ptr = ptr.add(dest);
3940            ptr::copy(src_ptr, dest_ptr, count);
3941        }
3942    }
3943
3944    /// Swaps all elements in `self` with those in `other`.
3945    ///
3946    /// The length of `other` must be the same as `self`.
3947    ///
3948    /// # Panics
3949    ///
3950    /// This function will panic if the two slices have different lengths.
3951    ///
3952    /// # Example
3953    ///
3954    /// Swapping two elements across slices:
3955    ///
3956    /// ```
3957    /// let mut slice1 = [0, 0];
3958    /// let mut slice2 = [1, 2, 3, 4];
3959    ///
3960    /// slice1.swap_with_slice(&mut slice2[2..]);
3961    ///
3962    /// assert_eq!(slice1, [3, 4]);
3963    /// assert_eq!(slice2, [1, 2, 0, 0]);
3964    /// ```
3965    ///
3966    /// Rust enforces that there can only be one mutable reference to a
3967    /// particular piece of data in a particular scope. Because of this,
3968    /// attempting to use `swap_with_slice` on a single slice will result in
3969    /// a compile failure:
3970    ///
3971    /// ```compile_fail
3972    /// let mut slice = [1, 2, 3, 4, 5];
3973    /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
3974    /// ```
3975    ///
3976    /// To work around this, we can use [`split_at_mut`] to create two distinct
3977    /// mutable sub-slices from a slice:
3978    ///
3979    /// ```
3980    /// let mut slice = [1, 2, 3, 4, 5];
3981    ///
3982    /// {
3983    ///     let (left, right) = slice.split_at_mut(2);
3984    ///     left.swap_with_slice(&mut right[1..]);
3985    /// }
3986    ///
3987    /// assert_eq!(slice, [4, 5, 3, 1, 2]);
3988    /// ```
3989    ///
3990    /// [`split_at_mut`]: slice::split_at_mut
3991    #[stable(feature = "swap_with_slice", since = "1.27.0")]
3992    #[rustc_const_unstable(feature = "const_swap_with_slice", issue = "142204")]
3993    #[track_caller]
3994    pub const fn swap_with_slice(&mut self, other: &mut [T]) {
3995        assert!(self.len() == other.len(), "destination and source slices have different lengths");
3996        // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
3997        // checked to have the same length. The slices cannot overlap because
3998        // mutable references are exclusive.
3999        unsafe {
4000            ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
4001        }
4002    }
4003
4004    /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
4005    fn align_to_offsets<U>(&self) -> (usize, usize) {
4006        // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
4007        // lowest number of `T`s. And how many `T`s we need for each such "multiple".
4008        //
4009        // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
4010        // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
4011        // place of every 3 Ts in the `rest` slice. A bit more complicated.
4012        //
4013        // Formula to calculate this is:
4014        //
4015        // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
4016        // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
4017        //
4018        // Expanded and simplified:
4019        //
4020        // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
4021        // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
4022        //
4023        // Luckily since all this is constant-evaluated... performance here matters not!
4024        const fn gcd(a: usize, b: usize) -> usize {
4025            if b == 0 { a } else { gcd(b, a % b) }
4026        }
4027
4028        // Explicitly wrap the function call in a const block so it gets
4029        // constant-evaluated even in debug mode.
4030        let gcd: usize = const { gcd(size_of::<T>(), size_of::<U>()) };
4031        let ts: usize = size_of::<U>() / gcd;
4032        let us: usize = size_of::<T>() / gcd;
4033
4034        // Armed with this knowledge, we can find how many `U`s we can fit!
4035        let us_len = self.len() / ts * us;
4036        // And how many `T`s will be in the trailing slice!
4037        let ts_len = self.len() % ts;
4038        (us_len, ts_len)
4039    }
4040
4041    /// Transmutes the slice to a slice of another type, ensuring alignment of the types is
4042    /// maintained.
4043    ///
4044    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4045    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4046    /// the given alignment constraint and element size.
4047    ///
4048    /// This method has no purpose when either input element `T` or output element `U` are
4049    /// zero-sized and will return the original slice without splitting anything.
4050    ///
4051    /// # Safety
4052    ///
4053    /// This method is essentially a `transmute` with respect to the elements in the returned
4054    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4055    ///
4056    /// # Examples
4057    ///
4058    /// Basic usage:
4059    ///
4060    /// ```
4061    /// unsafe {
4062    ///     let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4063    ///     let (prefix, shorts, suffix) = bytes.align_to::<u16>();
4064    ///     // less_efficient_algorithm_for_bytes(prefix);
4065    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4066    ///     // less_efficient_algorithm_for_bytes(suffix);
4067    /// }
4068    /// ```
4069    #[stable(feature = "slice_align_to", since = "1.30.0")]
4070    #[must_use]
4071    pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
4072        // Note that most of this function will be constant-evaluated,
4073        if U::IS_ZST || T::IS_ZST {
4074            // handle ZSTs specially, which is – don't handle them at all.
4075            return (self, &[], &[]);
4076        }
4077
4078        // First, find at what point do we split between the first and 2nd slice. Easy with
4079        // ptr.align_offset.
4080        let ptr = self.as_ptr();
4081        // SAFETY: See the `align_to_mut` method for the detailed safety comment.
4082        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4083        if offset > self.len() {
4084            (self, &[], &[])
4085        } else {
4086            let (left, rest) = self.split_at(offset);
4087            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4088            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4089            #[cfg(miri)]
4090            crate::intrinsics::miri_promise_symbolic_alignment(
4091                rest.as_ptr().cast(),
4092                align_of::<U>(),
4093            );
4094            // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
4095            // since the caller guarantees that we can transmute `T` to `U` safely.
4096            unsafe {
4097                (
4098                    left,
4099                    from_raw_parts(rest.as_ptr() as *const U, us_len),
4100                    from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
4101                )
4102            }
4103        }
4104    }
4105
4106    /// Transmutes the mutable slice to a mutable slice of another type, ensuring alignment of the
4107    /// types is maintained.
4108    ///
4109    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4110    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4111    /// the given alignment constraint and element size.
4112    ///
4113    /// This method has no purpose when either input element `T` or output element `U` are
4114    /// zero-sized and will return the original slice without splitting anything.
4115    ///
4116    /// # Safety
4117    ///
4118    /// This method is essentially a `transmute` with respect to the elements in the returned
4119    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4120    ///
4121    /// # Examples
4122    ///
4123    /// Basic usage:
4124    ///
4125    /// ```
4126    /// unsafe {
4127    ///     let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4128    ///     let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
4129    ///     // less_efficient_algorithm_for_bytes(prefix);
4130    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4131    ///     // less_efficient_algorithm_for_bytes(suffix);
4132    /// }
4133    /// ```
4134    #[stable(feature = "slice_align_to", since = "1.30.0")]
4135    #[must_use]
4136    pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
4137        // Note that most of this function will be constant-evaluated,
4138        if U::IS_ZST || T::IS_ZST {
4139            // handle ZSTs specially, which is – don't handle them at all.
4140            return (self, &mut [], &mut []);
4141        }
4142
4143        // First, find at what point do we split between the first and 2nd slice. Easy with
4144        // ptr.align_offset.
4145        let ptr = self.as_ptr();
4146        // SAFETY: Here we are ensuring we will use aligned pointers for U for the
4147        // rest of the method. This is done by passing a pointer to &[T] with an
4148        // alignment targeted for U.
4149        // `crate::ptr::align_offset` is called with a correctly aligned and
4150        // valid pointer `ptr` (it comes from a reference to `self`) and with
4151        // a size that is a power of two (since it comes from the alignment for U),
4152        // satisfying its safety constraints.
4153        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4154        if offset > self.len() {
4155            (self, &mut [], &mut [])
4156        } else {
4157            let (left, rest) = self.split_at_mut(offset);
4158            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4159            let rest_len = rest.len();
4160            let mut_ptr = rest.as_mut_ptr();
4161            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4162            #[cfg(miri)]
4163            crate::intrinsics::miri_promise_symbolic_alignment(
4164                mut_ptr.cast() as *const (),
4165                align_of::<U>(),
4166            );
4167            // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
4168            // SAFETY: see comments for `align_to`.
4169            unsafe {
4170                (
4171                    left,
4172                    from_raw_parts_mut(mut_ptr as *mut U, us_len),
4173                    from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
4174                )
4175            }
4176        }
4177    }
4178
4179    /// Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix.
4180    ///
4181    /// This is a safe wrapper around [`slice::align_to`], so inherits the same
4182    /// guarantees as that method.
4183    ///
4184    /// # Panics
4185    ///
4186    /// This will panic if the size of the SIMD type is different from
4187    /// `LANES` times that of the scalar.
4188    ///
4189    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4190    /// that from ever happening, as only power-of-two numbers of lanes are
4191    /// supported.  It's possible that, in the future, those restrictions might
4192    /// be lifted in a way that would make it possible to see panics from this
4193    /// method for something like `LANES == 3`.
4194    ///
4195    /// # Examples
4196    ///
4197    /// ```
4198    /// #![feature(portable_simd)]
4199    /// use core::simd::prelude::*;
4200    ///
4201    /// let short = &[1, 2, 3];
4202    /// let (prefix, middle, suffix) = short.as_simd::<4>();
4203    /// assert_eq!(middle, []); // Not enough elements for anything in the middle
4204    ///
4205    /// // They might be split in any possible way between prefix and suffix
4206    /// let it = prefix.iter().chain(suffix).copied();
4207    /// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
4208    ///
4209    /// fn basic_simd_sum(x: &[f32]) -> f32 {
4210    ///     use std::ops::Add;
4211    ///     let (prefix, middle, suffix) = x.as_simd();
4212    ///     let sums = f32x4::from_array([
4213    ///         prefix.iter().copied().sum(),
4214    ///         0.0,
4215    ///         0.0,
4216    ///         suffix.iter().copied().sum(),
4217    ///     ]);
4218    ///     let sums = middle.iter().copied().fold(sums, f32x4::add);
4219    ///     sums.reduce_sum()
4220    /// }
4221    ///
4222    /// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
4223    /// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
4224    /// ```
4225    #[unstable(feature = "portable_simd", issue = "86656")]
4226    #[must_use]
4227    pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
4228    where
4229        Simd<T, LANES>: AsRef<[T; LANES]>,
4230        T: simd::SimdElement,
4231        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4232    {
4233        // These are expected to always match, as vector types are laid out like
4234        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4235        // might as well double-check since it'll optimize away anyhow.
4236        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4237
4238        // SAFETY: The simd types have the same layout as arrays, just with
4239        // potentially-higher alignment, so the de-facto transmutes are sound.
4240        unsafe { self.align_to() }
4241    }
4242
4243    /// Splits a mutable slice into a mutable prefix, a middle of aligned SIMD types,
4244    /// and a mutable suffix.
4245    ///
4246    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4247    /// guarantees as that method.
4248    ///
4249    /// This is the mutable version of [`slice::as_simd`]; see that for examples.
4250    ///
4251    /// # Panics
4252    ///
4253    /// This will panic if the size of the SIMD type is different from
4254    /// `LANES` times that of the scalar.
4255    ///
4256    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4257    /// that from ever happening, as only power-of-two numbers of lanes are
4258    /// supported.  It's possible that, in the future, those restrictions might
4259    /// be lifted in a way that would make it possible to see panics from this
4260    /// method for something like `LANES == 3`.
4261    #[unstable(feature = "portable_simd", issue = "86656")]
4262    #[must_use]
4263    pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
4264    where
4265        Simd<T, LANES>: AsMut<[T; LANES]>,
4266        T: simd::SimdElement,
4267        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4268    {
4269        // These are expected to always match, as vector types are laid out like
4270        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4271        // might as well double-check since it'll optimize away anyhow.
4272        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4273
4274        // SAFETY: The simd types have the same layout as arrays, just with
4275        // potentially-higher alignment, so the de-facto transmutes are sound.
4276        unsafe { self.align_to_mut() }
4277    }
4278
4279    /// Checks if the elements of this slice are sorted.
4280    ///
4281    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
4282    /// slice yields exactly zero or one element, `true` is returned.
4283    ///
4284    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
4285    /// implies that this function returns `false` if any two consecutive items are not
4286    /// comparable.
4287    ///
4288    /// # Examples
4289    ///
4290    /// ```
4291    /// let empty: [i32; 0] = [];
4292    ///
4293    /// assert!([1, 2, 2, 9].is_sorted());
4294    /// assert!(![1, 3, 2, 4].is_sorted());
4295    /// assert!([0].is_sorted());
4296    /// assert!(empty.is_sorted());
4297    /// assert!(![0.0, 1.0, f32::NAN].is_sorted());
4298    /// ```
4299    #[inline]
4300    #[stable(feature = "is_sorted", since = "1.82.0")]
4301    #[must_use]
4302    pub fn is_sorted(&self) -> bool
4303    where
4304        T: PartialOrd,
4305    {
4306        // This odd number works the best. 32 + 1 extra due to overlapping chunk boundaries.
4307        const CHUNK_SIZE: usize = 33;
4308        if self.len() < CHUNK_SIZE {
4309            return self.windows(2).all(|w| w[0] <= w[1]);
4310        }
4311        let mut i = 0;
4312        // Check in chunks for autovectorization.
4313        while i < self.len() - CHUNK_SIZE {
4314            let chunk = &self[i..i + CHUNK_SIZE];
4315            if !chunk.windows(2).fold(true, |acc, w| acc & (w[0] <= w[1])) {
4316                return false;
4317            }
4318            // We need to ensure that chunk boundaries are also sorted.
4319            // Overlap the next chunk with the last element of our last chunk.
4320            i += CHUNK_SIZE - 1;
4321        }
4322        self[i..].windows(2).all(|w| w[0] <= w[1])
4323    }
4324
4325    /// Checks if the elements of this slice are sorted using the given comparator function.
4326    ///
4327    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4328    /// function to determine whether two elements are to be considered in sorted order.
4329    ///
4330    /// # Examples
4331    ///
4332    /// ```
4333    /// assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
4334    /// assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));
4335    ///
4336    /// assert!([0].is_sorted_by(|a, b| true));
4337    /// assert!([0].is_sorted_by(|a, b| false));
4338    ///
4339    /// let empty: [i32; 0] = [];
4340    /// assert!(empty.is_sorted_by(|a, b| false));
4341    /// assert!(empty.is_sorted_by(|a, b| true));
4342    /// ```
4343    #[stable(feature = "is_sorted", since = "1.82.0")]
4344    #[must_use]
4345    pub fn is_sorted_by<'a, F>(&'a self, mut compare: F) -> bool
4346    where
4347        F: FnMut(&'a T, &'a T) -> bool,
4348    {
4349        self.array_windows().all(|[a, b]| compare(a, b))
4350    }
4351
4352    /// Checks if the elements of this slice are sorted using the given key extraction function.
4353    ///
4354    /// Instead of comparing the slice's elements directly, this function compares the keys of the
4355    /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
4356    /// documentation for more information.
4357    ///
4358    /// [`is_sorted`]: slice::is_sorted
4359    ///
4360    /// # Examples
4361    ///
4362    /// ```
4363    /// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
4364    /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
4365    /// ```
4366    #[inline]
4367    #[stable(feature = "is_sorted", since = "1.82.0")]
4368    #[must_use]
4369    pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
4370    where
4371        F: FnMut(&'a T) -> K,
4372        K: PartialOrd,
4373    {
4374        self.iter().is_sorted_by_key(f)
4375    }
4376
4377    /// Returns the index of the partition point according to the given predicate
4378    /// (the index of the first element of the second partition).
4379    ///
4380    /// The slice is assumed to be partitioned according to the given predicate.
4381    /// This means that all elements for which the predicate returns true are at the start of the slice
4382    /// and all elements for which the predicate returns false are at the end.
4383    /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0`
4384    /// (all odd numbers are at the start, all even at the end).
4385    ///
4386    /// If this slice is not partitioned, the returned result is unspecified and meaningless,
4387    /// as this method performs a kind of binary search.
4388    ///
4389    /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
4390    ///
4391    /// [`binary_search`]: slice::binary_search
4392    /// [`binary_search_by`]: slice::binary_search_by
4393    /// [`binary_search_by_key`]: slice::binary_search_by_key
4394    ///
4395    /// # Examples
4396    ///
4397    /// ```
4398    /// let v = [1, 2, 3, 3, 5, 6, 7];
4399    /// let i = v.partition_point(|&x| x < 5);
4400    ///
4401    /// assert_eq!(i, 4);
4402    /// assert!(v[..i].iter().all(|&x| x < 5));
4403    /// assert!(v[i..].iter().all(|&x| !(x < 5)));
4404    /// ```
4405    ///
4406    /// If all elements of the slice match the predicate, including if the slice
4407    /// is empty, then the length of the slice will be returned:
4408    ///
4409    /// ```
4410    /// let a = [2, 4, 8];
4411    /// assert_eq!(a.partition_point(|x| x < &100), a.len());
4412    /// let a: [i32; 0] = [];
4413    /// assert_eq!(a.partition_point(|x| x < &100), 0);
4414    /// ```
4415    ///
4416    /// If you want to insert an item to a sorted vector, while maintaining
4417    /// sort order:
4418    ///
4419    /// ```
4420    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
4421    /// let num = 42;
4422    /// let idx = s.partition_point(|&x| x <= num);
4423    /// s.insert(idx, num);
4424    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
4425    /// ```
4426    #[stable(feature = "partition_point", since = "1.52.0")]
4427    #[must_use]
4428    pub fn partition_point<P>(&self, mut pred: P) -> usize
4429    where
4430        P: FnMut(&T) -> bool,
4431    {
4432        self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i)
4433    }
4434
4435    /// Removes the subslice corresponding to the given range
4436    /// and returns a reference to it.
4437    ///
4438    /// Returns `None` and does not modify the slice if the given
4439    /// range is out of bounds.
4440    ///
4441    /// Note that this method only accepts one-sided ranges such as
4442    /// `2..` or `..6`, but not `2..6`.
4443    ///
4444    /// # Examples
4445    ///
4446    /// Splitting off the first three elements of a slice:
4447    ///
4448    /// ```
4449    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4450    /// let mut first_three = slice.split_off(..3).unwrap();
4451    ///
4452    /// assert_eq!(slice, &['d']);
4453    /// assert_eq!(first_three, &['a', 'b', 'c']);
4454    /// ```
4455    ///
4456    /// Splitting off a slice starting with the third element:
4457    ///
4458    /// ```
4459    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4460    /// let mut tail = slice.split_off(2..).unwrap();
4461    ///
4462    /// assert_eq!(slice, &['a', 'b']);
4463    /// assert_eq!(tail, &['c', 'd']);
4464    /// ```
4465    ///
4466    /// Getting `None` when `range` is out of bounds:
4467    ///
4468    /// ```
4469    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4470    ///
4471    /// assert_eq!(None, slice.split_off(5..));
4472    /// assert_eq!(None, slice.split_off(..5));
4473    /// assert_eq!(None, slice.split_off(..=4));
4474    /// let expected: &[char] = &['a', 'b', 'c', 'd'];
4475    /// assert_eq!(Some(expected), slice.split_off(..4));
4476    /// ```
4477    #[inline]
4478    #[must_use = "method does not modify the slice if the range is out of bounds"]
4479    #[stable(feature = "slice_take", since = "1.87.0")]
4480    pub fn split_off<'a, R: OneSidedRange<usize>>(
4481        self: &mut &'a Self,
4482        range: R,
4483    ) -> Option<&'a Self> {
4484        let (direction, split_index) = split_point_of(range)?;
4485        if split_index > self.len() {
4486            return None;
4487        }
4488        let (front, back) = self.split_at(split_index);
4489        match direction {
4490            Direction::Front => {
4491                *self = back;
4492                Some(front)
4493            }
4494            Direction::Back => {
4495                *self = front;
4496                Some(back)
4497            }
4498        }
4499    }
4500
4501    /// Removes the subslice corresponding to the given range
4502    /// and returns a mutable reference to it.
4503    ///
4504    /// Returns `None` and does not modify the slice if the given
4505    /// range is out of bounds.
4506    ///
4507    /// Note that this method only accepts one-sided ranges such as
4508    /// `2..` or `..6`, but not `2..6`.
4509    ///
4510    /// # Examples
4511    ///
4512    /// Splitting off the first three elements of a slice:
4513    ///
4514    /// ```
4515    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4516    /// let mut first_three = slice.split_off_mut(..3).unwrap();
4517    ///
4518    /// assert_eq!(slice, &mut ['d']);
4519    /// assert_eq!(first_three, &mut ['a', 'b', 'c']);
4520    /// ```
4521    ///
4522    /// Splitting off a slice starting with the third element:
4523    ///
4524    /// ```
4525    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4526    /// let mut tail = slice.split_off_mut(2..).unwrap();
4527    ///
4528    /// assert_eq!(slice, &mut ['a', 'b']);
4529    /// assert_eq!(tail, &mut ['c', 'd']);
4530    /// ```
4531    ///
4532    /// Getting `None` when `range` is out of bounds:
4533    ///
4534    /// ```
4535    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4536    ///
4537    /// assert_eq!(None, slice.split_off_mut(5..));
4538    /// assert_eq!(None, slice.split_off_mut(..5));
4539    /// assert_eq!(None, slice.split_off_mut(..=4));
4540    /// let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4541    /// assert_eq!(Some(expected), slice.split_off_mut(..4));
4542    /// ```
4543    #[inline]
4544    #[must_use = "method does not modify the slice if the range is out of bounds"]
4545    #[stable(feature = "slice_take", since = "1.87.0")]
4546    pub fn split_off_mut<'a, R: OneSidedRange<usize>>(
4547        self: &mut &'a mut Self,
4548        range: R,
4549    ) -> Option<&'a mut Self> {
4550        let (direction, split_index) = split_point_of(range)?;
4551        if split_index > self.len() {
4552            return None;
4553        }
4554        let (front, back) = mem::take(self).split_at_mut(split_index);
4555        match direction {
4556            Direction::Front => {
4557                *self = back;
4558                Some(front)
4559            }
4560            Direction::Back => {
4561                *self = front;
4562                Some(back)
4563            }
4564        }
4565    }
4566
4567    /// Removes the first element of the slice and returns a reference
4568    /// to it.
4569    ///
4570    /// Returns `None` if the slice is empty.
4571    ///
4572    /// # Examples
4573    ///
4574    /// ```
4575    /// let mut slice: &[_] = &['a', 'b', 'c'];
4576    /// let first = slice.split_off_first().unwrap();
4577    ///
4578    /// assert_eq!(slice, &['b', 'c']);
4579    /// assert_eq!(first, &'a');
4580    /// ```
4581    #[inline]
4582    #[stable(feature = "slice_take", since = "1.87.0")]
4583    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4584    pub const fn split_off_first<'a>(self: &mut &'a Self) -> Option<&'a T> {
4585        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4586        let Some((first, rem)) = self.split_first() else { return None };
4587        *self = rem;
4588        Some(first)
4589    }
4590
4591    /// Removes the first element of the slice and returns a mutable
4592    /// reference to it.
4593    ///
4594    /// Returns `None` if the slice is empty.
4595    ///
4596    /// # Examples
4597    ///
4598    /// ```
4599    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4600    /// let first = slice.split_off_first_mut().unwrap();
4601    /// *first = 'd';
4602    ///
4603    /// assert_eq!(slice, &['b', 'c']);
4604    /// assert_eq!(first, &'d');
4605    /// ```
4606    #[inline]
4607    #[stable(feature = "slice_take", since = "1.87.0")]
4608    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4609    pub const fn split_off_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4610        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4611        // Original: `mem::take(self).split_first_mut()?`
4612        let Some((first, rem)) = mem::replace(self, &mut []).split_first_mut() else { return None };
4613        *self = rem;
4614        Some(first)
4615    }
4616
4617    /// Removes the last element of the slice and returns a reference
4618    /// to it.
4619    ///
4620    /// Returns `None` if the slice is empty.
4621    ///
4622    /// # Examples
4623    ///
4624    /// ```
4625    /// let mut slice: &[_] = &['a', 'b', 'c'];
4626    /// let last = slice.split_off_last().unwrap();
4627    ///
4628    /// assert_eq!(slice, &['a', 'b']);
4629    /// assert_eq!(last, &'c');
4630    /// ```
4631    #[inline]
4632    #[stable(feature = "slice_take", since = "1.87.0")]
4633    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4634    pub const fn split_off_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
4635        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4636        let Some((last, rem)) = self.split_last() else { return None };
4637        *self = rem;
4638        Some(last)
4639    }
4640
4641    /// Removes the last element of the slice and returns a mutable
4642    /// reference to it.
4643    ///
4644    /// Returns `None` if the slice is empty.
4645    ///
4646    /// # Examples
4647    ///
4648    /// ```
4649    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4650    /// let last = slice.split_off_last_mut().unwrap();
4651    /// *last = 'd';
4652    ///
4653    /// assert_eq!(slice, &['a', 'b']);
4654    /// assert_eq!(last, &'d');
4655    /// ```
4656    #[inline]
4657    #[stable(feature = "slice_take", since = "1.87.0")]
4658    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4659    pub const fn split_off_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4660        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4661        // Original: `mem::take(self).split_last_mut()?`
4662        let Some((last, rem)) = mem::replace(self, &mut []).split_last_mut() else { return None };
4663        *self = rem;
4664        Some(last)
4665    }
4666
4667    /// Returns mutable references to many indices at once, without doing any checks.
4668    ///
4669    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4670    /// that this method takes an array, so all indices must be of the same type.
4671    /// If passed an array of `usize`s this method gives back an array of mutable references
4672    /// to single elements, while if passed an array of ranges it gives back an array of
4673    /// mutable references to slices.
4674    ///
4675    /// For a safe alternative see [`get_disjoint_mut`].
4676    ///
4677    /// # Safety
4678    ///
4679    /// Calling this method with overlapping or out-of-bounds indices is *[undefined behavior]*
4680    /// even if the resulting references are not used.
4681    ///
4682    /// # Examples
4683    ///
4684    /// ```
4685    /// let x = &mut [1, 2, 4];
4686    ///
4687    /// unsafe {
4688    ///     let [a, b] = x.get_disjoint_unchecked_mut([0, 2]);
4689    ///     *a *= 10;
4690    ///     *b *= 100;
4691    /// }
4692    /// assert_eq!(x, &[10, 2, 400]);
4693    ///
4694    /// unsafe {
4695    ///     let [a, b] = x.get_disjoint_unchecked_mut([0..1, 1..3]);
4696    ///     a[0] = 8;
4697    ///     b[0] = 88;
4698    ///     b[1] = 888;
4699    /// }
4700    /// assert_eq!(x, &[8, 88, 888]);
4701    ///
4702    /// unsafe {
4703    ///     let [a, b] = x.get_disjoint_unchecked_mut([1..=2, 0..=0]);
4704    ///     a[0] = 11;
4705    ///     a[1] = 111;
4706    ///     b[0] = 1;
4707    /// }
4708    /// assert_eq!(x, &[1, 11, 111]);
4709    /// ```
4710    ///
4711    /// [`get_disjoint_mut`]: slice::get_disjoint_mut
4712    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
4713    #[stable(feature = "get_many_mut", since = "1.86.0")]
4714    #[inline]
4715    #[track_caller]
4716    pub unsafe fn get_disjoint_unchecked_mut<I, const N: usize>(
4717        &mut self,
4718        indices: [I; N],
4719    ) -> [&mut I::Output; N]
4720    where
4721        I: GetDisjointMutIndex + SliceIndex<Self>,
4722    {
4723        // NB: This implementation is written as it is because any variation of
4724        // `indices.map(|i| self.get_unchecked_mut(i))` would make miri unhappy,
4725        // or generate worse code otherwise. This is also why we need to go
4726        // through a raw pointer here.
4727        let slice: *mut [T] = self;
4728        let mut arr: MaybeUninit<[&mut I::Output; N]> = MaybeUninit::uninit();
4729        let arr_ptr = arr.as_mut_ptr();
4730
4731        // SAFETY: We expect `indices` to contain disjunct values that are
4732        // in bounds of `self`.
4733        unsafe {
4734            for i in 0..N {
4735                let idx = indices.get_unchecked(i).clone();
4736                arr_ptr.cast::<&mut I::Output>().add(i).write(&mut *slice.get_unchecked_mut(idx));
4737            }
4738            arr.assume_init()
4739        }
4740    }
4741
4742    /// Returns mutable references to many indices at once.
4743    ///
4744    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4745    /// that this method takes an array, so all indices must be of the same type.
4746    /// If passed an array of `usize`s this method gives back an array of mutable references
4747    /// to single elements, while if passed an array of ranges it gives back an array of
4748    /// mutable references to slices.
4749    ///
4750    /// Returns an error if any index is out-of-bounds, or if there are overlapping indices.
4751    /// An empty range is not considered to overlap if it is located at the beginning or at
4752    /// the end of another range, but is considered to overlap if it is located in the middle.
4753    ///
4754    /// This method does a O(n^2) check to check that there are no overlapping indices, so be careful
4755    /// when passing many indices.
4756    ///
4757    /// # Examples
4758    ///
4759    /// ```
4760    /// let v = &mut [1, 2, 3];
4761    /// if let Ok([a, b]) = v.get_disjoint_mut([0, 2]) {
4762    ///     *a = 413;
4763    ///     *b = 612;
4764    /// }
4765    /// assert_eq!(v, &[413, 2, 612]);
4766    ///
4767    /// if let Ok([a, b]) = v.get_disjoint_mut([0..1, 1..3]) {
4768    ///     a[0] = 8;
4769    ///     b[0] = 88;
4770    ///     b[1] = 888;
4771    /// }
4772    /// assert_eq!(v, &[8, 88, 888]);
4773    ///
4774    /// if let Ok([a, b]) = v.get_disjoint_mut([1..=2, 0..=0]) {
4775    ///     a[0] = 11;
4776    ///     a[1] = 111;
4777    ///     b[0] = 1;
4778    /// }
4779    /// assert_eq!(v, &[1, 11, 111]);
4780    /// ```
4781    #[stable(feature = "get_many_mut", since = "1.86.0")]
4782    #[inline]
4783    pub fn get_disjoint_mut<I, const N: usize>(
4784        &mut self,
4785        indices: [I; N],
4786    ) -> Result<[&mut I::Output; N], GetDisjointMutError>
4787    where
4788        I: GetDisjointMutIndex + SliceIndex<Self>,
4789    {
4790        get_disjoint_check_valid(&indices, self.len())?;
4791        // SAFETY: The `get_disjoint_check_valid()` call checked that all indices
4792        // are disjunct and in bounds.
4793        unsafe { Ok(self.get_disjoint_unchecked_mut(indices)) }
4794    }
4795
4796    /// Returns the index that an element reference points to.
4797    ///
4798    /// Returns `None` if `element` does not point to the start of an element within the slice.
4799    ///
4800    /// This method is useful for extending slice iterators like [`slice::split`].
4801    ///
4802    /// Note that this uses pointer arithmetic and **does not compare elements**.
4803    /// To find the index of an element via comparison, use
4804    /// [`.iter().position()`](crate::iter::Iterator::position) instead.
4805    ///
4806    /// # Panics
4807    /// Panics if `T` is zero-sized.
4808    ///
4809    /// # Examples
4810    /// Basic usage:
4811    /// ```
4812    /// #![feature(substr_range)]
4813    ///
4814    /// let nums: &[u32] = &[1, 7, 1, 1];
4815    /// let num = &nums[2];
4816    ///
4817    /// assert_eq!(num, &1);
4818    /// assert_eq!(nums.element_offset(num), Some(2));
4819    /// ```
4820    /// Returning `None` with an unaligned element:
4821    /// ```
4822    /// #![feature(substr_range)]
4823    ///
4824    /// let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
4825    /// let flat_arr: &[u32] = arr.as_flattened();
4826    ///
4827    /// let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
4828    /// let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();
4829    ///
4830    /// assert_eq!(ok_elm, &[0, 1]);
4831    /// assert_eq!(weird_elm, &[1, 2]);
4832    ///
4833    /// assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0
4834    /// assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1
4835    /// ```
4836    #[must_use]
4837    #[unstable(feature = "substr_range", issue = "126769")]
4838    pub fn element_offset(&self, element: &T) -> Option<usize> {
4839        if T::IS_ZST {
4840            panic!("elements are zero-sized");
4841        }
4842
4843        let self_start = self.as_ptr().addr();
4844        let elem_start = ptr::from_ref(element).addr();
4845
4846        let byte_offset = elem_start.wrapping_sub(self_start);
4847
4848        if !byte_offset.is_multiple_of(size_of::<T>()) {
4849            return None;
4850        }
4851
4852        let offset = byte_offset / size_of::<T>();
4853
4854        if offset < self.len() { Some(offset) } else { None }
4855    }
4856
4857    /// Returns the range of indices that a subslice points to.
4858    ///
4859    /// Returns `None` if `subslice` does not point within the slice or if it is not aligned with the
4860    /// elements in the slice.
4861    ///
4862    /// This method **does not compare elements**. Instead, this method finds the location in the slice that
4863    /// `subslice` was obtained from. To find the index of a subslice via comparison, instead use
4864    /// [`.windows()`](slice::windows)[`.position()`](crate::iter::Iterator::position).
4865    ///
4866    /// This method is useful for extending slice iterators like [`slice::split`].
4867    ///
4868    /// Note that this may return a false positive (either `Some(0..0)` or `Some(self.len()..self.len())`)
4869    /// if `subslice` has a length of zero and points to the beginning or end of another, separate, slice.
4870    ///
4871    /// # Panics
4872    /// Panics if `T` is zero-sized.
4873    ///
4874    /// # Examples
4875    /// Basic usage:
4876    /// ```
4877    /// #![feature(substr_range)]
4878    ///
4879    /// let nums = &[0, 5, 10, 0, 0, 5];
4880    ///
4881    /// let mut iter = nums
4882    ///     .split(|t| *t == 0)
4883    ///     .map(|n| nums.subslice_range(n).unwrap());
4884    ///
4885    /// assert_eq!(iter.next(), Some(0..0));
4886    /// assert_eq!(iter.next(), Some(1..3));
4887    /// assert_eq!(iter.next(), Some(4..4));
4888    /// assert_eq!(iter.next(), Some(5..6));
4889    /// ```
4890    #[must_use]
4891    #[unstable(feature = "substr_range", issue = "126769")]
4892    pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>> {
4893        if T::IS_ZST {
4894            panic!("elements are zero-sized");
4895        }
4896
4897        let self_start = self.as_ptr().addr();
4898        let subslice_start = subslice.as_ptr().addr();
4899
4900        let byte_start = subslice_start.wrapping_sub(self_start);
4901
4902        if !byte_start.is_multiple_of(size_of::<T>()) {
4903            return None;
4904        }
4905
4906        let start = byte_start / size_of::<T>();
4907        let end = start.wrapping_add(subslice.len());
4908
4909        if start <= self.len() && end <= self.len() { Some(start..end) } else { None }
4910    }
4911}
4912
4913impl<T> [MaybeUninit<T>] {
4914    /// Transmutes the mutable uninitialized slice to a mutable uninitialized slice of
4915    /// another type, ensuring alignment of the types is maintained.
4916    ///
4917    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4918    /// guarantees as that method.
4919    ///
4920    /// # Examples
4921    ///
4922    /// ```
4923    /// #![feature(align_to_uninit_mut)]
4924    /// use std::mem::MaybeUninit;
4925    ///
4926    /// pub struct BumpAllocator<'scope> {
4927    ///     memory: &'scope mut [MaybeUninit<u8>],
4928    /// }
4929    ///
4930    /// impl<'scope> BumpAllocator<'scope> {
4931    ///     pub fn new(memory: &'scope mut [MaybeUninit<u8>]) -> Self {
4932    ///         Self { memory }
4933    ///     }
4934    ///     pub fn try_alloc_uninit<T>(&mut self) -> Option<&'scope mut MaybeUninit<T>> {
4935    ///         let first_end = self.memory.as_ptr().align_offset(align_of::<T>()) + size_of::<T>();
4936    ///         let prefix = self.memory.split_off_mut(..first_end)?;
4937    ///         Some(&mut prefix.align_to_uninit_mut::<T>().1[0])
4938    ///     }
4939    ///     pub fn try_alloc_u32(&mut self, value: u32) -> Option<&'scope mut u32> {
4940    ///         let uninit = self.try_alloc_uninit()?;
4941    ///         Some(uninit.write(value))
4942    ///     }
4943    /// }
4944    ///
4945    /// let mut memory = [MaybeUninit::<u8>::uninit(); 10];
4946    /// let mut allocator = BumpAllocator::new(&mut memory);
4947    /// let v = allocator.try_alloc_u32(42);
4948    /// assert_eq!(v, Some(&mut 42));
4949    /// ```
4950    #[unstable(feature = "align_to_uninit_mut", issue = "139062")]
4951    #[inline]
4952    #[must_use]
4953    pub fn align_to_uninit_mut<U>(&mut self) -> (&mut Self, &mut [MaybeUninit<U>], &mut Self) {
4954        // SAFETY: `MaybeUninit` is transparent. Correct size and alignment are guaranteed by
4955        // `align_to_mut` itself. Therefore the only thing that we have to ensure for a safe
4956        // `transmute` is that the values are valid for the types involved. But for `MaybeUninit`
4957        // any values are valid, so this operation is safe.
4958        unsafe { self.align_to_mut() }
4959    }
4960}
4961
4962impl<T, const N: usize> [[T; N]] {
4963    /// Takes a `&[[T; N]]`, and flattens it to a `&[T]`.
4964    ///
4965    /// For the opposite operation, see [`as_chunks`] and [`as_rchunks`].
4966    ///
4967    /// [`as_chunks`]: slice::as_chunks
4968    /// [`as_rchunks`]: slice::as_rchunks
4969    ///
4970    /// # Panics
4971    ///
4972    /// This panics if the length of the resulting slice would overflow a `usize`.
4973    ///
4974    /// This is only possible when flattening a slice of arrays of zero-sized
4975    /// types, and thus tends to be irrelevant in practice. If
4976    /// `size_of::<T>() > 0`, this will never panic.
4977    ///
4978    /// # Examples
4979    ///
4980    /// ```
4981    /// assert_eq!([[1, 2, 3], [4, 5, 6]].as_flattened(), &[1, 2, 3, 4, 5, 6]);
4982    ///
4983    /// assert_eq!(
4984    ///     [[1, 2, 3], [4, 5, 6]].as_flattened(),
4985    ///     [[1, 2], [3, 4], [5, 6]].as_flattened(),
4986    /// );
4987    ///
4988    /// let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
4989    /// assert!(slice_of_empty_arrays.as_flattened().is_empty());
4990    ///
4991    /// let empty_slice_of_arrays: &[[u32; 10]] = &[];
4992    /// assert!(empty_slice_of_arrays.as_flattened().is_empty());
4993    /// ```
4994    #[stable(feature = "slice_flatten", since = "1.80.0")]
4995    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
4996    pub const fn as_flattened(&self) -> &[T] {
4997        let len = if T::IS_ZST {
4998            self.len().checked_mul(N).expect("slice len overflow")
4999        } else {
5000            // SAFETY: `self.len() * N` cannot overflow because `self` is
5001            // already in the address space.
5002            unsafe { self.len().unchecked_mul(N) }
5003        };
5004        // SAFETY: `[T]` is layout-identical to `[T; N]`
5005        unsafe { from_raw_parts(self.as_ptr().cast(), len) }
5006    }
5007
5008    /// Takes a `&mut [[T; N]]`, and flattens it to a `&mut [T]`.
5009    ///
5010    /// For the opposite operation, see [`as_chunks_mut`] and [`as_rchunks_mut`].
5011    ///
5012    /// [`as_chunks_mut`]: slice::as_chunks_mut
5013    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
5014    ///
5015    /// # Panics
5016    ///
5017    /// This panics if the length of the resulting slice would overflow a `usize`.
5018    ///
5019    /// This is only possible when flattening a slice of arrays of zero-sized
5020    /// types, and thus tends to be irrelevant in practice. If
5021    /// `size_of::<T>() > 0`, this will never panic.
5022    ///
5023    /// # Examples
5024    ///
5025    /// ```
5026    /// fn add_5_to_all(slice: &mut [i32]) {
5027    ///     for i in slice {
5028    ///         *i += 5;
5029    ///     }
5030    /// }
5031    ///
5032    /// let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
5033    /// add_5_to_all(array.as_flattened_mut());
5034    /// assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
5035    /// ```
5036    #[stable(feature = "slice_flatten", since = "1.80.0")]
5037    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
5038    pub const fn as_flattened_mut(&mut self) -> &mut [T] {
5039        let len = if T::IS_ZST {
5040            self.len().checked_mul(N).expect("slice len overflow")
5041        } else {
5042            // SAFETY: `self.len() * N` cannot overflow because `self` is
5043            // already in the address space.
5044            unsafe { self.len().unchecked_mul(N) }
5045        };
5046        // SAFETY: `[T]` is layout-identical to `[T; N]`
5047        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), len) }
5048    }
5049}
5050
5051impl [f32] {
5052    /// Sorts the slice of floats.
5053    ///
5054    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5055    /// the ordering defined by [`f32::total_cmp`].
5056    ///
5057    /// # Current implementation
5058    ///
5059    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5060    ///
5061    /// # Examples
5062    ///
5063    /// ```
5064    /// #![feature(sort_floats)]
5065    /// let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
5066    ///
5067    /// v.sort_floats();
5068    /// let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
5069    /// assert_eq!(&v[..8], &sorted[..8]);
5070    /// assert!(v[8].is_nan());
5071    /// ```
5072    #[unstable(feature = "sort_floats", issue = "93396")]
5073    #[inline]
5074    pub fn sort_floats(&mut self) {
5075        self.sort_unstable_by(f32::total_cmp);
5076    }
5077}
5078
5079impl [f64] {
5080    /// Sorts the slice of floats.
5081    ///
5082    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5083    /// the ordering defined by [`f64::total_cmp`].
5084    ///
5085    /// # Current implementation
5086    ///
5087    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5088    ///
5089    /// # Examples
5090    ///
5091    /// ```
5092    /// #![feature(sort_floats)]
5093    /// let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
5094    ///
5095    /// v.sort_floats();
5096    /// let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
5097    /// assert_eq!(&v[..8], &sorted[..8]);
5098    /// assert!(v[8].is_nan());
5099    /// ```
5100    #[unstable(feature = "sort_floats", issue = "93396")]
5101    #[inline]
5102    pub fn sort_floats(&mut self) {
5103        self.sort_unstable_by(f64::total_cmp);
5104    }
5105}
5106
5107/// Copies `src` to `dest`.
5108///
5109/// # Safety
5110/// `T` must implement one of `Copy` or `TrivialClone`.
5111#[track_caller]
5112const unsafe fn copy_from_slice_impl<T: Clone>(dest: &mut [T], src: &[T]) {
5113    // The panic code path was put into a cold function to not bloat the
5114    // call site.
5115    #[cfg_attr(not(panic = "immediate-abort"), inline(never), cold)]
5116    #[cfg_attr(panic = "immediate-abort", inline)]
5117    #[track_caller]
5118    const fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
5119        const_panic!(
5120            "copy_from_slice: source slice length does not match destination slice length",
5121            "copy_from_slice: source slice length ({src_len}) does not match destination slice length ({dst_len})",
5122            src_len: usize,
5123            dst_len: usize,
5124        )
5125    }
5126
5127    if dest.len() != src.len() {
5128        len_mismatch_fail(dest.len(), src.len());
5129    }
5130
5131    // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
5132    // checked to have the same length. The slices cannot overlap because
5133    // mutable references are exclusive.
5134    unsafe {
5135        ptr::copy_nonoverlapping(src.as_ptr(), dest.as_mut_ptr(), dest.len());
5136    }
5137}
5138
5139trait CloneFromSpec<T> {
5140    fn spec_clone_from(&mut self, src: &[T]);
5141}
5142
5143impl<T> CloneFromSpec<T> for [T]
5144where
5145    T: Clone,
5146{
5147    #[track_caller]
5148    default fn spec_clone_from(&mut self, src: &[T]) {
5149        assert!(self.len() == src.len(), "destination and source slices have different lengths");
5150        // NOTE: We need to explicitly slice them to the same length
5151        // to make it easier for the optimizer to elide bounds checking.
5152        // But since it can't be relied on we also have an explicit specialization for T: Copy.
5153        let len = self.len();
5154        let src = &src[..len];
5155        for i in 0..len {
5156            self[i].clone_from(&src[i]);
5157        }
5158    }
5159}
5160
5161impl<T> CloneFromSpec<T> for [T]
5162where
5163    T: TrivialClone,
5164{
5165    #[track_caller]
5166    fn spec_clone_from(&mut self, src: &[T]) {
5167        // SAFETY: `T` implements `TrivialClone`.
5168        unsafe {
5169            copy_from_slice_impl(self, src);
5170        }
5171    }
5172}
5173
5174#[stable(feature = "rust1", since = "1.0.0")]
5175#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5176impl<T> const Default for &[T] {
5177    /// Creates an empty slice.
5178    fn default() -> Self {
5179        &[]
5180    }
5181}
5182
5183#[stable(feature = "mut_slice_default", since = "1.5.0")]
5184#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5185impl<T> const Default for &mut [T] {
5186    /// Creates a mutable empty slice.
5187    fn default() -> Self {
5188        &mut []
5189    }
5190}
5191
5192#[unstable(feature = "slice_pattern", reason = "stopgap trait for slice patterns", issue = "56345")]
5193/// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`.  At a future
5194/// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to
5195/// `str`) to slices, and then this trait will be replaced or abolished.
5196pub trait SlicePattern {
5197    /// The element type of the slice being matched on.
5198    type Item;
5199
5200    /// Currently, the consumers of `SlicePattern` need a slice.
5201    fn as_slice(&self) -> &[Self::Item];
5202}
5203
5204#[stable(feature = "slice_strip", since = "1.51.0")]
5205impl<T> SlicePattern for [T] {
5206    type Item = T;
5207
5208    #[inline]
5209    fn as_slice(&self) -> &[Self::Item] {
5210        self
5211    }
5212}
5213
5214#[stable(feature = "slice_strip", since = "1.51.0")]
5215impl<T, const N: usize> SlicePattern for [T; N] {
5216    type Item = T;
5217
5218    #[inline]
5219    fn as_slice(&self) -> &[Self::Item] {
5220        self
5221    }
5222}
5223
5224/// This checks every index against each other, and against `len`.
5225///
5226/// This will do `binomial(N + 1, 2) = N * (N + 1) / 2 = 0, 1, 3, 6, 10, ..`
5227/// comparison operations.
5228#[inline]
5229fn get_disjoint_check_valid<I: GetDisjointMutIndex, const N: usize>(
5230    indices: &[I; N],
5231    len: usize,
5232) -> Result<(), GetDisjointMutError> {
5233    // NB: The optimizer should inline the loops into a sequence
5234    // of instructions without additional branching.
5235    for (i, idx) in indices.iter().enumerate() {
5236        if !idx.is_in_bounds(len) {
5237            return Err(GetDisjointMutError::IndexOutOfBounds);
5238        }
5239        for idx2 in &indices[..i] {
5240            if idx.is_overlapping(idx2) {
5241                return Err(GetDisjointMutError::OverlappingIndices);
5242            }
5243        }
5244    }
5245    Ok(())
5246}
5247
5248/// The error type returned by [`get_disjoint_mut`][`slice::get_disjoint_mut`].
5249///
5250/// It indicates one of two possible errors:
5251/// - An index is out-of-bounds.
5252/// - The same index appeared multiple times in the array
5253///   (or different but overlapping indices when ranges are provided).
5254///
5255/// # Examples
5256///
5257/// ```
5258/// use std::slice::GetDisjointMutError;
5259///
5260/// let v = &mut [1, 2, 3];
5261/// assert_eq!(v.get_disjoint_mut([0, 999]), Err(GetDisjointMutError::IndexOutOfBounds));
5262/// assert_eq!(v.get_disjoint_mut([1, 1]), Err(GetDisjointMutError::OverlappingIndices));
5263/// ```
5264#[stable(feature = "get_many_mut", since = "1.86.0")]
5265#[derive(Debug, Clone, PartialEq, Eq)]
5266pub enum GetDisjointMutError {
5267    /// An index provided was out-of-bounds for the slice.
5268    IndexOutOfBounds,
5269    /// Two indices provided were overlapping.
5270    OverlappingIndices,
5271}
5272
5273#[stable(feature = "get_many_mut", since = "1.86.0")]
5274impl fmt::Display for GetDisjointMutError {
5275    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5276        let msg = match self {
5277            GetDisjointMutError::IndexOutOfBounds => "an index is out of bounds",
5278            GetDisjointMutError::OverlappingIndices => "there were overlapping indices",
5279        };
5280        fmt::Display::fmt(msg, f)
5281    }
5282}
5283
5284mod private_get_disjoint_mut_index {
5285    use super::{Range, RangeInclusive, range};
5286
5287    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5288    pub trait Sealed {}
5289
5290    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5291    impl Sealed for usize {}
5292    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5293    impl Sealed for Range<usize> {}
5294    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5295    impl Sealed for RangeInclusive<usize> {}
5296    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5297    impl Sealed for range::Range<usize> {}
5298    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5299    impl Sealed for range::RangeInclusive<usize> {}
5300}
5301
5302/// A helper trait for `<[T]>::get_disjoint_mut()`.
5303///
5304/// # Safety
5305///
5306/// If `is_in_bounds()` returns `true` and `is_overlapping()` returns `false`,
5307/// it must be safe to index the slice with the indices.
5308#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5309pub unsafe trait GetDisjointMutIndex:
5310    Clone + private_get_disjoint_mut_index::Sealed
5311{
5312    /// Returns `true` if `self` is in bounds for `len` slice elements.
5313    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5314    fn is_in_bounds(&self, len: usize) -> bool;
5315
5316    /// Returns `true` if `self` overlaps with `other`.
5317    ///
5318    /// Note that we don't consider zero-length ranges to overlap at the beginning or the end,
5319    /// but do consider them to overlap in the middle.
5320    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5321    fn is_overlapping(&self, other: &Self) -> bool;
5322}
5323
5324#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5325// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5326unsafe impl GetDisjointMutIndex for usize {
5327    #[inline]
5328    fn is_in_bounds(&self, len: usize) -> bool {
5329        *self < len
5330    }
5331
5332    #[inline]
5333    fn is_overlapping(&self, other: &Self) -> bool {
5334        *self == *other
5335    }
5336}
5337
5338#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5339// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5340unsafe impl GetDisjointMutIndex for Range<usize> {
5341    #[inline]
5342    fn is_in_bounds(&self, len: usize) -> bool {
5343        (self.start <= self.end) & (self.end <= len)
5344    }
5345
5346    #[inline]
5347    fn is_overlapping(&self, other: &Self) -> bool {
5348        (self.start < other.end) & (other.start < self.end)
5349    }
5350}
5351
5352#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5353// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5354unsafe impl GetDisjointMutIndex for RangeInclusive<usize> {
5355    #[inline]
5356    fn is_in_bounds(&self, len: usize) -> bool {
5357        (self.start <= self.end) & (self.end < len)
5358    }
5359
5360    #[inline]
5361    fn is_overlapping(&self, other: &Self) -> bool {
5362        (self.start <= other.end) & (other.start <= self.end)
5363    }
5364}
5365
5366#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5367// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5368unsafe impl GetDisjointMutIndex for range::Range<usize> {
5369    #[inline]
5370    fn is_in_bounds(&self, len: usize) -> bool {
5371        Range::from(*self).is_in_bounds(len)
5372    }
5373
5374    #[inline]
5375    fn is_overlapping(&self, other: &Self) -> bool {
5376        Range::from(*self).is_overlapping(&Range::from(*other))
5377    }
5378}
5379
5380#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5381// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5382unsafe impl GetDisjointMutIndex for range::RangeInclusive<usize> {
5383    #[inline]
5384    fn is_in_bounds(&self, len: usize) -> bool {
5385        RangeInclusive::from(*self).is_in_bounds(len)
5386    }
5387
5388    #[inline]
5389    fn is_overlapping(&self, other: &Self) -> bool {
5390        RangeInclusive::from(*self).is_overlapping(&RangeInclusive::from(*other))
5391    }
5392}