1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
// SPDX-License-Identifier: GPL-2.0
//! Devres abstraction
//!
//! [`Devres`] represents an abstraction for the kernel devres (device resource management)
//! implementation.
use crate::{
alloc::Flags,
bindings,
device::Device,
error::{Error, Result},
ffi::c_void,
prelude::*,
revocable::Revocable,
sync::Arc,
types::ARef,
};
use core::ops::Deref;
#[pin_data]
struct DevresInner<T> {
dev: ARef<Device>,
callback: unsafe extern "C" fn(*mut c_void),
#[pin]
data: Revocable<T>,
}
/// This abstraction is meant to be used by subsystems to containerize [`Device`] bound resources to
/// manage their lifetime.
///
/// [`Device`] bound resources should be freed when either the resource goes out of scope or the
/// [`Device`] is unbound respectively, depending on what happens first.
///
/// To achieve that [`Devres`] registers a devres callback on creation, which is called once the
/// [`Device`] is unbound, revoking access to the encapsulated resource (see also [`Revocable`]).
///
/// After the [`Devres`] has been unbound it is not possible to access the encapsulated resource
/// anymore.
///
/// [`Devres`] users should make sure to simply free the corresponding backing resource in `T`'s
/// [`Drop`] implementation.
///
/// # Example
///
/// ```no_run
/// # use kernel::{bindings, c_str, device::Device, devres::Devres, io::{Io, IoRaw}};
/// # use core::ops::Deref;
///
/// // See also [`pci::Bar`] for a real example.
/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
///
/// impl<const SIZE: usize> IoMem<SIZE> {
/// /// # Safety
/// ///
/// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
/// /// virtual address space.
/// unsafe fn new(paddr: usize) -> Result<Self>{
/// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
/// // valid for `ioremap`.
/// let addr = unsafe { bindings::ioremap(paddr as _, SIZE as _) };
/// if addr.is_null() {
/// return Err(ENOMEM);
/// }
///
/// Ok(IoMem(IoRaw::new(addr as _, SIZE)?))
/// }
/// }
///
/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
/// fn drop(&mut self) {
/// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
/// unsafe { bindings::iounmap(self.0.addr() as _); };
/// }
/// }
///
/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
/// type Target = Io<SIZE>;
///
/// fn deref(&self) -> &Self::Target {
/// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
/// unsafe { Io::from_raw(&self.0) }
/// }
/// }
/// # fn no_run() -> Result<(), Error> {
/// # // SAFETY: Invalid usage; just for the example to get an `ARef<Device>` instance.
/// # let dev = unsafe { Device::get_device(core::ptr::null_mut()) };
///
/// // SAFETY: Invalid usage for example purposes.
/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
/// let devres = Devres::new(&dev, iomem, GFP_KERNEL)?;
///
/// let res = devres.try_access().ok_or(ENXIO)?;
/// res.write8(0x42, 0x0);
/// # Ok(())
/// # }
/// ```
pub struct Devres<T>(Arc<DevresInner<T>>);
impl<T> DevresInner<T> {
fn new(dev: &Device, data: T, flags: Flags) -> Result<Arc<DevresInner<T>>> {
let inner = Arc::pin_init(
pin_init!( DevresInner {
dev: dev.into(),
callback: Self::devres_callback,
data <- Revocable::new(data),
}),
flags,
)?;
// Convert `Arc<DevresInner>` into a raw pointer and make devres own this reference until
// `Self::devres_callback` is called.
let data = inner.clone().into_raw();
// SAFETY: `devm_add_action` guarantees to call `Self::devres_callback` once `dev` is
// detached.
let ret =
unsafe { bindings::devm_add_action(dev.as_raw(), Some(inner.callback), data as _) };
if ret != 0 {
// SAFETY: We just created another reference to `inner` in order to pass it to
// `bindings::devm_add_action`. If `bindings::devm_add_action` fails, we have to drop
// this reference accordingly.
let _ = unsafe { Arc::from_raw(data) };
return Err(Error::from_errno(ret));
}
Ok(inner)
}
fn as_ptr(&self) -> *const Self {
self as _
}
fn remove_action(this: &Arc<Self>) {
// SAFETY:
// - `self.inner.dev` is a valid `Device`,
// - the `action` and `data` pointers are the exact same ones as given to devm_add_action()
// previously,
// - `self` is always valid, even if the action has been released already.
let ret = unsafe {
bindings::devm_remove_action_nowarn(
this.dev.as_raw(),
Some(this.callback),
this.as_ptr() as _,
)
};
if ret == 0 {
// SAFETY: We leaked an `Arc` reference to devm_add_action() in `DevresInner::new`; if
// devm_remove_action_nowarn() was successful we can (and have to) claim back ownership
// of this reference.
let _ = unsafe { Arc::from_raw(this.as_ptr()) };
}
}
#[allow(clippy::missing_safety_doc)]
unsafe extern "C" fn devres_callback(ptr: *mut kernel::ffi::c_void) {
let ptr = ptr as *mut DevresInner<T>;
// Devres owned this memory; now that we received the callback, drop the `Arc` and hence the
// reference.
// SAFETY: Safe, since we leaked an `Arc` reference to devm_add_action() in
// `DevresInner::new`.
let inner = unsafe { Arc::from_raw(ptr) };
inner.data.revoke();
}
}
impl<T> Devres<T> {
/// Creates a new [`Devres`] instance of the given `data`. The `data` encapsulated within the
/// returned `Devres` instance' `data` will be revoked once the device is detached.
pub fn new(dev: &Device, data: T, flags: Flags) -> Result<Self> {
let inner = DevresInner::new(dev, data, flags)?;
Ok(Devres(inner))
}
/// Same as [`Devres::new`], but does not return a `Devres` instance. Instead the given `data`
/// is owned by devres and will be revoked / dropped, once the device is detached.
pub fn new_foreign_owned(dev: &Device, data: T, flags: Flags) -> Result {
let _ = DevresInner::new(dev, data, flags)?;
Ok(())
}
}
impl<T> Deref for Devres<T> {
type Target = Revocable<T>;
fn deref(&self) -> &Self::Target {
&self.0.data
}
}
impl<T> Drop for Devres<T> {
fn drop(&mut self) {
DevresInner::remove_action(&self.0);
}
}