core/num/
f64.rs

1//! Constants for the `f64` double-precision floating point type.
2//!
3//! *[See also the `f64` primitive type][f64].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f64` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// The radix or base of the internal representation of `f64`.
20/// Use [`f64::RADIX`] instead.
21///
22/// # Examples
23///
24/// ```rust
25/// // deprecated way
26/// # #[allow(deprecated, deprecated_in_future)]
27/// let r = std::f64::RADIX;
28///
29/// // intended way
30/// let r = f64::RADIX;
31/// ```
32#[stable(feature = "rust1", since = "1.0.0")]
33#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")]
34#[rustc_diagnostic_item = "f64_legacy_const_radix"]
35pub const RADIX: u32 = f64::RADIX;
36
37/// Number of significant digits in base 2.
38/// Use [`f64::MANTISSA_DIGITS`] instead.
39///
40/// # Examples
41///
42/// ```rust
43/// // deprecated way
44/// # #[allow(deprecated, deprecated_in_future)]
45/// let d = std::f64::MANTISSA_DIGITS;
46///
47/// // intended way
48/// let d = f64::MANTISSA_DIGITS;
49/// ```
50#[stable(feature = "rust1", since = "1.0.0")]
51#[deprecated(
52    since = "TBD",
53    note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
54)]
55#[rustc_diagnostic_item = "f64_legacy_const_mantissa_dig"]
56pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
57
58/// Approximate number of significant digits in base 10.
59/// Use [`f64::DIGITS`] instead.
60///
61/// # Examples
62///
63/// ```rust
64/// // deprecated way
65/// # #[allow(deprecated, deprecated_in_future)]
66/// let d = std::f64::DIGITS;
67///
68/// // intended way
69/// let d = f64::DIGITS;
70/// ```
71#[stable(feature = "rust1", since = "1.0.0")]
72#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")]
73#[rustc_diagnostic_item = "f64_legacy_const_digits"]
74pub const DIGITS: u32 = f64::DIGITS;
75
76/// [Machine epsilon] value for `f64`.
77/// Use [`f64::EPSILON`] instead.
78///
79/// This is the difference between `1.0` and the next larger representable number.
80///
81/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
82///
83/// # Examples
84///
85/// ```rust
86/// // deprecated way
87/// # #[allow(deprecated, deprecated_in_future)]
88/// let e = std::f64::EPSILON;
89///
90/// // intended way
91/// let e = f64::EPSILON;
92/// ```
93#[stable(feature = "rust1", since = "1.0.0")]
94#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")]
95#[rustc_diagnostic_item = "f64_legacy_const_epsilon"]
96pub const EPSILON: f64 = f64::EPSILON;
97
98/// Smallest finite `f64` value.
99/// Use [`f64::MIN`] instead.
100///
101/// # Examples
102///
103/// ```rust
104/// // deprecated way
105/// # #[allow(deprecated, deprecated_in_future)]
106/// let min = std::f64::MIN;
107///
108/// // intended way
109/// let min = f64::MIN;
110/// ```
111#[stable(feature = "rust1", since = "1.0.0")]
112#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")]
113#[rustc_diagnostic_item = "f64_legacy_const_min"]
114pub const MIN: f64 = f64::MIN;
115
116/// Smallest positive normal `f64` value.
117/// Use [`f64::MIN_POSITIVE`] instead.
118///
119/// # Examples
120///
121/// ```rust
122/// // deprecated way
123/// # #[allow(deprecated, deprecated_in_future)]
124/// let min = std::f64::MIN_POSITIVE;
125///
126/// // intended way
127/// let min = f64::MIN_POSITIVE;
128/// ```
129#[stable(feature = "rust1", since = "1.0.0")]
130#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")]
131#[rustc_diagnostic_item = "f64_legacy_const_min_positive"]
132pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
133
134/// Largest finite `f64` value.
135/// Use [`f64::MAX`] instead.
136///
137/// # Examples
138///
139/// ```rust
140/// // deprecated way
141/// # #[allow(deprecated, deprecated_in_future)]
142/// let max = std::f64::MAX;
143///
144/// // intended way
145/// let max = f64::MAX;
146/// ```
147#[stable(feature = "rust1", since = "1.0.0")]
148#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")]
149#[rustc_diagnostic_item = "f64_legacy_const_max"]
150pub const MAX: f64 = f64::MAX;
151
152/// One greater than the minimum possible normal power of 2 exponent.
153/// Use [`f64::MIN_EXP`] instead.
154///
155/// # Examples
156///
157/// ```rust
158/// // deprecated way
159/// # #[allow(deprecated, deprecated_in_future)]
160/// let min = std::f64::MIN_EXP;
161///
162/// // intended way
163/// let min = f64::MIN_EXP;
164/// ```
165#[stable(feature = "rust1", since = "1.0.0")]
166#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")]
167#[rustc_diagnostic_item = "f64_legacy_const_min_exp"]
168pub const MIN_EXP: i32 = f64::MIN_EXP;
169
170/// Maximum possible power of 2 exponent.
171/// Use [`f64::MAX_EXP`] instead.
172///
173/// # Examples
174///
175/// ```rust
176/// // deprecated way
177/// # #[allow(deprecated, deprecated_in_future)]
178/// let max = std::f64::MAX_EXP;
179///
180/// // intended way
181/// let max = f64::MAX_EXP;
182/// ```
183#[stable(feature = "rust1", since = "1.0.0")]
184#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")]
185#[rustc_diagnostic_item = "f64_legacy_const_max_exp"]
186pub const MAX_EXP: i32 = f64::MAX_EXP;
187
188/// Minimum possible normal power of 10 exponent.
189/// Use [`f64::MIN_10_EXP`] instead.
190///
191/// # Examples
192///
193/// ```rust
194/// // deprecated way
195/// # #[allow(deprecated, deprecated_in_future)]
196/// let min = std::f64::MIN_10_EXP;
197///
198/// // intended way
199/// let min = f64::MIN_10_EXP;
200/// ```
201#[stable(feature = "rust1", since = "1.0.0")]
202#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")]
203#[rustc_diagnostic_item = "f64_legacy_const_min_10_exp"]
204pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
205
206/// Maximum possible power of 10 exponent.
207/// Use [`f64::MAX_10_EXP`] instead.
208///
209/// # Examples
210///
211/// ```rust
212/// // deprecated way
213/// # #[allow(deprecated, deprecated_in_future)]
214/// let max = std::f64::MAX_10_EXP;
215///
216/// // intended way
217/// let max = f64::MAX_10_EXP;
218/// ```
219#[stable(feature = "rust1", since = "1.0.0")]
220#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")]
221#[rustc_diagnostic_item = "f64_legacy_const_max_10_exp"]
222pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
223
224/// Not a Number (NaN).
225/// Use [`f64::NAN`] instead.
226///
227/// # Examples
228///
229/// ```rust
230/// // deprecated way
231/// # #[allow(deprecated, deprecated_in_future)]
232/// let nan = std::f64::NAN;
233///
234/// // intended way
235/// let nan = f64::NAN;
236/// ```
237#[stable(feature = "rust1", since = "1.0.0")]
238#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")]
239#[rustc_diagnostic_item = "f64_legacy_const_nan"]
240pub const NAN: f64 = f64::NAN;
241
242/// Infinity (∞).
243/// Use [`f64::INFINITY`] instead.
244///
245/// # Examples
246///
247/// ```rust
248/// // deprecated way
249/// # #[allow(deprecated, deprecated_in_future)]
250/// let inf = std::f64::INFINITY;
251///
252/// // intended way
253/// let inf = f64::INFINITY;
254/// ```
255#[stable(feature = "rust1", since = "1.0.0")]
256#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")]
257#[rustc_diagnostic_item = "f64_legacy_const_infinity"]
258pub const INFINITY: f64 = f64::INFINITY;
259
260/// Negative infinity (−∞).
261/// Use [`f64::NEG_INFINITY`] instead.
262///
263/// # Examples
264///
265/// ```rust
266/// // deprecated way
267/// # #[allow(deprecated, deprecated_in_future)]
268/// let ninf = std::f64::NEG_INFINITY;
269///
270/// // intended way
271/// let ninf = f64::NEG_INFINITY;
272/// ```
273#[stable(feature = "rust1", since = "1.0.0")]
274#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")]
275#[rustc_diagnostic_item = "f64_legacy_const_neg_infinity"]
276pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
277
278/// Basic mathematical constants.
279#[stable(feature = "rust1", since = "1.0.0")]
280#[rustc_diagnostic_item = "f64_consts_mod"]
281pub mod consts {
282    // FIXME: replace with mathematical constants from cmath.
283
284    /// Archimedes' constant (π)
285    #[stable(feature = "rust1", since = "1.0.0")]
286    pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
287
288    /// The full circle constant (τ)
289    ///
290    /// Equal to 2π.
291    #[stable(feature = "tau_constant", since = "1.47.0")]
292    pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
293
294    /// The golden ratio (φ)
295    #[unstable(feature = "more_float_constants", issue = "146939")]
296    pub const PHI: f64 = 1.618033988749894848204586834365638118_f64;
297
298    /// The Euler-Mascheroni constant (γ)
299    #[unstable(feature = "more_float_constants", issue = "146939")]
300    pub const EGAMMA: f64 = 0.577215664901532860606512090082402431_f64;
301
302    /// π/2
303    #[stable(feature = "rust1", since = "1.0.0")]
304    pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
305
306    /// π/3
307    #[stable(feature = "rust1", since = "1.0.0")]
308    pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
309
310    /// π/4
311    #[stable(feature = "rust1", since = "1.0.0")]
312    pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
313
314    /// π/6
315    #[stable(feature = "rust1", since = "1.0.0")]
316    pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
317
318    /// π/8
319    #[stable(feature = "rust1", since = "1.0.0")]
320    pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
321
322    /// 1/π
323    #[stable(feature = "rust1", since = "1.0.0")]
324    pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
325
326    /// 1/sqrt(π)
327    #[unstable(feature = "more_float_constants", issue = "146939")]
328    pub const FRAC_1_SQRT_PI: f64 = 0.564189583547756286948079451560772586_f64;
329
330    /// 1/sqrt(2π)
331    #[doc(alias = "FRAC_1_SQRT_TAU")]
332    #[unstable(feature = "more_float_constants", issue = "146939")]
333    pub const FRAC_1_SQRT_2PI: f64 = 0.398942280401432677939946059934381868_f64;
334
335    /// 2/π
336    #[stable(feature = "rust1", since = "1.0.0")]
337    pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
338
339    /// 2/sqrt(π)
340    #[stable(feature = "rust1", since = "1.0.0")]
341    pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
342
343    /// sqrt(2)
344    #[stable(feature = "rust1", since = "1.0.0")]
345    pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
346
347    /// 1/sqrt(2)
348    #[stable(feature = "rust1", since = "1.0.0")]
349    pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
350
351    /// sqrt(3)
352    #[unstable(feature = "more_float_constants", issue = "146939")]
353    pub const SQRT_3: f64 = 1.732050807568877293527446341505872367_f64;
354
355    /// 1/sqrt(3)
356    #[unstable(feature = "more_float_constants", issue = "146939")]
357    pub const FRAC_1_SQRT_3: f64 = 0.577350269189625764509148780501957456_f64;
358
359    /// Euler's number (e)
360    #[stable(feature = "rust1", since = "1.0.0")]
361    pub const E: f64 = 2.71828182845904523536028747135266250_f64;
362
363    /// log<sub>2</sub>(10)
364    #[stable(feature = "extra_log_consts", since = "1.43.0")]
365    pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
366
367    /// log<sub>2</sub>(e)
368    #[stable(feature = "rust1", since = "1.0.0")]
369    pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
370
371    /// log<sub>10</sub>(2)
372    #[stable(feature = "extra_log_consts", since = "1.43.0")]
373    pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
374
375    /// log<sub>10</sub>(e)
376    #[stable(feature = "rust1", since = "1.0.0")]
377    pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
378
379    /// ln(2)
380    #[stable(feature = "rust1", since = "1.0.0")]
381    pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
382
383    /// ln(10)
384    #[stable(feature = "rust1", since = "1.0.0")]
385    pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
386}
387
388impl f64 {
389    /// The radix or base of the internal representation of `f64`.
390    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
391    pub const RADIX: u32 = 2;
392
393    /// Number of significant digits in base 2.
394    ///
395    /// Note that the size of the mantissa in the bitwise representation is one
396    /// smaller than this since the leading 1 is not stored explicitly.
397    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
398    pub const MANTISSA_DIGITS: u32 = 53;
399    /// Approximate number of significant digits in base 10.
400    ///
401    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
402    /// significant digits can be converted to `f64` and back without loss.
403    ///
404    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
405    ///
406    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
407    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
408    pub const DIGITS: u32 = 15;
409
410    /// [Machine epsilon] value for `f64`.
411    ///
412    /// This is the difference between `1.0` and the next larger representable number.
413    ///
414    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
415    ///
416    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
417    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
418    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
419    #[rustc_diagnostic_item = "f64_epsilon"]
420    pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
421
422    /// Smallest finite `f64` value.
423    ///
424    /// Equal to &minus;[`MAX`].
425    ///
426    /// [`MAX`]: f64::MAX
427    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
428    pub const MIN: f64 = -1.7976931348623157e+308_f64;
429    /// Smallest positive normal `f64` value.
430    ///
431    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
432    ///
433    /// [`MIN_EXP`]: f64::MIN_EXP
434    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
435    pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
436    /// Largest finite `f64` value.
437    ///
438    /// Equal to
439    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
440    ///
441    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
442    /// [`MAX_EXP`]: f64::MAX_EXP
443    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
444    pub const MAX: f64 = 1.7976931348623157e+308_f64;
445
446    /// One greater than the minimum possible *normal* power of 2 exponent
447    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
448    ///
449    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
450    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
451    /// In other words, all normal numbers representable by this type are
452    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
453    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
454    pub const MIN_EXP: i32 = -1021;
455    /// One greater than the maximum possible power of 2 exponent
456    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
457    ///
458    /// This corresponds to the exact maximum possible power of 2 exponent
459    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
460    /// In other words, all numbers representable by this type are
461    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
462    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
463    pub const MAX_EXP: i32 = 1024;
464
465    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
466    ///
467    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
468    ///
469    /// [`MIN_POSITIVE`]: f64::MIN_POSITIVE
470    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
471    pub const MIN_10_EXP: i32 = -307;
472    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
473    ///
474    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
475    ///
476    /// [`MAX`]: f64::MAX
477    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
478    pub const MAX_10_EXP: i32 = 308;
479
480    /// Not a Number (NaN).
481    ///
482    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
483    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
484    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
485    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
486    /// info.
487    ///
488    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
489    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
490    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
491    /// The concrete bit pattern may change across Rust versions and target platforms.
492    #[rustc_diagnostic_item = "f64_nan"]
493    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
494    #[allow(clippy::eq_op)]
495    pub const NAN: f64 = 0.0_f64 / 0.0_f64;
496    /// Infinity (∞).
497    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
498    pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
499    /// Negative infinity (−∞).
500    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
501    pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
502
503    /// Sign bit
504    pub(crate) const SIGN_MASK: u64 = 0x8000_0000_0000_0000;
505
506    /// Exponent mask
507    pub(crate) const EXP_MASK: u64 = 0x7ff0_0000_0000_0000;
508
509    /// Mantissa mask
510    pub(crate) const MAN_MASK: u64 = 0x000f_ffff_ffff_ffff;
511
512    /// Minimum representable positive value (min subnormal)
513    const TINY_BITS: u64 = 0x1;
514
515    /// Minimum representable negative value (min negative subnormal)
516    const NEG_TINY_BITS: u64 = Self::TINY_BITS | Self::SIGN_MASK;
517
518    /// Returns `true` if this value is NaN.
519    ///
520    /// ```
521    /// let nan = f64::NAN;
522    /// let f = 7.0_f64;
523    ///
524    /// assert!(nan.is_nan());
525    /// assert!(!f.is_nan());
526    /// ```
527    #[must_use]
528    #[stable(feature = "rust1", since = "1.0.0")]
529    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
530    #[inline]
531    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
532    pub const fn is_nan(self) -> bool {
533        self != self
534    }
535
536    /// Returns `true` if this value is positive infinity or negative infinity, and
537    /// `false` otherwise.
538    ///
539    /// ```
540    /// let f = 7.0f64;
541    /// let inf = f64::INFINITY;
542    /// let neg_inf = f64::NEG_INFINITY;
543    /// let nan = f64::NAN;
544    ///
545    /// assert!(!f.is_infinite());
546    /// assert!(!nan.is_infinite());
547    ///
548    /// assert!(inf.is_infinite());
549    /// assert!(neg_inf.is_infinite());
550    /// ```
551    #[must_use]
552    #[stable(feature = "rust1", since = "1.0.0")]
553    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
554    #[inline]
555    pub const fn is_infinite(self) -> bool {
556        // Getting clever with transmutation can result in incorrect answers on some FPUs
557        // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
558        // See https://github.com/rust-lang/rust/issues/72327
559        (self == f64::INFINITY) | (self == f64::NEG_INFINITY)
560    }
561
562    /// Returns `true` if this number is neither infinite nor NaN.
563    ///
564    /// ```
565    /// let f = 7.0f64;
566    /// let inf: f64 = f64::INFINITY;
567    /// let neg_inf: f64 = f64::NEG_INFINITY;
568    /// let nan: f64 = f64::NAN;
569    ///
570    /// assert!(f.is_finite());
571    ///
572    /// assert!(!nan.is_finite());
573    /// assert!(!inf.is_finite());
574    /// assert!(!neg_inf.is_finite());
575    /// ```
576    #[must_use]
577    #[stable(feature = "rust1", since = "1.0.0")]
578    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
579    #[inline]
580    pub const fn is_finite(self) -> bool {
581        // There's no need to handle NaN separately: if self is NaN,
582        // the comparison is not true, exactly as desired.
583        self.abs() < Self::INFINITY
584    }
585
586    /// Returns `true` if the number is [subnormal].
587    ///
588    /// ```
589    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
590    /// let max = f64::MAX;
591    /// let lower_than_min = 1.0e-308_f64;
592    /// let zero = 0.0_f64;
593    ///
594    /// assert!(!min.is_subnormal());
595    /// assert!(!max.is_subnormal());
596    ///
597    /// assert!(!zero.is_subnormal());
598    /// assert!(!f64::NAN.is_subnormal());
599    /// assert!(!f64::INFINITY.is_subnormal());
600    /// // Values between `0` and `min` are Subnormal.
601    /// assert!(lower_than_min.is_subnormal());
602    /// ```
603    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
604    #[must_use]
605    #[stable(feature = "is_subnormal", since = "1.53.0")]
606    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
607    #[inline]
608    pub const fn is_subnormal(self) -> bool {
609        matches!(self.classify(), FpCategory::Subnormal)
610    }
611
612    /// Returns `true` if the number is neither zero, infinite,
613    /// [subnormal], or NaN.
614    ///
615    /// ```
616    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
617    /// let max = f64::MAX;
618    /// let lower_than_min = 1.0e-308_f64;
619    /// let zero = 0.0f64;
620    ///
621    /// assert!(min.is_normal());
622    /// assert!(max.is_normal());
623    ///
624    /// assert!(!zero.is_normal());
625    /// assert!(!f64::NAN.is_normal());
626    /// assert!(!f64::INFINITY.is_normal());
627    /// // Values between `0` and `min` are Subnormal.
628    /// assert!(!lower_than_min.is_normal());
629    /// ```
630    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
631    #[must_use]
632    #[stable(feature = "rust1", since = "1.0.0")]
633    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
634    #[inline]
635    pub const fn is_normal(self) -> bool {
636        matches!(self.classify(), FpCategory::Normal)
637    }
638
639    /// Returns the floating point category of the number. If only one property
640    /// is going to be tested, it is generally faster to use the specific
641    /// predicate instead.
642    ///
643    /// ```
644    /// use std::num::FpCategory;
645    ///
646    /// let num = 12.4_f64;
647    /// let inf = f64::INFINITY;
648    ///
649    /// assert_eq!(num.classify(), FpCategory::Normal);
650    /// assert_eq!(inf.classify(), FpCategory::Infinite);
651    /// ```
652    #[stable(feature = "rust1", since = "1.0.0")]
653    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
654    pub const fn classify(self) -> FpCategory {
655        // We used to have complicated logic here that avoids the simple bit-based tests to work
656        // around buggy codegen for x87 targets (see
657        // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none
658        // of our tests is able to find any difference between the complicated and the naive
659        // version, so now we are back to the naive version.
660        let b = self.to_bits();
661        match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
662            (0, Self::EXP_MASK) => FpCategory::Infinite,
663            (_, Self::EXP_MASK) => FpCategory::Nan,
664            (0, 0) => FpCategory::Zero,
665            (_, 0) => FpCategory::Subnormal,
666            _ => FpCategory::Normal,
667        }
668    }
669
670    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
671    /// positive sign bit and positive infinity.
672    ///
673    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
674    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
675    /// conserved over arithmetic operations, the result of `is_sign_positive` on
676    /// a NaN might produce an unexpected or non-portable result. See the [specification
677    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
678    /// if you need fully portable behavior (will return `false` for all NaNs).
679    ///
680    /// ```
681    /// let f = 7.0_f64;
682    /// let g = -7.0_f64;
683    ///
684    /// assert!(f.is_sign_positive());
685    /// assert!(!g.is_sign_positive());
686    /// ```
687    #[must_use]
688    #[stable(feature = "rust1", since = "1.0.0")]
689    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
690    #[inline]
691    pub const fn is_sign_positive(self) -> bool {
692        !self.is_sign_negative()
693    }
694
695    #[must_use]
696    #[stable(feature = "rust1", since = "1.0.0")]
697    #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")]
698    #[inline]
699    #[doc(hidden)]
700    pub fn is_positive(self) -> bool {
701        self.is_sign_positive()
702    }
703
704    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
705    /// negative sign bit and negative infinity.
706    ///
707    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
708    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
709    /// conserved over arithmetic operations, the result of `is_sign_negative` on
710    /// a NaN might produce an unexpected or non-portable result. See the [specification
711    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
712    /// if you need fully portable behavior (will return `false` for all NaNs).
713    ///
714    /// ```
715    /// let f = 7.0_f64;
716    /// let g = -7.0_f64;
717    ///
718    /// assert!(!f.is_sign_negative());
719    /// assert!(g.is_sign_negative());
720    /// ```
721    #[must_use]
722    #[stable(feature = "rust1", since = "1.0.0")]
723    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
724    #[inline]
725    pub const fn is_sign_negative(self) -> bool {
726        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
727        // applies to zeros and NaNs as well.
728        self.to_bits() & Self::SIGN_MASK != 0
729    }
730
731    #[must_use]
732    #[stable(feature = "rust1", since = "1.0.0")]
733    #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")]
734    #[inline]
735    #[doc(hidden)]
736    pub fn is_negative(self) -> bool {
737        self.is_sign_negative()
738    }
739
740    /// Returns the least number greater than `self`.
741    ///
742    /// Let `TINY` be the smallest representable positive `f64`. Then,
743    ///  - if `self.is_nan()`, this returns `self`;
744    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
745    ///  - if `self` is `-TINY`, this returns -0.0;
746    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
747    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
748    ///  - otherwise the unique least value greater than `self` is returned.
749    ///
750    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
751    /// is finite `x == x.next_up().next_down()` also holds.
752    ///
753    /// ```rust
754    /// // f64::EPSILON is the difference between 1.0 and the next number up.
755    /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
756    /// // But not for most numbers.
757    /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
758    /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
759    /// ```
760    ///
761    /// This operation corresponds to IEEE-754 `nextUp`.
762    ///
763    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
764    /// [`INFINITY`]: Self::INFINITY
765    /// [`MIN`]: Self::MIN
766    /// [`MAX`]: Self::MAX
767    #[inline]
768    #[doc(alias = "nextUp")]
769    #[stable(feature = "float_next_up_down", since = "1.86.0")]
770    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
771    pub const fn next_up(self) -> Self {
772        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
773        // denormals to zero. This is in general unsound and unsupported, but here
774        // we do our best to still produce the correct result on such targets.
775        let bits = self.to_bits();
776        if self.is_nan() || bits == Self::INFINITY.to_bits() {
777            return self;
778        }
779
780        let abs = bits & !Self::SIGN_MASK;
781        let next_bits = if abs == 0 {
782            Self::TINY_BITS
783        } else if bits == abs {
784            bits + 1
785        } else {
786            bits - 1
787        };
788        Self::from_bits(next_bits)
789    }
790
791    /// Returns the greatest number less than `self`.
792    ///
793    /// Let `TINY` be the smallest representable positive `f64`. Then,
794    ///  - if `self.is_nan()`, this returns `self`;
795    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
796    ///  - if `self` is `TINY`, this returns 0.0;
797    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
798    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
799    ///  - otherwise the unique greatest value less than `self` is returned.
800    ///
801    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
802    /// is finite `x == x.next_down().next_up()` also holds.
803    ///
804    /// ```rust
805    /// let x = 1.0f64;
806    /// // Clamp value into range [0, 1).
807    /// let clamped = x.clamp(0.0, 1.0f64.next_down());
808    /// assert!(clamped < 1.0);
809    /// assert_eq!(clamped.next_up(), 1.0);
810    /// ```
811    ///
812    /// This operation corresponds to IEEE-754 `nextDown`.
813    ///
814    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
815    /// [`INFINITY`]: Self::INFINITY
816    /// [`MIN`]: Self::MIN
817    /// [`MAX`]: Self::MAX
818    #[inline]
819    #[doc(alias = "nextDown")]
820    #[stable(feature = "float_next_up_down", since = "1.86.0")]
821    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
822    pub const fn next_down(self) -> Self {
823        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
824        // denormals to zero. This is in general unsound and unsupported, but here
825        // we do our best to still produce the correct result on such targets.
826        let bits = self.to_bits();
827        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
828            return self;
829        }
830
831        let abs = bits & !Self::SIGN_MASK;
832        let next_bits = if abs == 0 {
833            Self::NEG_TINY_BITS
834        } else if bits == abs {
835            bits - 1
836        } else {
837            bits + 1
838        };
839        Self::from_bits(next_bits)
840    }
841
842    /// Takes the reciprocal (inverse) of a number, `1/x`.
843    ///
844    /// ```
845    /// let x = 2.0_f64;
846    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
847    ///
848    /// assert!(abs_difference < 1e-10);
849    /// ```
850    #[must_use = "this returns the result of the operation, without modifying the original"]
851    #[stable(feature = "rust1", since = "1.0.0")]
852    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
853    #[inline]
854    pub const fn recip(self) -> f64 {
855        1.0 / self
856    }
857
858    /// Converts radians to degrees.
859    ///
860    /// # Unspecified precision
861    ///
862    /// The precision of this function is non-deterministic. This means it varies by platform,
863    /// Rust version, and can even differ within the same execution from one invocation to the next.
864    ///
865    /// # Examples
866    ///
867    /// ```
868    /// let angle = std::f64::consts::PI;
869    ///
870    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
871    ///
872    /// assert!(abs_difference < 1e-10);
873    /// ```
874    #[must_use = "this returns the result of the operation, \
875                  without modifying the original"]
876    #[stable(feature = "rust1", since = "1.0.0")]
877    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
878    #[inline]
879    pub const fn to_degrees(self) -> f64 {
880        // The division here is correctly rounded with respect to the true value of 180/π.
881        // Although π is irrational and already rounded, the double rounding happens
882        // to produce correct result for f64.
883        const PIS_IN_180: f64 = 180.0 / consts::PI;
884        self * PIS_IN_180
885    }
886
887    /// Converts degrees to radians.
888    ///
889    /// # Unspecified precision
890    ///
891    /// The precision of this function is non-deterministic. This means it varies by platform,
892    /// Rust version, and can even differ within the same execution from one invocation to the next.
893    ///
894    /// # Examples
895    ///
896    /// ```
897    /// let angle = 180.0_f64;
898    ///
899    /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
900    ///
901    /// assert!(abs_difference < 1e-10);
902    /// ```
903    #[must_use = "this returns the result of the operation, \
904                  without modifying the original"]
905    #[stable(feature = "rust1", since = "1.0.0")]
906    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
907    #[inline]
908    pub const fn to_radians(self) -> f64 {
909        // The division here is correctly rounded with respect to the true value of π/180.
910        // Although π is irrational and already rounded, the double rounding happens
911        // to produce correct result for f64.
912        const RADS_PER_DEG: f64 = consts::PI / 180.0;
913        self * RADS_PER_DEG
914    }
915
916    /// Returns the maximum of the two numbers, ignoring NaN.
917    ///
918    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
919    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
920    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
921    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
922    /// non-deterministically.
923    ///
924    /// The handling of NaNs follows the IEEE 754-2019 semantics for `maximumNumber`, treating all
925    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
926    /// follows the IEEE 754-2008 semantics for `maxNum`.
927    ///
928    /// ```
929    /// let x = 1.0_f64;
930    /// let y = 2.0_f64;
931    ///
932    /// assert_eq!(x.max(y), y);
933    /// assert_eq!(x.max(f64::NAN), x);
934    /// ```
935    #[must_use = "this returns the result of the comparison, without modifying either input"]
936    #[stable(feature = "rust1", since = "1.0.0")]
937    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
938    #[inline]
939    pub const fn max(self, other: f64) -> f64 {
940        intrinsics::maxnumf64(self, other)
941    }
942
943    /// Returns the minimum of the two numbers, ignoring NaN.
944    ///
945    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
946    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
947    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
948    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
949    /// non-deterministically.
950    ///
951    /// The handling of NaNs follows the IEEE 754-2019 semantics for `minimumNumber`, treating all
952    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
953    /// follows the IEEE 754-2008 semantics for `minNum`.
954    ///
955    /// ```
956    /// let x = 1.0_f64;
957    /// let y = 2.0_f64;
958    ///
959    /// assert_eq!(x.min(y), x);
960    /// assert_eq!(x.min(f64::NAN), x);
961    /// ```
962    #[must_use = "this returns the result of the comparison, without modifying either input"]
963    #[stable(feature = "rust1", since = "1.0.0")]
964    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
965    #[inline]
966    pub const fn min(self, other: f64) -> f64 {
967        intrinsics::minnumf64(self, other)
968    }
969
970    /// Returns the maximum of the two numbers, propagating NaN.
971    ///
972    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
973    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
974    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
975    /// non-NaN inputs.
976    ///
977    /// This is in contrast to [`f64::max`] which only returns NaN when *both* arguments are NaN,
978    /// and which does not reliably order `-0.0` and `+0.0`.
979    ///
980    /// This follows the IEEE 754-2019 semantics for `maximum`.
981    ///
982    /// ```
983    /// #![feature(float_minimum_maximum)]
984    /// let x = 1.0_f64;
985    /// let y = 2.0_f64;
986    ///
987    /// assert_eq!(x.maximum(y), y);
988    /// assert!(x.maximum(f64::NAN).is_nan());
989    /// ```
990    #[must_use = "this returns the result of the comparison, without modifying either input"]
991    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
992    #[inline]
993    pub const fn maximum(self, other: f64) -> f64 {
994        intrinsics::maximumf64(self, other)
995    }
996
997    /// Returns the minimum of the two numbers, propagating NaN.
998    ///
999    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
1000    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
1001    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
1002    /// non-NaN inputs.
1003    ///
1004    /// This is in contrast to [`f64::min`] which only returns NaN when *both* arguments are NaN,
1005    /// and which does not reliably order `-0.0` and `+0.0`.
1006    ///
1007    /// This follows the IEEE 754-2019 semantics for `minimum`.
1008    ///
1009    /// ```
1010    /// #![feature(float_minimum_maximum)]
1011    /// let x = 1.0_f64;
1012    /// let y = 2.0_f64;
1013    ///
1014    /// assert_eq!(x.minimum(y), x);
1015    /// assert!(x.minimum(f64::NAN).is_nan());
1016    /// ```
1017    #[must_use = "this returns the result of the comparison, without modifying either input"]
1018    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1019    #[inline]
1020    pub const fn minimum(self, other: f64) -> f64 {
1021        intrinsics::minimumf64(self, other)
1022    }
1023
1024    /// Calculates the midpoint (average) between `self` and `rhs`.
1025    ///
1026    /// This returns NaN when *either* argument is NaN or if a combination of
1027    /// +inf and -inf is provided as arguments.
1028    ///
1029    /// # Examples
1030    ///
1031    /// ```
1032    /// assert_eq!(1f64.midpoint(4.0), 2.5);
1033    /// assert_eq!((-5.5f64).midpoint(8.0), 1.25);
1034    /// ```
1035    #[inline]
1036    #[doc(alias = "average")]
1037    #[stable(feature = "num_midpoint", since = "1.85.0")]
1038    #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")]
1039    pub const fn midpoint(self, other: f64) -> f64 {
1040        const HI: f64 = f64::MAX / 2.;
1041
1042        let (a, b) = (self, other);
1043        let abs_a = a.abs();
1044        let abs_b = b.abs();
1045
1046        if abs_a <= HI && abs_b <= HI {
1047            // Overflow is impossible
1048            (a + b) / 2.
1049        } else {
1050            (a / 2.) + (b / 2.)
1051        }
1052    }
1053
1054    /// Rounds toward zero and converts to any primitive integer type,
1055    /// assuming that the value is finite and fits in that type.
1056    ///
1057    /// ```
1058    /// let value = 4.6_f64;
1059    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
1060    /// assert_eq!(rounded, 4);
1061    ///
1062    /// let value = -128.9_f64;
1063    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
1064    /// assert_eq!(rounded, i8::MIN);
1065    /// ```
1066    ///
1067    /// # Safety
1068    ///
1069    /// The value must:
1070    ///
1071    /// * Not be `NaN`
1072    /// * Not be infinite
1073    /// * Be representable in the return type `Int`, after truncating off its fractional part
1074    #[must_use = "this returns the result of the operation, \
1075                  without modifying the original"]
1076    #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
1077    #[inline]
1078    pub unsafe fn to_int_unchecked<Int>(self) -> Int
1079    where
1080        Self: FloatToInt<Int>,
1081    {
1082        // SAFETY: the caller must uphold the safety contract for
1083        // `FloatToInt::to_int_unchecked`.
1084        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
1085    }
1086
1087    /// Raw transmutation to `u64`.
1088    ///
1089    /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
1090    ///
1091    /// See [`from_bits`](Self::from_bits) for some discussion of the
1092    /// portability of this operation (there are almost no issues).
1093    ///
1094    /// Note that this function is distinct from `as` casting, which attempts to
1095    /// preserve the *numeric* value, and not the bitwise value.
1096    ///
1097    /// # Examples
1098    ///
1099    /// ```
1100    /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
1101    /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
1102    /// ```
1103    #[must_use = "this returns the result of the operation, \
1104                  without modifying the original"]
1105    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1106    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1107    #[allow(unnecessary_transmutes)]
1108    #[inline]
1109    pub const fn to_bits(self) -> u64 {
1110        // SAFETY: `u64` is a plain old datatype so we can always transmute to it.
1111        unsafe { mem::transmute(self) }
1112    }
1113
1114    /// Raw transmutation from `u64`.
1115    ///
1116    /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
1117    /// It turns out this is incredibly portable, for two reasons:
1118    ///
1119    /// * Floats and Ints have the same endianness on all supported platforms.
1120    /// * IEEE 754 very precisely specifies the bit layout of floats.
1121    ///
1122    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
1123    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
1124    /// (notably x86 and ARM) picked the interpretation that was ultimately
1125    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
1126    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
1127    ///
1128    /// Rather than trying to preserve signaling-ness cross-platform, this
1129    /// implementation favors preserving the exact bits. This means that
1130    /// any payloads encoded in NaNs will be preserved even if the result of
1131    /// this method is sent over the network from an x86 machine to a MIPS one.
1132    ///
1133    /// If the results of this method are only manipulated by the same
1134    /// architecture that produced them, then there is no portability concern.
1135    ///
1136    /// If the input isn't NaN, then there is no portability concern.
1137    ///
1138    /// If you don't care about signaling-ness (very likely), then there is no
1139    /// portability concern.
1140    ///
1141    /// Note that this function is distinct from `as` casting, which attempts to
1142    /// preserve the *numeric* value, and not the bitwise value.
1143    ///
1144    /// # Examples
1145    ///
1146    /// ```
1147    /// let v = f64::from_bits(0x4029000000000000);
1148    /// assert_eq!(v, 12.5);
1149    /// ```
1150    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1151    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1152    #[must_use]
1153    #[inline]
1154    #[allow(unnecessary_transmutes)]
1155    pub const fn from_bits(v: u64) -> Self {
1156        // It turns out the safety issues with sNaN were overblown! Hooray!
1157        // SAFETY: `u64` is a plain old datatype so we can always transmute from it.
1158        unsafe { mem::transmute(v) }
1159    }
1160
1161    /// Returns the memory representation of this floating point number as a byte array in
1162    /// big-endian (network) byte order.
1163    ///
1164    /// See [`from_bits`](Self::from_bits) for some discussion of the
1165    /// portability of this operation (there are almost no issues).
1166    ///
1167    /// # Examples
1168    ///
1169    /// ```
1170    /// let bytes = 12.5f64.to_be_bytes();
1171    /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1172    /// ```
1173    #[must_use = "this returns the result of the operation, \
1174                  without modifying the original"]
1175    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1176    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1177    #[inline]
1178    pub const fn to_be_bytes(self) -> [u8; 8] {
1179        self.to_bits().to_be_bytes()
1180    }
1181
1182    /// Returns the memory representation of this floating point number as a byte array in
1183    /// little-endian byte order.
1184    ///
1185    /// See [`from_bits`](Self::from_bits) for some discussion of the
1186    /// portability of this operation (there are almost no issues).
1187    ///
1188    /// # Examples
1189    ///
1190    /// ```
1191    /// let bytes = 12.5f64.to_le_bytes();
1192    /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1193    /// ```
1194    #[must_use = "this returns the result of the operation, \
1195                  without modifying the original"]
1196    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1197    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1198    #[inline]
1199    pub const fn to_le_bytes(self) -> [u8; 8] {
1200        self.to_bits().to_le_bytes()
1201    }
1202
1203    /// Returns the memory representation of this floating point number as a byte array in
1204    /// native byte order.
1205    ///
1206    /// As the target platform's native endianness is used, portable code
1207    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1208    ///
1209    /// [`to_be_bytes`]: f64::to_be_bytes
1210    /// [`to_le_bytes`]: f64::to_le_bytes
1211    ///
1212    /// See [`from_bits`](Self::from_bits) for some discussion of the
1213    /// portability of this operation (there are almost no issues).
1214    ///
1215    /// # Examples
1216    ///
1217    /// ```
1218    /// let bytes = 12.5f64.to_ne_bytes();
1219    /// assert_eq!(
1220    ///     bytes,
1221    ///     if cfg!(target_endian = "big") {
1222    ///         [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1223    ///     } else {
1224    ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1225    ///     }
1226    /// );
1227    /// ```
1228    #[must_use = "this returns the result of the operation, \
1229                  without modifying the original"]
1230    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1231    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1232    #[inline]
1233    pub const fn to_ne_bytes(self) -> [u8; 8] {
1234        self.to_bits().to_ne_bytes()
1235    }
1236
1237    /// Creates a floating point value from its representation as a byte array in big endian.
1238    ///
1239    /// See [`from_bits`](Self::from_bits) for some discussion of the
1240    /// portability of this operation (there are almost no issues).
1241    ///
1242    /// # Examples
1243    ///
1244    /// ```
1245    /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1246    /// assert_eq!(value, 12.5);
1247    /// ```
1248    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1249    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1250    #[must_use]
1251    #[inline]
1252    pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
1253        Self::from_bits(u64::from_be_bytes(bytes))
1254    }
1255
1256    /// Creates a floating point value from its representation as a byte array in little endian.
1257    ///
1258    /// See [`from_bits`](Self::from_bits) for some discussion of the
1259    /// portability of this operation (there are almost no issues).
1260    ///
1261    /// # Examples
1262    ///
1263    /// ```
1264    /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1265    /// assert_eq!(value, 12.5);
1266    /// ```
1267    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1268    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1269    #[must_use]
1270    #[inline]
1271    pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
1272        Self::from_bits(u64::from_le_bytes(bytes))
1273    }
1274
1275    /// Creates a floating point value from its representation as a byte array in native endian.
1276    ///
1277    /// As the target platform's native endianness is used, portable code
1278    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1279    /// appropriate instead.
1280    ///
1281    /// [`from_be_bytes`]: f64::from_be_bytes
1282    /// [`from_le_bytes`]: f64::from_le_bytes
1283    ///
1284    /// See [`from_bits`](Self::from_bits) for some discussion of the
1285    /// portability of this operation (there are almost no issues).
1286    ///
1287    /// # Examples
1288    ///
1289    /// ```
1290    /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
1291    ///     [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1292    /// } else {
1293    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1294    /// });
1295    /// assert_eq!(value, 12.5);
1296    /// ```
1297    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1298    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1299    #[must_use]
1300    #[inline]
1301    pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
1302        Self::from_bits(u64::from_ne_bytes(bytes))
1303    }
1304
1305    /// Returns the ordering between `self` and `other`.
1306    ///
1307    /// Unlike the standard partial comparison between floating point numbers,
1308    /// this comparison always produces an ordering in accordance to
1309    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1310    /// floating point standard. The values are ordered in the following sequence:
1311    ///
1312    /// - negative quiet NaN
1313    /// - negative signaling NaN
1314    /// - negative infinity
1315    /// - negative numbers
1316    /// - negative subnormal numbers
1317    /// - negative zero
1318    /// - positive zero
1319    /// - positive subnormal numbers
1320    /// - positive numbers
1321    /// - positive infinity
1322    /// - positive signaling NaN
1323    /// - positive quiet NaN.
1324    ///
1325    /// The ordering established by this function does not always agree with the
1326    /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
1327    /// they consider negative and positive zero equal, while `total_cmp`
1328    /// doesn't.
1329    ///
1330    /// The interpretation of the signaling NaN bit follows the definition in
1331    /// the IEEE 754 standard, which may not match the interpretation by some of
1332    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1333    ///
1334    /// # Example
1335    ///
1336    /// ```
1337    /// struct GoodBoy {
1338    ///     name: String,
1339    ///     weight: f64,
1340    /// }
1341    ///
1342    /// let mut bois = vec![
1343    ///     GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1344    ///     GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1345    ///     GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1346    ///     GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
1347    ///     GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
1348    ///     GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1349    /// ];
1350    ///
1351    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1352    ///
1353    /// // `f64::NAN` could be positive or negative, which will affect the sort order.
1354    /// if f64::NAN.is_sign_negative() {
1355    ///     assert!(bois.into_iter().map(|b| b.weight)
1356    ///         .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter())
1357    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1358    /// } else {
1359    ///     assert!(bois.into_iter().map(|b| b.weight)
1360    ///         .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
1361    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1362    /// }
1363    /// ```
1364    #[stable(feature = "total_cmp", since = "1.62.0")]
1365    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1366    #[must_use]
1367    #[inline]
1368    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1369        let mut left = self.to_bits() as i64;
1370        let mut right = other.to_bits() as i64;
1371
1372        // In case of negatives, flip all the bits except the sign
1373        // to achieve a similar layout as two's complement integers
1374        //
1375        // Why does this work? IEEE 754 floats consist of three fields:
1376        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1377        // fields as a whole have the property that their bitwise order is
1378        // equal to the numeric magnitude where the magnitude is defined.
1379        // The magnitude is not normally defined on NaN values, but
1380        // IEEE 754 totalOrder defines the NaN values also to follow the
1381        // bitwise order. This leads to order explained in the doc comment.
1382        // However, the representation of magnitude is the same for negative
1383        // and positive numbers – only the sign bit is different.
1384        // To easily compare the floats as signed integers, we need to
1385        // flip the exponent and mantissa bits in case of negative numbers.
1386        // We effectively convert the numbers to "two's complement" form.
1387        //
1388        // To do the flipping, we construct a mask and XOR against it.
1389        // We branchlessly calculate an "all-ones except for the sign bit"
1390        // mask from negative-signed values: right shifting sign-extends
1391        // the integer, so we "fill" the mask with sign bits, and then
1392        // convert to unsigned to push one more zero bit.
1393        // On positive values, the mask is all zeros, so it's a no-op.
1394        left ^= (((left >> 63) as u64) >> 1) as i64;
1395        right ^= (((right >> 63) as u64) >> 1) as i64;
1396
1397        left.cmp(&right)
1398    }
1399
1400    /// Restrict a value to a certain interval unless it is NaN.
1401    ///
1402    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1403    /// less than `min`. Otherwise this returns `self`.
1404    ///
1405    /// Note that this function returns NaN if the initial value was NaN as
1406    /// well. If the result is zero and among the three inputs `self`, `min`, and `max` there are
1407    /// zeros with different sign, either `0.0` or `-0.0` is returned non-deterministically.
1408    ///
1409    /// # Panics
1410    ///
1411    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1412    ///
1413    /// # Examples
1414    ///
1415    /// ```
1416    /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
1417    /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
1418    /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
1419    /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
1420    ///
1421    /// // These always returns zero, but the sign (which is ignored by `==`) is non-deterministic.
1422    /// assert!((0.0f64).clamp(-0.0, -0.0) == 0.0);
1423    /// assert!((1.0f64).clamp(-0.0, 0.0) == 0.0);
1424    /// // This is definitely a negative zero.
1425    /// assert!((-1.0f64).clamp(-0.0, 1.0).is_sign_negative());
1426    /// ```
1427    #[must_use = "method returns a new number and does not mutate the original value"]
1428    #[stable(feature = "clamp", since = "1.50.0")]
1429    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1430    #[inline]
1431    pub const fn clamp(mut self, min: f64, max: f64) -> f64 {
1432        const_assert!(
1433            min <= max,
1434            "min > max, or either was NaN",
1435            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1436            min: f64,
1437            max: f64,
1438        );
1439
1440        if self < min {
1441            self = min;
1442        }
1443        if self > max {
1444            self = max;
1445        }
1446        self
1447    }
1448
1449    /// Clamps this number to a symmetric range centered around zero.
1450    ///
1451    /// The method clamps the number's magnitude (absolute value) to be at most `limit`.
1452    ///
1453    /// This is functionally equivalent to `self.clamp(-limit, limit)`, but is more
1454    /// explicit about the intent.
1455    ///
1456    /// # Panics
1457    ///
1458    /// Panics if `limit` is negative or NaN, as this indicates a logic error.
1459    ///
1460    /// # Examples
1461    ///
1462    /// ```
1463    /// #![feature(clamp_magnitude)]
1464    /// assert_eq!(5.0f64.clamp_magnitude(3.0), 3.0);
1465    /// assert_eq!((-5.0f64).clamp_magnitude(3.0), -3.0);
1466    /// assert_eq!(2.0f64.clamp_magnitude(3.0), 2.0);
1467    /// assert_eq!((-2.0f64).clamp_magnitude(3.0), -2.0);
1468    /// ```
1469    #[must_use = "this returns the clamped value and does not modify the original"]
1470    #[unstable(feature = "clamp_magnitude", issue = "148519")]
1471    #[inline]
1472    pub fn clamp_magnitude(self, limit: f64) -> f64 {
1473        assert!(limit >= 0.0, "limit must be non-negative");
1474        let limit = limit.abs(); // Canonicalises -0.0 to 0.0
1475        self.clamp(-limit, limit)
1476    }
1477
1478    /// Computes the absolute value of `self`.
1479    ///
1480    /// This function always returns the precise result.
1481    ///
1482    /// # Examples
1483    ///
1484    /// ```
1485    /// let x = 3.5_f64;
1486    /// let y = -3.5_f64;
1487    ///
1488    /// assert_eq!(x.abs(), x);
1489    /// assert_eq!(y.abs(), -y);
1490    ///
1491    /// assert!(f64::NAN.abs().is_nan());
1492    /// ```
1493    #[must_use = "method returns a new number and does not mutate the original value"]
1494    #[stable(feature = "rust1", since = "1.0.0")]
1495    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1496    #[inline]
1497    pub const fn abs(self) -> f64 {
1498        intrinsics::fabsf64(self)
1499    }
1500
1501    /// Returns a number that represents the sign of `self`.
1502    ///
1503    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1504    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1505    /// - NaN if the number is NaN
1506    ///
1507    /// # Examples
1508    ///
1509    /// ```
1510    /// let f = 3.5_f64;
1511    ///
1512    /// assert_eq!(f.signum(), 1.0);
1513    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
1514    ///
1515    /// assert!(f64::NAN.signum().is_nan());
1516    /// ```
1517    #[must_use = "method returns a new number and does not mutate the original value"]
1518    #[stable(feature = "rust1", since = "1.0.0")]
1519    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1520    #[inline]
1521    pub const fn signum(self) -> f64 {
1522        if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) }
1523    }
1524
1525    /// Returns a number composed of the magnitude of `self` and the sign of
1526    /// `sign`.
1527    ///
1528    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1529    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1530    /// returned.
1531    ///
1532    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1533    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1534    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1535    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1536    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1537    /// info.
1538    ///
1539    /// # Examples
1540    ///
1541    /// ```
1542    /// let f = 3.5_f64;
1543    ///
1544    /// assert_eq!(f.copysign(0.42), 3.5_f64);
1545    /// assert_eq!(f.copysign(-0.42), -3.5_f64);
1546    /// assert_eq!((-f).copysign(0.42), 3.5_f64);
1547    /// assert_eq!((-f).copysign(-0.42), -3.5_f64);
1548    ///
1549    /// assert!(f64::NAN.copysign(1.0).is_nan());
1550    /// ```
1551    #[must_use = "method returns a new number and does not mutate the original value"]
1552    #[stable(feature = "copysign", since = "1.35.0")]
1553    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1554    #[inline]
1555    pub const fn copysign(self, sign: f64) -> f64 {
1556        intrinsics::copysignf64(self, sign)
1557    }
1558
1559    /// Float addition that allows optimizations based on algebraic rules.
1560    ///
1561    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1562    #[must_use = "method returns a new number and does not mutate the original value"]
1563    #[unstable(feature = "float_algebraic", issue = "136469")]
1564    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1565    #[inline]
1566    pub const fn algebraic_add(self, rhs: f64) -> f64 {
1567        intrinsics::fadd_algebraic(self, rhs)
1568    }
1569
1570    /// Float subtraction that allows optimizations based on algebraic rules.
1571    ///
1572    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1573    #[must_use = "method returns a new number and does not mutate the original value"]
1574    #[unstable(feature = "float_algebraic", issue = "136469")]
1575    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1576    #[inline]
1577    pub const fn algebraic_sub(self, rhs: f64) -> f64 {
1578        intrinsics::fsub_algebraic(self, rhs)
1579    }
1580
1581    /// Float multiplication that allows optimizations based on algebraic rules.
1582    ///
1583    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1584    #[must_use = "method returns a new number and does not mutate the original value"]
1585    #[unstable(feature = "float_algebraic", issue = "136469")]
1586    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1587    #[inline]
1588    pub const fn algebraic_mul(self, rhs: f64) -> f64 {
1589        intrinsics::fmul_algebraic(self, rhs)
1590    }
1591
1592    /// Float division that allows optimizations based on algebraic rules.
1593    ///
1594    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1595    #[must_use = "method returns a new number and does not mutate the original value"]
1596    #[unstable(feature = "float_algebraic", issue = "136469")]
1597    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1598    #[inline]
1599    pub const fn algebraic_div(self, rhs: f64) -> f64 {
1600        intrinsics::fdiv_algebraic(self, rhs)
1601    }
1602
1603    /// Float remainder that allows optimizations based on algebraic rules.
1604    ///
1605    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1606    #[must_use = "method returns a new number and does not mutate the original value"]
1607    #[unstable(feature = "float_algebraic", issue = "136469")]
1608    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1609    #[inline]
1610    pub const fn algebraic_rem(self, rhs: f64) -> f64 {
1611        intrinsics::frem_algebraic(self, rhs)
1612    }
1613}
1614
1615#[unstable(feature = "core_float_math", issue = "137578")]
1616/// Experimental implementations of floating point functions in `core`.
1617///
1618/// _The standalone functions in this module are for testing only.
1619/// They will be stabilized as inherent methods._
1620pub mod math {
1621    use crate::intrinsics;
1622    use crate::num::libm;
1623
1624    /// Experimental version of `floor` in `core`. See [`f64::floor`] for details.
1625    ///
1626    /// # Examples
1627    ///
1628    /// ```
1629    /// #![feature(core_float_math)]
1630    ///
1631    /// use core::f64;
1632    ///
1633    /// let f = 3.7_f64;
1634    /// let g = 3.0_f64;
1635    /// let h = -3.7_f64;
1636    ///
1637    /// assert_eq!(f64::math::floor(f), 3.0);
1638    /// assert_eq!(f64::math::floor(g), 3.0);
1639    /// assert_eq!(f64::math::floor(h), -4.0);
1640    /// ```
1641    ///
1642    /// _This standalone function is for testing only.
1643    /// It will be stabilized as an inherent method._
1644    ///
1645    /// [`f64::floor`]: ../../../std/primitive.f64.html#method.floor
1646    #[inline]
1647    #[unstable(feature = "core_float_math", issue = "137578")]
1648    #[must_use = "method returns a new number and does not mutate the original value"]
1649    pub const fn floor(x: f64) -> f64 {
1650        intrinsics::floorf64(x)
1651    }
1652
1653    /// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details.
1654    ///
1655    /// # Examples
1656    ///
1657    /// ```
1658    /// #![feature(core_float_math)]
1659    ///
1660    /// use core::f64;
1661    ///
1662    /// let f = 3.01_f64;
1663    /// let g = 4.0_f64;
1664    ///
1665    /// assert_eq!(f64::math::ceil(f), 4.0);
1666    /// assert_eq!(f64::math::ceil(g), 4.0);
1667    /// ```
1668    ///
1669    /// _This standalone function is for testing only.
1670    /// It will be stabilized as an inherent method._
1671    ///
1672    /// [`f64::ceil`]: ../../../std/primitive.f64.html#method.ceil
1673    #[inline]
1674    #[doc(alias = "ceiling")]
1675    #[unstable(feature = "core_float_math", issue = "137578")]
1676    #[must_use = "method returns a new number and does not mutate the original value"]
1677    pub const fn ceil(x: f64) -> f64 {
1678        intrinsics::ceilf64(x)
1679    }
1680
1681    /// Experimental version of `round` in `core`. See [`f64::round`] for details.
1682    ///
1683    /// # Examples
1684    ///
1685    /// ```
1686    /// #![feature(core_float_math)]
1687    ///
1688    /// use core::f64;
1689    ///
1690    /// let f = 3.3_f64;
1691    /// let g = -3.3_f64;
1692    /// let h = -3.7_f64;
1693    /// let i = 3.5_f64;
1694    /// let j = 4.5_f64;
1695    ///
1696    /// assert_eq!(f64::math::round(f), 3.0);
1697    /// assert_eq!(f64::math::round(g), -3.0);
1698    /// assert_eq!(f64::math::round(h), -4.0);
1699    /// assert_eq!(f64::math::round(i), 4.0);
1700    /// assert_eq!(f64::math::round(j), 5.0);
1701    /// ```
1702    ///
1703    /// _This standalone function is for testing only.
1704    /// It will be stabilized as an inherent method._
1705    ///
1706    /// [`f64::round`]: ../../../std/primitive.f64.html#method.round
1707    #[inline]
1708    #[unstable(feature = "core_float_math", issue = "137578")]
1709    #[must_use = "method returns a new number and does not mutate the original value"]
1710    pub const fn round(x: f64) -> f64 {
1711        intrinsics::roundf64(x)
1712    }
1713
1714    /// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for
1715    /// details.
1716    ///
1717    /// # Examples
1718    ///
1719    /// ```
1720    /// #![feature(core_float_math)]
1721    ///
1722    /// use core::f64;
1723    ///
1724    /// let f = 3.3_f64;
1725    /// let g = -3.3_f64;
1726    /// let h = 3.5_f64;
1727    /// let i = 4.5_f64;
1728    ///
1729    /// assert_eq!(f64::math::round_ties_even(f), 3.0);
1730    /// assert_eq!(f64::math::round_ties_even(g), -3.0);
1731    /// assert_eq!(f64::math::round_ties_even(h), 4.0);
1732    /// assert_eq!(f64::math::round_ties_even(i), 4.0);
1733    /// ```
1734    ///
1735    /// _This standalone function is for testing only.
1736    /// It will be stabilized as an inherent method._
1737    ///
1738    /// [`f64::round_ties_even`]: ../../../std/primitive.f64.html#method.round_ties_even
1739    #[inline]
1740    #[unstable(feature = "core_float_math", issue = "137578")]
1741    #[must_use = "method returns a new number and does not mutate the original value"]
1742    pub const fn round_ties_even(x: f64) -> f64 {
1743        intrinsics::round_ties_even_f64(x)
1744    }
1745
1746    /// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details.
1747    ///
1748    /// # Examples
1749    ///
1750    /// ```
1751    /// #![feature(core_float_math)]
1752    ///
1753    /// use core::f64;
1754    ///
1755    /// let f = 3.7_f64;
1756    /// let g = 3.0_f64;
1757    /// let h = -3.7_f64;
1758    ///
1759    /// assert_eq!(f64::math::trunc(f), 3.0);
1760    /// assert_eq!(f64::math::trunc(g), 3.0);
1761    /// assert_eq!(f64::math::trunc(h), -3.0);
1762    /// ```
1763    ///
1764    /// _This standalone function is for testing only.
1765    /// It will be stabilized as an inherent method._
1766    ///
1767    /// [`f64::trunc`]: ../../../std/primitive.f64.html#method.trunc
1768    #[inline]
1769    #[doc(alias = "truncate")]
1770    #[unstable(feature = "core_float_math", issue = "137578")]
1771    #[must_use = "method returns a new number and does not mutate the original value"]
1772    pub const fn trunc(x: f64) -> f64 {
1773        intrinsics::truncf64(x)
1774    }
1775
1776    /// Experimental version of `fract` in `core`. See [`f64::fract`] for details.
1777    ///
1778    /// # Examples
1779    ///
1780    /// ```
1781    /// #![feature(core_float_math)]
1782    ///
1783    /// use core::f64;
1784    ///
1785    /// let x = 3.6_f64;
1786    /// let y = -3.6_f64;
1787    /// let abs_difference_x = (f64::math::fract(x) - 0.6).abs();
1788    /// let abs_difference_y = (f64::math::fract(y) - (-0.6)).abs();
1789    ///
1790    /// assert!(abs_difference_x < 1e-10);
1791    /// assert!(abs_difference_y < 1e-10);
1792    /// ```
1793    ///
1794    /// _This standalone function is for testing only.
1795    /// It will be stabilized as an inherent method._
1796    ///
1797    /// [`f64::fract`]: ../../../std/primitive.f64.html#method.fract
1798    #[inline]
1799    #[unstable(feature = "core_float_math", issue = "137578")]
1800    #[must_use = "method returns a new number and does not mutate the original value"]
1801    pub const fn fract(x: f64) -> f64 {
1802        x - trunc(x)
1803    }
1804
1805    /// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details.
1806    ///
1807    /// # Examples
1808    ///
1809    /// ```
1810    /// #![feature(core_float_math)]
1811    ///
1812    /// # // FIXME(#140515): mingw has an incorrect fma
1813    /// # // https://sourceforge.net/p/mingw-w64/bugs/848/
1814    /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
1815    /// use core::f64;
1816    ///
1817    /// let m = 10.0_f64;
1818    /// let x = 4.0_f64;
1819    /// let b = 60.0_f64;
1820    ///
1821    /// assert_eq!(f64::math::mul_add(m, x, b), 100.0);
1822    /// assert_eq!(m * x + b, 100.0);
1823    ///
1824    /// let one_plus_eps = 1.0_f64 + f64::EPSILON;
1825    /// let one_minus_eps = 1.0_f64 - f64::EPSILON;
1826    /// let minus_one = -1.0_f64;
1827    ///
1828    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1829    /// assert_eq!(
1830    ///     f64::math::mul_add(one_plus_eps, one_minus_eps, minus_one),
1831    ///     -f64::EPSILON * f64::EPSILON
1832    /// );
1833    /// // Different rounding with the non-fused multiply and add.
1834    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1835    /// # }
1836    /// ```
1837    ///
1838    /// _This standalone function is for testing only.
1839    /// It will be stabilized as an inherent method._
1840    ///
1841    /// [`f64::mul_add`]: ../../../std/primitive.f64.html#method.mul_add
1842    #[inline]
1843    #[doc(alias = "fma", alias = "fusedMultiplyAdd")]
1844    #[unstable(feature = "core_float_math", issue = "137578")]
1845    #[must_use = "method returns a new number and does not mutate the original value"]
1846    #[rustc_const_unstable(feature = "const_mul_add", issue = "146724")]
1847    pub const fn mul_add(x: f64, a: f64, b: f64) -> f64 {
1848        intrinsics::fmaf64(x, a, b)
1849    }
1850
1851    /// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details.
1852    ///
1853    /// # Examples
1854    ///
1855    /// ```
1856    /// #![feature(core_float_math)]
1857    ///
1858    /// use core::f64;
1859    ///
1860    /// let a: f64 = 7.0;
1861    /// let b = 4.0;
1862    /// assert_eq!(f64::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
1863    /// assert_eq!(f64::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
1864    /// assert_eq!(f64::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
1865    /// assert_eq!(f64::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
1866    /// ```
1867    ///
1868    /// _This standalone function is for testing only.
1869    /// It will be stabilized as an inherent method._
1870    ///
1871    /// [`f64::div_euclid`]: ../../../std/primitive.f64.html#method.div_euclid
1872    #[inline]
1873    #[unstable(feature = "core_float_math", issue = "137578")]
1874    #[must_use = "method returns a new number and does not mutate the original value"]
1875    pub fn div_euclid(x: f64, rhs: f64) -> f64 {
1876        let q = trunc(x / rhs);
1877        if x % rhs < 0.0 {
1878            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1879        }
1880        q
1881    }
1882
1883    /// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details.
1884    ///
1885    /// # Examples
1886    ///
1887    /// ```
1888    /// #![feature(core_float_math)]
1889    ///
1890    /// use core::f64;
1891    ///
1892    /// let a: f64 = 7.0;
1893    /// let b = 4.0;
1894    /// assert_eq!(f64::math::rem_euclid(a, b), 3.0);
1895    /// assert_eq!(f64::math::rem_euclid(-a, b), 1.0);
1896    /// assert_eq!(f64::math::rem_euclid(a, -b), 3.0);
1897    /// assert_eq!(f64::math::rem_euclid(-a, -b), 1.0);
1898    /// // limitation due to round-off error
1899    /// assert!(f64::math::rem_euclid(-f64::EPSILON, 3.0) != 0.0);
1900    /// ```
1901    ///
1902    /// _This standalone function is for testing only.
1903    /// It will be stabilized as an inherent method._
1904    ///
1905    /// [`f64::rem_euclid`]: ../../../std/primitive.f64.html#method.rem_euclid
1906    #[inline]
1907    #[doc(alias = "modulo", alias = "mod")]
1908    #[unstable(feature = "core_float_math", issue = "137578")]
1909    #[must_use = "method returns a new number and does not mutate the original value"]
1910    pub fn rem_euclid(x: f64, rhs: f64) -> f64 {
1911        let r = x % rhs;
1912        if r < 0.0 { r + rhs.abs() } else { r }
1913    }
1914
1915    /// Experimental version of `powi` in `core`. See [`f64::powi`] for details.
1916    ///
1917    /// # Examples
1918    ///
1919    /// ```
1920    /// #![feature(core_float_math)]
1921    ///
1922    /// use core::f64;
1923    ///
1924    /// let x = 2.0_f64;
1925    /// let abs_difference = (f64::math::powi(x, 2) - (x * x)).abs();
1926    /// assert!(abs_difference <= 1e-6);
1927    ///
1928    /// assert_eq!(f64::math::powi(f64::NAN, 0), 1.0);
1929    /// ```
1930    ///
1931    /// _This standalone function is for testing only.
1932    /// It will be stabilized as an inherent method._
1933    ///
1934    /// [`f64::powi`]: ../../../std/primitive.f64.html#method.powi
1935    #[inline]
1936    #[unstable(feature = "core_float_math", issue = "137578")]
1937    #[must_use = "method returns a new number and does not mutate the original value"]
1938    pub fn powi(x: f64, n: i32) -> f64 {
1939        intrinsics::powif64(x, n)
1940    }
1941
1942    /// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details.
1943    ///
1944    /// # Examples
1945    ///
1946    /// ```
1947    /// #![feature(core_float_math)]
1948    ///
1949    /// use core::f64;
1950    ///
1951    /// let positive = 4.0_f64;
1952    /// let negative = -4.0_f64;
1953    /// let negative_zero = -0.0_f64;
1954    ///
1955    /// assert_eq!(f64::math::sqrt(positive), 2.0);
1956    /// assert!(f64::math::sqrt(negative).is_nan());
1957    /// assert_eq!(f64::math::sqrt(negative_zero), negative_zero);
1958    /// ```
1959    ///
1960    /// _This standalone function is for testing only.
1961    /// It will be stabilized as an inherent method._
1962    ///
1963    /// [`f64::sqrt`]: ../../../std/primitive.f64.html#method.sqrt
1964    #[inline]
1965    #[doc(alias = "squareRoot")]
1966    #[unstable(feature = "core_float_math", issue = "137578")]
1967    #[must_use = "method returns a new number and does not mutate the original value"]
1968    pub fn sqrt(x: f64) -> f64 {
1969        intrinsics::sqrtf64(x)
1970    }
1971
1972    /// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details.
1973    ///
1974    /// # Examples
1975    ///
1976    /// ```
1977    /// #![feature(core_float_math)]
1978    ///
1979    /// use core::f64;
1980    ///
1981    /// let x = 3.0_f64;
1982    /// let y = -3.0_f64;
1983    ///
1984    /// let abs_difference_x = (f64::math::abs_sub(x, 1.0) - 2.0).abs();
1985    /// let abs_difference_y = (f64::math::abs_sub(y, 1.0) - 0.0).abs();
1986    ///
1987    /// assert!(abs_difference_x < 1e-10);
1988    /// assert!(abs_difference_y < 1e-10);
1989    /// ```
1990    ///
1991    /// _This standalone function is for testing only.
1992    /// It will be stabilized as an inherent method._
1993    ///
1994    /// [`f64::abs_sub`]: ../../../std/primitive.f64.html#method.abs_sub
1995    #[inline]
1996    #[unstable(feature = "core_float_math", issue = "137578")]
1997    #[deprecated(
1998        since = "1.10.0",
1999        note = "you probably meant `(self - other).abs()`: \
2000                this operation is `(self - other).max(0.0)` \
2001                except that `abs_sub` also propagates NaNs (also \
2002                known as `fdim` in C). If you truly need the positive \
2003                difference, consider using that expression or the C function \
2004                `fdim`, depending on how you wish to handle NaN (please consider \
2005                filing an issue describing your use-case too)."
2006    )]
2007    #[must_use = "method returns a new number and does not mutate the original value"]
2008    pub fn abs_sub(x: f64, other: f64) -> f64 {
2009        libm::fdim(x, other)
2010    }
2011
2012    /// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details.
2013    ///
2014    /// # Examples
2015    ///
2016    /// ```
2017    /// #![feature(core_float_math)]
2018    ///
2019    /// use core::f64;
2020    ///
2021    /// let x = 8.0_f64;
2022    ///
2023    /// // x^(1/3) - 2 == 0
2024    /// let abs_difference = (f64::math::cbrt(x) - 2.0).abs();
2025    ///
2026    /// assert!(abs_difference < 1e-10);
2027    /// ```
2028    ///
2029    /// _This standalone function is for testing only.
2030    /// It will be stabilized as an inherent method._
2031    ///
2032    /// [`f64::cbrt`]: ../../../std/primitive.f64.html#method.cbrt
2033    #[inline]
2034    #[unstable(feature = "core_float_math", issue = "137578")]
2035    #[must_use = "method returns a new number and does not mutate the original value"]
2036    pub fn cbrt(x: f64) -> f64 {
2037        libm::cbrt(x)
2038    }
2039}