kernel/device.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Generic devices that are part of the kernel's driver model.
4//!
5//! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6
7use crate::{
8 bindings, fmt,
9 prelude::*,
10 sync::aref::ARef,
11 types::{ForeignOwnable, Opaque},
12};
13use core::{any::TypeId, marker::PhantomData, ptr};
14
15#[cfg(CONFIG_PRINTK)]
16use crate::c_str;
17
18pub mod property;
19
20// Assert that we can `read()` / `write()` a `TypeId` instance from / into `struct driver_type`.
21static_assert!(core::mem::size_of::<bindings::driver_type>() >= core::mem::size_of::<TypeId>());
22
23/// The core representation of a device in the kernel's driver model.
24///
25/// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
26/// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
27/// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
28///
29/// # Device Types
30///
31/// A [`Device`] can represent either a bus device or a class device.
32///
33/// ## Bus Devices
34///
35/// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
36/// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
37/// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
38/// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
39///
40/// ## Class Devices
41///
42/// A class device is a [`Device`] that is associated with a logical category of functionality
43/// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
44/// cards, and input devices. Class devices are grouped under a common class and exposed to
45/// userspace via entries in `/sys/class/<class-name>/`.
46///
47/// # Device Context
48///
49/// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
50/// a [`Device`].
51///
52/// As the name indicates, this type state represents the context of the scope the [`Device`]
53/// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
54/// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
55///
56/// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
57///
58/// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
59/// itself has no additional requirements.
60///
61/// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
62/// type for the corresponding scope the [`Device`] reference is created in.
63///
64/// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
65/// [bus devices](#bus-devices) only.
66///
67/// # Implementing Bus Devices
68///
69/// This section provides a guideline to implement bus specific devices, such as:
70#[cfg_attr(CONFIG_PCI, doc = "* [`pci::Device`](kernel::pci::Device)")]
71/// * [`platform::Device`]
72///
73/// A bus specific device should be defined as follows.
74///
75/// ```ignore
76/// #[repr(transparent)]
77/// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
78/// Opaque<bindings::bus_device_type>,
79/// PhantomData<Ctx>,
80/// );
81/// ```
82///
83/// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
84/// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
85/// [`DeviceContext`], since all other device context types are only valid within a certain scope.
86///
87/// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
88/// implementations should call the [`impl_device_context_deref`] macro as shown below.
89///
90/// ```ignore
91/// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
92/// // generic argument.
93/// kernel::impl_device_context_deref!(unsafe { Device });
94/// ```
95///
96/// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
97/// the following macro call.
98///
99/// ```ignore
100/// kernel::impl_device_context_into_aref!(Device);
101/// ```
102///
103/// Bus devices should also implement the following [`AsRef`] implementation, such that users can
104/// easily derive a generic [`Device`] reference.
105///
106/// ```ignore
107/// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
108/// fn as_ref(&self) -> &device::Device<Ctx> {
109/// ...
110/// }
111/// }
112/// ```
113///
114/// # Implementing Class Devices
115///
116/// Class device implementations require less infrastructure and depend slightly more on the
117/// specific subsystem.
118///
119/// An example implementation for a class device could look like this.
120///
121/// ```ignore
122/// #[repr(C)]
123/// pub struct Device<T: class::Driver> {
124/// dev: Opaque<bindings::class_device_type>,
125/// data: T::Data,
126/// }
127/// ```
128///
129/// This class device uses the sub-classing pattern to embed the driver's private data within the
130/// allocation of the class device. For this to be possible the class device is generic over the
131/// class specific `Driver` trait implementation.
132///
133/// Just like any device, class devices are reference counted and should hence implement
134/// [`AlwaysRefCounted`] for `Device`.
135///
136/// Class devices should also implement the following [`AsRef`] implementation, such that users can
137/// easily derive a generic [`Device`] reference.
138///
139/// ```ignore
140/// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
141/// fn as_ref(&self) -> &device::Device {
142/// ...
143/// }
144/// }
145/// ```
146///
147/// An example for a class device implementation is
148#[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
149#[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
150///
151/// # Invariants
152///
153/// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
154///
155/// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
156/// that the allocation remains valid at least until the matching call to `put_device`.
157///
158/// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
159/// dropped from any thread.
160///
161/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
162/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
163/// [`platform::Device`]: kernel::platform::Device
164#[repr(transparent)]
165pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
166
167impl Device {
168 /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
169 ///
170 /// # Safety
171 ///
172 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
173 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
174 /// can't drop to zero, for the duration of this function call.
175 ///
176 /// It must also be ensured that `bindings::device::release` can be called from any thread.
177 /// While not officially documented, this should be the case for any `struct device`.
178 pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
179 // SAFETY: By the safety requirements ptr is valid
180 unsafe { Self::from_raw(ptr) }.into()
181 }
182
183 /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
184 ///
185 /// # Safety
186 ///
187 /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
188 /// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
189 pub unsafe fn as_bound(&self) -> &Device<Bound> {
190 let ptr = core::ptr::from_ref(self);
191
192 // CAST: By the safety requirements the caller is responsible to guarantee that the
193 // returned reference only lives as long as the device is actually bound.
194 let ptr = ptr.cast();
195
196 // SAFETY:
197 // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
198 // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
199 unsafe { &*ptr }
200 }
201}
202
203impl Device<CoreInternal> {
204 fn set_type_id<T: 'static>(&self) {
205 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
206 let private = unsafe { (*self.as_raw()).p };
207
208 // SAFETY: For a bound device (implied by the `CoreInternal` device context), `private` is
209 // guaranteed to be a valid pointer to a `struct device_private`.
210 let driver_type = unsafe { &raw mut (*private).driver_type };
211
212 // SAFETY: `driver_type` is valid for (unaligned) writes of a `TypeId`.
213 unsafe {
214 driver_type
215 .cast::<TypeId>()
216 .write_unaligned(TypeId::of::<T>())
217 };
218 }
219
220 /// Store a pointer to the bound driver's private data.
221 pub fn set_drvdata<T: 'static>(&self, data: impl PinInit<T, Error>) -> Result {
222 let data = KBox::pin_init(data, GFP_KERNEL)?;
223
224 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
225 unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) };
226 self.set_type_id::<T>();
227
228 Ok(())
229 }
230
231 /// Take ownership of the private data stored in this [`Device`].
232 ///
233 /// # Safety
234 ///
235 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
236 /// [`Device::set_drvdata`].
237 pub(crate) unsafe fn drvdata_obtain<T: 'static>(&self) -> Option<Pin<KBox<T>>> {
238 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
239 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
240
241 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
242 unsafe { bindings::dev_set_drvdata(self.as_raw(), core::ptr::null_mut()) };
243
244 if ptr.is_null() {
245 return None;
246 }
247
248 // SAFETY:
249 // - If `ptr` is not NULL, it comes from a previous call to `into_foreign()`.
250 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
251 // in `into_foreign()`.
252 Some(unsafe { Pin::<KBox<T>>::from_foreign(ptr.cast()) })
253 }
254
255 /// Borrow the driver's private data bound to this [`Device`].
256 ///
257 /// # Safety
258 ///
259 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before the
260 /// device is fully unbound.
261 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
262 /// [`Device::set_drvdata`].
263 pub unsafe fn drvdata_borrow<T: 'static>(&self) -> Pin<&T> {
264 // SAFETY: `drvdata_unchecked()` has the exact same safety requirements as the ones
265 // required by this method.
266 unsafe { self.drvdata_unchecked() }
267 }
268}
269
270impl Device<Bound> {
271 /// Borrow the driver's private data bound to this [`Device`].
272 ///
273 /// # Safety
274 ///
275 /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
276 /// the device is fully unbound.
277 /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
278 /// [`Device::set_drvdata`].
279 unsafe fn drvdata_unchecked<T: 'static>(&self) -> Pin<&T> {
280 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
281 let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
282
283 // SAFETY:
284 // - By the safety requirements of this function, `ptr` comes from a previous call to
285 // `into_foreign()`.
286 // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
287 // in `into_foreign()`.
288 unsafe { Pin::<KBox<T>>::borrow(ptr.cast()) }
289 }
290
291 fn match_type_id<T: 'static>(&self) -> Result {
292 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
293 let private = unsafe { (*self.as_raw()).p };
294
295 // SAFETY: For a bound device, `private` is guaranteed to be a valid pointer to a
296 // `struct device_private`.
297 let driver_type = unsafe { &raw mut (*private).driver_type };
298
299 // SAFETY:
300 // - `driver_type` is valid for (unaligned) reads of a `TypeId`.
301 // - A bound device guarantees that `driver_type` contains a valid `TypeId` value.
302 let type_id = unsafe { driver_type.cast::<TypeId>().read_unaligned() };
303
304 if type_id != TypeId::of::<T>() {
305 return Err(EINVAL);
306 }
307
308 Ok(())
309 }
310
311 /// Access a driver's private data.
312 ///
313 /// Returns a pinned reference to the driver's private data or [`EINVAL`] if it doesn't match
314 /// the asserted type `T`.
315 pub fn drvdata<T: 'static>(&self) -> Result<Pin<&T>> {
316 // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
317 if unsafe { bindings::dev_get_drvdata(self.as_raw()) }.is_null() {
318 return Err(ENOENT);
319 }
320
321 self.match_type_id::<T>()?;
322
323 // SAFETY:
324 // - The above check of `dev_get_drvdata()` guarantees that we are called after
325 // `set_drvdata()`.
326 // - We've just checked that the type of the driver's private data is in fact `T`.
327 Ok(unsafe { self.drvdata_unchecked() })
328 }
329}
330
331impl<Ctx: DeviceContext> Device<Ctx> {
332 /// Obtain the raw `struct device *`.
333 pub(crate) fn as_raw(&self) -> *mut bindings::device {
334 self.0.get()
335 }
336
337 /// Returns a reference to the parent device, if any.
338 #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
339 pub(crate) fn parent(&self) -> Option<&Device> {
340 // SAFETY:
341 // - By the type invariant `self.as_raw()` is always valid.
342 // - The parent device is only ever set at device creation.
343 let parent = unsafe { (*self.as_raw()).parent };
344
345 if parent.is_null() {
346 None
347 } else {
348 // SAFETY:
349 // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
350 // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
351 // reference count of its parent.
352 Some(unsafe { Device::from_raw(parent) })
353 }
354 }
355
356 /// Convert a raw C `struct device` pointer to a `&'a Device`.
357 ///
358 /// # Safety
359 ///
360 /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
361 /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
362 /// can't drop to zero, for the duration of this function call and the entire duration when the
363 /// returned reference exists.
364 pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
365 // SAFETY: Guaranteed by the safety requirements of the function.
366 unsafe { &*ptr.cast() }
367 }
368
369 /// Prints an emergency-level message (level 0) prefixed with device information.
370 ///
371 /// More details are available from [`dev_emerg`].
372 ///
373 /// [`dev_emerg`]: crate::dev_emerg
374 pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
375 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
376 unsafe { self.printk(bindings::KERN_EMERG, args) };
377 }
378
379 /// Prints an alert-level message (level 1) prefixed with device information.
380 ///
381 /// More details are available from [`dev_alert`].
382 ///
383 /// [`dev_alert`]: crate::dev_alert
384 pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
385 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
386 unsafe { self.printk(bindings::KERN_ALERT, args) };
387 }
388
389 /// Prints a critical-level message (level 2) prefixed with device information.
390 ///
391 /// More details are available from [`dev_crit`].
392 ///
393 /// [`dev_crit`]: crate::dev_crit
394 pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
395 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
396 unsafe { self.printk(bindings::KERN_CRIT, args) };
397 }
398
399 /// Prints an error-level message (level 3) prefixed with device information.
400 ///
401 /// More details are available from [`dev_err`].
402 ///
403 /// [`dev_err`]: crate::dev_err
404 pub fn pr_err(&self, args: fmt::Arguments<'_>) {
405 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
406 unsafe { self.printk(bindings::KERN_ERR, args) };
407 }
408
409 /// Prints a warning-level message (level 4) prefixed with device information.
410 ///
411 /// More details are available from [`dev_warn`].
412 ///
413 /// [`dev_warn`]: crate::dev_warn
414 pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
415 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
416 unsafe { self.printk(bindings::KERN_WARNING, args) };
417 }
418
419 /// Prints a notice-level message (level 5) prefixed with device information.
420 ///
421 /// More details are available from [`dev_notice`].
422 ///
423 /// [`dev_notice`]: crate::dev_notice
424 pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
425 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
426 unsafe { self.printk(bindings::KERN_NOTICE, args) };
427 }
428
429 /// Prints an info-level message (level 6) prefixed with device information.
430 ///
431 /// More details are available from [`dev_info`].
432 ///
433 /// [`dev_info`]: crate::dev_info
434 pub fn pr_info(&self, args: fmt::Arguments<'_>) {
435 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
436 unsafe { self.printk(bindings::KERN_INFO, args) };
437 }
438
439 /// Prints a debug-level message (level 7) prefixed with device information.
440 ///
441 /// More details are available from [`dev_dbg`].
442 ///
443 /// [`dev_dbg`]: crate::dev_dbg
444 pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
445 if cfg!(debug_assertions) {
446 // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
447 unsafe { self.printk(bindings::KERN_DEBUG, args) };
448 }
449 }
450
451 /// Prints the provided message to the console.
452 ///
453 /// # Safety
454 ///
455 /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
456 /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
457 #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
458 unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
459 // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
460 // is valid because `self` is valid. The "%pA" format string expects a pointer to
461 // `fmt::Arguments`, which is what we're passing as the last argument.
462 #[cfg(CONFIG_PRINTK)]
463 unsafe {
464 bindings::_dev_printk(
465 klevel.as_ptr().cast::<crate::ffi::c_char>(),
466 self.as_raw(),
467 c_str!("%pA").as_char_ptr(),
468 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
469 )
470 };
471 }
472
473 /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
474 pub fn fwnode(&self) -> Option<&property::FwNode> {
475 // SAFETY: `self` is valid.
476 let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
477 if fwnode_handle.is_null() {
478 return None;
479 }
480 // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
481 // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
482 // doesn't increment the refcount. It is safe to cast from a
483 // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
484 // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
485 Some(unsafe { &*fwnode_handle.cast() })
486 }
487}
488
489// SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
490// argument.
491kernel::impl_device_context_deref!(unsafe { Device });
492kernel::impl_device_context_into_aref!(Device);
493
494// SAFETY: Instances of `Device` are always reference-counted.
495unsafe impl crate::sync::aref::AlwaysRefCounted for Device {
496 fn inc_ref(&self) {
497 // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
498 unsafe { bindings::get_device(self.as_raw()) };
499 }
500
501 unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
502 // SAFETY: The safety requirements guarantee that the refcount is non-zero.
503 unsafe { bindings::put_device(obj.cast().as_ptr()) }
504 }
505}
506
507// SAFETY: As by the type invariant `Device` can be sent to any thread.
508unsafe impl Send for Device {}
509
510// SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
511// synchronization in `struct device`.
512unsafe impl Sync for Device {}
513
514/// Marker trait for the context or scope of a bus specific device.
515///
516/// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
517/// [`Device`].
518///
519/// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
520///
521/// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
522/// defines which [`DeviceContext`] type can be derived from another. For instance, any
523/// [`Device<Core>`] can dereference to a [`Device<Bound>`].
524///
525/// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
526///
527/// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
528///
529/// Bus devices can automatically implement the dereference hierarchy by using
530/// [`impl_device_context_deref`].
531///
532/// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
533/// from the specific scope the [`Device`] reference is valid in.
534///
535/// [`impl_device_context_deref`]: kernel::impl_device_context_deref
536pub trait DeviceContext: private::Sealed {}
537
538/// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
539///
540/// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
541/// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
542/// [`AlwaysRefCounted`] for.
543///
544/// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
545pub struct Normal;
546
547/// The [`Core`] context is the context of a bus specific device when it appears as argument of
548/// any bus specific callback, such as `probe()`.
549///
550/// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
551/// callback it appears in. It is intended to be used for synchronization purposes. Bus device
552/// implementations can implement methods for [`Device<Core>`], such that they can only be called
553/// from bus callbacks.
554pub struct Core;
555
556/// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
557/// abstraction.
558///
559/// The internal core context is intended to be used in exactly the same way as the [`Core`]
560/// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
561/// abstraction.
562///
563/// This context mainly exists to share generic [`Device`] infrastructure that should only be called
564/// from bus callbacks with bus abstractions, but without making them accessible for drivers.
565pub struct CoreInternal;
566
567/// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
568/// be bound to a driver.
569///
570/// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
571/// reference, the [`Device`] is guaranteed to be bound to a driver.
572///
573/// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
574/// which can be proven with the [`Bound`] device context.
575///
576/// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
577/// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
578/// from optimizations for accessing device resources, see also [`Devres::access`].
579///
580/// [`Devres`]: kernel::devres::Devres
581/// [`Devres::access`]: kernel::devres::Devres::access
582/// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
583pub struct Bound;
584
585mod private {
586 pub trait Sealed {}
587
588 impl Sealed for super::Bound {}
589 impl Sealed for super::Core {}
590 impl Sealed for super::CoreInternal {}
591 impl Sealed for super::Normal {}
592}
593
594impl DeviceContext for Bound {}
595impl DeviceContext for Core {}
596impl DeviceContext for CoreInternal {}
597impl DeviceContext for Normal {}
598
599/// Convert device references to bus device references.
600///
601/// Bus devices can implement this trait to allow abstractions to provide the bus device in
602/// class device callbacks.
603///
604/// This must not be used by drivers and is intended for bus and class device abstractions only.
605///
606/// # Safety
607///
608/// `AsBusDevice::OFFSET` must be the offset of the embedded base `struct device` field within a
609/// bus device structure.
610pub unsafe trait AsBusDevice<Ctx: DeviceContext>: AsRef<Device<Ctx>> {
611 /// The relative offset to the device field.
612 ///
613 /// Use `offset_of!(bindings, field)` macro to avoid breakage.
614 const OFFSET: usize;
615
616 /// Convert a reference to [`Device`] into `Self`.
617 ///
618 /// # Safety
619 ///
620 /// `dev` must be contained in `Self`.
621 unsafe fn from_device(dev: &Device<Ctx>) -> &Self
622 where
623 Self: Sized,
624 {
625 let raw = dev.as_raw();
626 // SAFETY: `raw - Self::OFFSET` is guaranteed by the safety requirements
627 // to be a valid pointer to `Self`.
628 unsafe { &*raw.byte_sub(Self::OFFSET).cast::<Self>() }
629 }
630}
631
632/// # Safety
633///
634/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
635/// generic argument of `$device`.
636#[doc(hidden)]
637#[macro_export]
638macro_rules! __impl_device_context_deref {
639 (unsafe { $device:ident, $src:ty => $dst:ty }) => {
640 impl ::core::ops::Deref for $device<$src> {
641 type Target = $device<$dst>;
642
643 fn deref(&self) -> &Self::Target {
644 let ptr: *const Self = self;
645
646 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
647 // safety requirement of the macro.
648 let ptr = ptr.cast::<Self::Target>();
649
650 // SAFETY: `ptr` was derived from `&self`.
651 unsafe { &*ptr }
652 }
653 }
654 };
655}
656
657/// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
658/// specific) device.
659///
660/// # Safety
661///
662/// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
663/// generic argument of `$device`.
664#[macro_export]
665macro_rules! impl_device_context_deref {
666 (unsafe { $device:ident }) => {
667 // SAFETY: This macro has the exact same safety requirement as
668 // `__impl_device_context_deref!`.
669 ::kernel::__impl_device_context_deref!(unsafe {
670 $device,
671 $crate::device::CoreInternal => $crate::device::Core
672 });
673
674 // SAFETY: This macro has the exact same safety requirement as
675 // `__impl_device_context_deref!`.
676 ::kernel::__impl_device_context_deref!(unsafe {
677 $device,
678 $crate::device::Core => $crate::device::Bound
679 });
680
681 // SAFETY: This macro has the exact same safety requirement as
682 // `__impl_device_context_deref!`.
683 ::kernel::__impl_device_context_deref!(unsafe {
684 $device,
685 $crate::device::Bound => $crate::device::Normal
686 });
687 };
688}
689
690#[doc(hidden)]
691#[macro_export]
692macro_rules! __impl_device_context_into_aref {
693 ($src:ty, $device:tt) => {
694 impl ::core::convert::From<&$device<$src>> for $crate::sync::aref::ARef<$device> {
695 fn from(dev: &$device<$src>) -> Self {
696 (&**dev).into()
697 }
698 }
699 };
700}
701
702/// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
703/// `ARef<Device>`.
704#[macro_export]
705macro_rules! impl_device_context_into_aref {
706 ($device:tt) => {
707 ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
708 ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
709 ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
710 };
711}
712
713#[doc(hidden)]
714#[macro_export]
715macro_rules! dev_printk {
716 ($method:ident, $dev:expr, $($f:tt)*) => {
717 {
718 ($dev).$method($crate::prelude::fmt!($($f)*));
719 }
720 }
721}
722
723/// Prints an emergency-level message (level 0) prefixed with device information.
724///
725/// This level should be used if the system is unusable.
726///
727/// Equivalent to the kernel's `dev_emerg` macro.
728///
729/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
730/// [`core::fmt`] and [`std::format!`].
731///
732/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
733/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
734///
735/// # Examples
736///
737/// ```
738/// # use kernel::device::Device;
739///
740/// fn example(dev: &Device) {
741/// dev_emerg!(dev, "hello {}\n", "there");
742/// }
743/// ```
744#[macro_export]
745macro_rules! dev_emerg {
746 ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
747}
748
749/// Prints an alert-level message (level 1) prefixed with device information.
750///
751/// This level should be used if action must be taken immediately.
752///
753/// Equivalent to the kernel's `dev_alert` macro.
754///
755/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
756/// [`core::fmt`] and [`std::format!`].
757///
758/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
759/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
760///
761/// # Examples
762///
763/// ```
764/// # use kernel::device::Device;
765///
766/// fn example(dev: &Device) {
767/// dev_alert!(dev, "hello {}\n", "there");
768/// }
769/// ```
770#[macro_export]
771macro_rules! dev_alert {
772 ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
773}
774
775/// Prints a critical-level message (level 2) prefixed with device information.
776///
777/// This level should be used in critical conditions.
778///
779/// Equivalent to the kernel's `dev_crit` macro.
780///
781/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
782/// [`core::fmt`] and [`std::format!`].
783///
784/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
785/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
786///
787/// # Examples
788///
789/// ```
790/// # use kernel::device::Device;
791///
792/// fn example(dev: &Device) {
793/// dev_crit!(dev, "hello {}\n", "there");
794/// }
795/// ```
796#[macro_export]
797macro_rules! dev_crit {
798 ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
799}
800
801/// Prints an error-level message (level 3) prefixed with device information.
802///
803/// This level should be used in error conditions.
804///
805/// Equivalent to the kernel's `dev_err` macro.
806///
807/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
808/// [`core::fmt`] and [`std::format!`].
809///
810/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
811/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
812///
813/// # Examples
814///
815/// ```
816/// # use kernel::device::Device;
817///
818/// fn example(dev: &Device) {
819/// dev_err!(dev, "hello {}\n", "there");
820/// }
821/// ```
822#[macro_export]
823macro_rules! dev_err {
824 ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
825}
826
827/// Prints a warning-level message (level 4) prefixed with device information.
828///
829/// This level should be used in warning conditions.
830///
831/// Equivalent to the kernel's `dev_warn` macro.
832///
833/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
834/// [`core::fmt`] and [`std::format!`].
835///
836/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
837/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
838///
839/// # Examples
840///
841/// ```
842/// # use kernel::device::Device;
843///
844/// fn example(dev: &Device) {
845/// dev_warn!(dev, "hello {}\n", "there");
846/// }
847/// ```
848#[macro_export]
849macro_rules! dev_warn {
850 ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
851}
852
853/// Prints a notice-level message (level 5) prefixed with device information.
854///
855/// This level should be used in normal but significant conditions.
856///
857/// Equivalent to the kernel's `dev_notice` macro.
858///
859/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
860/// [`core::fmt`] and [`std::format!`].
861///
862/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
863/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
864///
865/// # Examples
866///
867/// ```
868/// # use kernel::device::Device;
869///
870/// fn example(dev: &Device) {
871/// dev_notice!(dev, "hello {}\n", "there");
872/// }
873/// ```
874#[macro_export]
875macro_rules! dev_notice {
876 ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
877}
878
879/// Prints an info-level message (level 6) prefixed with device information.
880///
881/// This level should be used for informational messages.
882///
883/// Equivalent to the kernel's `dev_info` macro.
884///
885/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
886/// [`core::fmt`] and [`std::format!`].
887///
888/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
889/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
890///
891/// # Examples
892///
893/// ```
894/// # use kernel::device::Device;
895///
896/// fn example(dev: &Device) {
897/// dev_info!(dev, "hello {}\n", "there");
898/// }
899/// ```
900#[macro_export]
901macro_rules! dev_info {
902 ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
903}
904
905/// Prints a debug-level message (level 7) prefixed with device information.
906///
907/// This level should be used for debug messages.
908///
909/// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
910///
911/// Mimics the interface of [`std::print!`]. More information about the syntax is available from
912/// [`core::fmt`] and [`std::format!`].
913///
914/// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
915/// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
916///
917/// # Examples
918///
919/// ```
920/// # use kernel::device::Device;
921///
922/// fn example(dev: &Device) {
923/// dev_dbg!(dev, "hello {}\n", "there");
924/// }
925/// ```
926#[macro_export]
927macro_rules! dev_dbg {
928 ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
929}