core/iter/traits/
iterator.rs

1use super::super::{
2    ArrayChunks, ByRefSized, Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, FlatMap,
3    Flatten, Fuse, Inspect, Intersperse, IntersperseWith, Map, MapWhile, MapWindows, Peekable,
4    Product, Rev, Scan, Skip, SkipWhile, StepBy, Sum, Take, TakeWhile, TrustedRandomAccessNoCoerce,
5    Zip, try_process,
6};
7use super::TrustedLen;
8use crate::array;
9use crate::cmp::{self, Ordering};
10use crate::num::NonZero;
11use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
12
13fn _assert_is_dyn_compatible(_: &dyn Iterator<Item = ()>) {}
14
15/// A trait for dealing with iterators.
16///
17/// This is the main iterator trait. For more about the concept of iterators
18/// generally, please see the [module-level documentation]. In particular, you
19/// may want to know how to [implement `Iterator`][impl].
20///
21/// [module-level documentation]: crate::iter
22/// [impl]: crate::iter#implementing-iterator
23#[stable(feature = "rust1", since = "1.0.0")]
24#[rustc_on_unimplemented(
25    on(
26        Self = "core::ops::range::RangeTo<Idx>",
27        note = "you might have meant to use a bounded `Range`"
28    ),
29    on(
30        Self = "core::ops::range::RangeToInclusive<Idx>",
31        note = "you might have meant to use a bounded `RangeInclusive`"
32    ),
33    label = "`{Self}` is not an iterator",
34    message = "`{Self}` is not an iterator"
35)]
36#[doc(notable_trait)]
37#[lang = "iterator"]
38#[rustc_diagnostic_item = "Iterator"]
39#[must_use = "iterators are lazy and do nothing unless consumed"]
40pub trait Iterator {
41    /// The type of the elements being iterated over.
42    #[rustc_diagnostic_item = "IteratorItem"]
43    #[stable(feature = "rust1", since = "1.0.0")]
44    type Item;
45
46    /// Advances the iterator and returns the next value.
47    ///
48    /// Returns [`None`] when iteration is finished. Individual iterator
49    /// implementations may choose to resume iteration, and so calling `next()`
50    /// again may or may not eventually start returning [`Some(Item)`] again at some
51    /// point.
52    ///
53    /// [`Some(Item)`]: Some
54    ///
55    /// # Examples
56    ///
57    /// ```
58    /// let a = [1, 2, 3];
59    ///
60    /// let mut iter = a.into_iter();
61    ///
62    /// // A call to next() returns the next value...
63    /// assert_eq!(Some(1), iter.next());
64    /// assert_eq!(Some(2), iter.next());
65    /// assert_eq!(Some(3), iter.next());
66    ///
67    /// // ... and then None once it's over.
68    /// assert_eq!(None, iter.next());
69    ///
70    /// // More calls may or may not return `None`. Here, they always will.
71    /// assert_eq!(None, iter.next());
72    /// assert_eq!(None, iter.next());
73    /// ```
74    #[lang = "next"]
75    #[stable(feature = "rust1", since = "1.0.0")]
76    fn next(&mut self) -> Option<Self::Item>;
77
78    /// Advances the iterator and returns an array containing the next `N` values.
79    ///
80    /// If there are not enough elements to fill the array then `Err` is returned
81    /// containing an iterator over the remaining elements.
82    ///
83    /// # Examples
84    ///
85    /// Basic usage:
86    ///
87    /// ```
88    /// #![feature(iter_next_chunk)]
89    ///
90    /// let mut iter = "lorem".chars();
91    ///
92    /// assert_eq!(iter.next_chunk().unwrap(), ['l', 'o']);              // N is inferred as 2
93    /// assert_eq!(iter.next_chunk().unwrap(), ['r', 'e', 'm']);         // N is inferred as 3
94    /// assert_eq!(iter.next_chunk::<4>().unwrap_err().as_slice(), &[]); // N is explicitly 4
95    /// ```
96    ///
97    /// Split a string and get the first three items.
98    ///
99    /// ```
100    /// #![feature(iter_next_chunk)]
101    ///
102    /// let quote = "not all those who wander are lost";
103    /// let [first, second, third] = quote.split_whitespace().next_chunk().unwrap();
104    /// assert_eq!(first, "not");
105    /// assert_eq!(second, "all");
106    /// assert_eq!(third, "those");
107    /// ```
108    #[inline]
109    #[unstable(feature = "iter_next_chunk", reason = "recently added", issue = "98326")]
110    fn next_chunk<const N: usize>(
111        &mut self,
112    ) -> Result<[Self::Item; N], array::IntoIter<Self::Item, N>>
113    where
114        Self: Sized,
115    {
116        array::iter_next_chunk(self)
117    }
118
119    /// Returns the bounds on the remaining length of the iterator.
120    ///
121    /// Specifically, `size_hint()` returns a tuple where the first element
122    /// is the lower bound, and the second element is the upper bound.
123    ///
124    /// The second half of the tuple that is returned is an <code>[Option]<[usize]></code>.
125    /// A [`None`] here means that either there is no known upper bound, or the
126    /// upper bound is larger than [`usize`].
127    ///
128    /// # Implementation notes
129    ///
130    /// It is not enforced that an iterator implementation yields the declared
131    /// number of elements. A buggy iterator may yield less than the lower bound
132    /// or more than the upper bound of elements.
133    ///
134    /// `size_hint()` is primarily intended to be used for optimizations such as
135    /// reserving space for the elements of the iterator, but must not be
136    /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
137    /// implementation of `size_hint()` should not lead to memory safety
138    /// violations.
139    ///
140    /// That said, the implementation should provide a correct estimation,
141    /// because otherwise it would be a violation of the trait's protocol.
142    ///
143    /// The default implementation returns <code>(0, [None])</code> which is correct for any
144    /// iterator.
145    ///
146    /// # Examples
147    ///
148    /// Basic usage:
149    ///
150    /// ```
151    /// let a = [1, 2, 3];
152    /// let mut iter = a.iter();
153    ///
154    /// assert_eq!((3, Some(3)), iter.size_hint());
155    /// let _ = iter.next();
156    /// assert_eq!((2, Some(2)), iter.size_hint());
157    /// ```
158    ///
159    /// A more complex example:
160    ///
161    /// ```
162    /// // The even numbers in the range of zero to nine.
163    /// let iter = (0..10).filter(|x| x % 2 == 0);
164    ///
165    /// // We might iterate from zero to ten times. Knowing that it's five
166    /// // exactly wouldn't be possible without executing filter().
167    /// assert_eq!((0, Some(10)), iter.size_hint());
168    ///
169    /// // Let's add five more numbers with chain()
170    /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
171    ///
172    /// // now both bounds are increased by five
173    /// assert_eq!((5, Some(15)), iter.size_hint());
174    /// ```
175    ///
176    /// Returning `None` for an upper bound:
177    ///
178    /// ```
179    /// // an infinite iterator has no upper bound
180    /// // and the maximum possible lower bound
181    /// let iter = 0..;
182    ///
183    /// assert_eq!((usize::MAX, None), iter.size_hint());
184    /// ```
185    #[inline]
186    #[stable(feature = "rust1", since = "1.0.0")]
187    fn size_hint(&self) -> (usize, Option<usize>) {
188        (0, None)
189    }
190
191    /// Consumes the iterator, counting the number of iterations and returning it.
192    ///
193    /// This method will call [`next`] repeatedly until [`None`] is encountered,
194    /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
195    /// called at least once even if the iterator does not have any elements.
196    ///
197    /// [`next`]: Iterator::next
198    ///
199    /// # Overflow Behavior
200    ///
201    /// The method does no guarding against overflows, so counting elements of
202    /// an iterator with more than [`usize::MAX`] elements either produces the
203    /// wrong result or panics. If overflow checks are enabled, a panic is
204    /// guaranteed.
205    ///
206    /// # Panics
207    ///
208    /// This function might panic if the iterator has more than [`usize::MAX`]
209    /// elements.
210    ///
211    /// # Examples
212    ///
213    /// ```
214    /// let a = [1, 2, 3];
215    /// assert_eq!(a.iter().count(), 3);
216    ///
217    /// let a = [1, 2, 3, 4, 5];
218    /// assert_eq!(a.iter().count(), 5);
219    /// ```
220    #[inline]
221    #[stable(feature = "rust1", since = "1.0.0")]
222    fn count(self) -> usize
223    where
224        Self: Sized,
225    {
226        self.fold(
227            0,
228            #[rustc_inherit_overflow_checks]
229            |count, _| count + 1,
230        )
231    }
232
233    /// Consumes the iterator, returning the last element.
234    ///
235    /// This method will evaluate the iterator until it returns [`None`]. While
236    /// doing so, it keeps track of the current element. After [`None`] is
237    /// returned, `last()` will then return the last element it saw.
238    ///
239    /// # Panics
240    ///
241    /// This function might panic if the iterator is infinite.
242    ///
243    /// # Examples
244    ///
245    /// ```
246    /// let a = [1, 2, 3];
247    /// assert_eq!(a.into_iter().last(), Some(3));
248    ///
249    /// let a = [1, 2, 3, 4, 5];
250    /// assert_eq!(a.into_iter().last(), Some(5));
251    /// ```
252    #[inline]
253    #[stable(feature = "rust1", since = "1.0.0")]
254    fn last(self) -> Option<Self::Item>
255    where
256        Self: Sized,
257    {
258        #[inline]
259        fn some<T>(_: Option<T>, x: T) -> Option<T> {
260            Some(x)
261        }
262
263        self.fold(None, some)
264    }
265
266    /// Advances the iterator by `n` elements.
267    ///
268    /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
269    /// times until [`None`] is encountered.
270    ///
271    /// `advance_by(n)` will return `Ok(())` if the iterator successfully advances by
272    /// `n` elements, or a `Err(NonZero<usize>)` with value `k` if [`None`] is encountered,
273    /// where `k` is remaining number of steps that could not be advanced because the iterator ran out.
274    /// If `self` is empty and `n` is non-zero, then this returns `Err(n)`.
275    /// Otherwise, `k` is always less than `n`.
276    ///
277    /// Calling `advance_by(0)` can do meaningful work, for example [`Flatten`]
278    /// can advance its outer iterator until it finds an inner iterator that is not empty, which
279    /// then often allows it to return a more accurate `size_hint()` than in its initial state.
280    ///
281    /// [`Flatten`]: crate::iter::Flatten
282    /// [`next`]: Iterator::next
283    ///
284    /// # Examples
285    ///
286    /// ```
287    /// #![feature(iter_advance_by)]
288    ///
289    /// use std::num::NonZero;
290    ///
291    /// let a = [1, 2, 3, 4];
292    /// let mut iter = a.into_iter();
293    ///
294    /// assert_eq!(iter.advance_by(2), Ok(()));
295    /// assert_eq!(iter.next(), Some(3));
296    /// assert_eq!(iter.advance_by(0), Ok(()));
297    /// assert_eq!(iter.advance_by(100), Err(NonZero::new(99).unwrap())); // only `4` was skipped
298    /// ```
299    #[inline]
300    #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
301    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
302        /// Helper trait to specialize `advance_by` via `try_fold` for `Sized` iterators.
303        trait SpecAdvanceBy {
304            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>;
305        }
306
307        impl<I: Iterator + ?Sized> SpecAdvanceBy for I {
308            default fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
309                for i in 0..n {
310                    if self.next().is_none() {
311                        // SAFETY: `i` is always less than `n`.
312                        return Err(unsafe { NonZero::new_unchecked(n - i) });
313                    }
314                }
315                Ok(())
316            }
317        }
318
319        impl<I: Iterator> SpecAdvanceBy for I {
320            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
321                let Some(n) = NonZero::new(n) else {
322                    return Ok(());
323                };
324
325                let res = self.try_fold(n, |n, _| NonZero::new(n.get() - 1));
326
327                match res {
328                    None => Ok(()),
329                    Some(n) => Err(n),
330                }
331            }
332        }
333
334        self.spec_advance_by(n)
335    }
336
337    /// Returns the `n`th element of the iterator.
338    ///
339    /// Like most indexing operations, the count starts from zero, so `nth(0)`
340    /// returns the first value, `nth(1)` the second, and so on.
341    ///
342    /// Note that all preceding elements, as well as the returned element, will be
343    /// consumed from the iterator. That means that the preceding elements will be
344    /// discarded, and also that calling `nth(0)` multiple times on the same iterator
345    /// will return different elements.
346    ///
347    /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
348    /// iterator.
349    ///
350    /// # Examples
351    ///
352    /// Basic usage:
353    ///
354    /// ```
355    /// let a = [1, 2, 3];
356    /// assert_eq!(a.into_iter().nth(1), Some(2));
357    /// ```
358    ///
359    /// Calling `nth()` multiple times doesn't rewind the iterator:
360    ///
361    /// ```
362    /// let a = [1, 2, 3];
363    ///
364    /// let mut iter = a.into_iter();
365    ///
366    /// assert_eq!(iter.nth(1), Some(2));
367    /// assert_eq!(iter.nth(1), None);
368    /// ```
369    ///
370    /// Returning `None` if there are less than `n + 1` elements:
371    ///
372    /// ```
373    /// let a = [1, 2, 3];
374    /// assert_eq!(a.into_iter().nth(10), None);
375    /// ```
376    #[inline]
377    #[stable(feature = "rust1", since = "1.0.0")]
378    fn nth(&mut self, n: usize) -> Option<Self::Item> {
379        self.advance_by(n).ok()?;
380        self.next()
381    }
382
383    /// Creates an iterator starting at the same point, but stepping by
384    /// the given amount at each iteration.
385    ///
386    /// Note 1: The first element of the iterator will always be returned,
387    /// regardless of the step given.
388    ///
389    /// Note 2: The time at which ignored elements are pulled is not fixed.
390    /// `StepBy` behaves like the sequence `self.next()`, `self.nth(step-1)`,
391    /// `self.nth(step-1)`, …, but is also free to behave like the sequence
392    /// `advance_n_and_return_first(&mut self, step)`,
393    /// `advance_n_and_return_first(&mut self, step)`, …
394    /// Which way is used may change for some iterators for performance reasons.
395    /// The second way will advance the iterator earlier and may consume more items.
396    ///
397    /// `advance_n_and_return_first` is the equivalent of:
398    /// ```
399    /// fn advance_n_and_return_first<I>(iter: &mut I, n: usize) -> Option<I::Item>
400    /// where
401    ///     I: Iterator,
402    /// {
403    ///     let next = iter.next();
404    ///     if n > 1 {
405    ///         iter.nth(n - 2);
406    ///     }
407    ///     next
408    /// }
409    /// ```
410    ///
411    /// # Panics
412    ///
413    /// The method will panic if the given step is `0`.
414    ///
415    /// # Examples
416    ///
417    /// ```
418    /// let a = [0, 1, 2, 3, 4, 5];
419    /// let mut iter = a.into_iter().step_by(2);
420    ///
421    /// assert_eq!(iter.next(), Some(0));
422    /// assert_eq!(iter.next(), Some(2));
423    /// assert_eq!(iter.next(), Some(4));
424    /// assert_eq!(iter.next(), None);
425    /// ```
426    #[inline]
427    #[stable(feature = "iterator_step_by", since = "1.28.0")]
428    fn step_by(self, step: usize) -> StepBy<Self>
429    where
430        Self: Sized,
431    {
432        StepBy::new(self, step)
433    }
434
435    /// Takes two iterators and creates a new iterator over both in sequence.
436    ///
437    /// `chain()` will return a new iterator which will first iterate over
438    /// values from the first iterator and then over values from the second
439    /// iterator.
440    ///
441    /// In other words, it links two iterators together, in a chain. 🔗
442    ///
443    /// [`once`] is commonly used to adapt a single value into a chain of
444    /// other kinds of iteration.
445    ///
446    /// # Examples
447    ///
448    /// Basic usage:
449    ///
450    /// ```
451    /// let s1 = "abc".chars();
452    /// let s2 = "def".chars();
453    ///
454    /// let mut iter = s1.chain(s2);
455    ///
456    /// assert_eq!(iter.next(), Some('a'));
457    /// assert_eq!(iter.next(), Some('b'));
458    /// assert_eq!(iter.next(), Some('c'));
459    /// assert_eq!(iter.next(), Some('d'));
460    /// assert_eq!(iter.next(), Some('e'));
461    /// assert_eq!(iter.next(), Some('f'));
462    /// assert_eq!(iter.next(), None);
463    /// ```
464    ///
465    /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
466    /// anything that can be converted into an [`Iterator`], not just an
467    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
468    /// [`IntoIterator`], and so can be passed to `chain()` directly:
469    ///
470    /// ```
471    /// let a1 = [1, 2, 3];
472    /// let a2 = [4, 5, 6];
473    ///
474    /// let mut iter = a1.into_iter().chain(a2);
475    ///
476    /// assert_eq!(iter.next(), Some(1));
477    /// assert_eq!(iter.next(), Some(2));
478    /// assert_eq!(iter.next(), Some(3));
479    /// assert_eq!(iter.next(), Some(4));
480    /// assert_eq!(iter.next(), Some(5));
481    /// assert_eq!(iter.next(), Some(6));
482    /// assert_eq!(iter.next(), None);
483    /// ```
484    ///
485    /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
486    ///
487    /// ```
488    /// #[cfg(windows)]
489    /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
490    ///     use std::os::windows::ffi::OsStrExt;
491    ///     s.encode_wide().chain(std::iter::once(0)).collect()
492    /// }
493    /// ```
494    ///
495    /// [`once`]: crate::iter::once
496    /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
497    #[inline]
498    #[stable(feature = "rust1", since = "1.0.0")]
499    fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
500    where
501        Self: Sized,
502        U: IntoIterator<Item = Self::Item>,
503    {
504        Chain::new(self, other.into_iter())
505    }
506
507    /// 'Zips up' two iterators into a single iterator of pairs.
508    ///
509    /// `zip()` returns a new iterator that will iterate over two other
510    /// iterators, returning a tuple where the first element comes from the
511    /// first iterator, and the second element comes from the second iterator.
512    ///
513    /// In other words, it zips two iterators together, into a single one.
514    ///
515    /// If either iterator returns [`None`], [`next`] from the zipped iterator
516    /// will return [`None`].
517    /// If the zipped iterator has no more elements to return then each further attempt to advance
518    /// it will first try to advance the first iterator at most one time and if it still yielded an item
519    /// try to advance the second iterator at most one time.
520    ///
521    /// To 'undo' the result of zipping up two iterators, see [`unzip`].
522    ///
523    /// [`unzip`]: Iterator::unzip
524    ///
525    /// # Examples
526    ///
527    /// Basic usage:
528    ///
529    /// ```
530    /// let s1 = "abc".chars();
531    /// let s2 = "def".chars();
532    ///
533    /// let mut iter = s1.zip(s2);
534    ///
535    /// assert_eq!(iter.next(), Some(('a', 'd')));
536    /// assert_eq!(iter.next(), Some(('b', 'e')));
537    /// assert_eq!(iter.next(), Some(('c', 'f')));
538    /// assert_eq!(iter.next(), None);
539    /// ```
540    ///
541    /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
542    /// anything that can be converted into an [`Iterator`], not just an
543    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
544    /// [`IntoIterator`], and so can be passed to `zip()` directly:
545    ///
546    /// ```
547    /// let a1 = [1, 2, 3];
548    /// let a2 = [4, 5, 6];
549    ///
550    /// let mut iter = a1.into_iter().zip(a2);
551    ///
552    /// assert_eq!(iter.next(), Some((1, 4)));
553    /// assert_eq!(iter.next(), Some((2, 5)));
554    /// assert_eq!(iter.next(), Some((3, 6)));
555    /// assert_eq!(iter.next(), None);
556    /// ```
557    ///
558    /// `zip()` is often used to zip an infinite iterator to a finite one.
559    /// This works because the finite iterator will eventually return [`None`],
560    /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
561    ///
562    /// ```
563    /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
564    ///
565    /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
566    ///
567    /// assert_eq!((0, 'f'), enumerate[0]);
568    /// assert_eq!((0, 'f'), zipper[0]);
569    ///
570    /// assert_eq!((1, 'o'), enumerate[1]);
571    /// assert_eq!((1, 'o'), zipper[1]);
572    ///
573    /// assert_eq!((2, 'o'), enumerate[2]);
574    /// assert_eq!((2, 'o'), zipper[2]);
575    /// ```
576    ///
577    /// If both iterators have roughly equivalent syntax, it may be more readable to use [`zip`]:
578    ///
579    /// ```
580    /// use std::iter::zip;
581    ///
582    /// let a = [1, 2, 3];
583    /// let b = [2, 3, 4];
584    ///
585    /// let mut zipped = zip(
586    ///     a.into_iter().map(|x| x * 2).skip(1),
587    ///     b.into_iter().map(|x| x * 2).skip(1),
588    /// );
589    ///
590    /// assert_eq!(zipped.next(), Some((4, 6)));
591    /// assert_eq!(zipped.next(), Some((6, 8)));
592    /// assert_eq!(zipped.next(), None);
593    /// ```
594    ///
595    /// compared to:
596    ///
597    /// ```
598    /// # let a = [1, 2, 3];
599    /// # let b = [2, 3, 4];
600    /// #
601    /// let mut zipped = a
602    ///     .into_iter()
603    ///     .map(|x| x * 2)
604    ///     .skip(1)
605    ///     .zip(b.into_iter().map(|x| x * 2).skip(1));
606    /// #
607    /// # assert_eq!(zipped.next(), Some((4, 6)));
608    /// # assert_eq!(zipped.next(), Some((6, 8)));
609    /// # assert_eq!(zipped.next(), None);
610    /// ```
611    ///
612    /// [`enumerate`]: Iterator::enumerate
613    /// [`next`]: Iterator::next
614    /// [`zip`]: crate::iter::zip
615    #[inline]
616    #[stable(feature = "rust1", since = "1.0.0")]
617    fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
618    where
619        Self: Sized,
620        U: IntoIterator,
621    {
622        Zip::new(self, other.into_iter())
623    }
624
625    /// Creates a new iterator which places a copy of `separator` between adjacent
626    /// items of the original iterator.
627    ///
628    /// In case `separator` does not implement [`Clone`] or needs to be
629    /// computed every time, use [`intersperse_with`].
630    ///
631    /// # Examples
632    ///
633    /// Basic usage:
634    ///
635    /// ```
636    /// #![feature(iter_intersperse)]
637    ///
638    /// let mut a = [0, 1, 2].into_iter().intersperse(100);
639    /// assert_eq!(a.next(), Some(0));   // The first element from `a`.
640    /// assert_eq!(a.next(), Some(100)); // The separator.
641    /// assert_eq!(a.next(), Some(1));   // The next element from `a`.
642    /// assert_eq!(a.next(), Some(100)); // The separator.
643    /// assert_eq!(a.next(), Some(2));   // The last element from `a`.
644    /// assert_eq!(a.next(), None);       // The iterator is finished.
645    /// ```
646    ///
647    /// `intersperse` can be very useful to join an iterator's items using a common element:
648    /// ```
649    /// #![feature(iter_intersperse)]
650    ///
651    /// let words = ["Hello", "World", "!"];
652    /// let hello: String = words.into_iter().intersperse(" ").collect();
653    /// assert_eq!(hello, "Hello World !");
654    /// ```
655    ///
656    /// [`Clone`]: crate::clone::Clone
657    /// [`intersperse_with`]: Iterator::intersperse_with
658    #[inline]
659    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
660    fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
661    where
662        Self: Sized,
663        Self::Item: Clone,
664    {
665        Intersperse::new(self, separator)
666    }
667
668    /// Creates a new iterator which places an item generated by `separator`
669    /// between adjacent items of the original iterator.
670    ///
671    /// The closure will be called exactly once each time an item is placed
672    /// between two adjacent items from the underlying iterator; specifically,
673    /// the closure is not called if the underlying iterator yields less than
674    /// two items and after the last item is yielded.
675    ///
676    /// If the iterator's item implements [`Clone`], it may be easier to use
677    /// [`intersperse`].
678    ///
679    /// # Examples
680    ///
681    /// Basic usage:
682    ///
683    /// ```
684    /// #![feature(iter_intersperse)]
685    ///
686    /// #[derive(PartialEq, Debug)]
687    /// struct NotClone(usize);
688    ///
689    /// let v = [NotClone(0), NotClone(1), NotClone(2)];
690    /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
691    ///
692    /// assert_eq!(it.next(), Some(NotClone(0)));  // The first element from `v`.
693    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
694    /// assert_eq!(it.next(), Some(NotClone(1)));  // The next element from `v`.
695    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
696    /// assert_eq!(it.next(), Some(NotClone(2)));  // The last element from `v`.
697    /// assert_eq!(it.next(), None);               // The iterator is finished.
698    /// ```
699    ///
700    /// `intersperse_with` can be used in situations where the separator needs
701    /// to be computed:
702    /// ```
703    /// #![feature(iter_intersperse)]
704    ///
705    /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
706    ///
707    /// // The closure mutably borrows its context to generate an item.
708    /// let mut happy_emojis = [" ❤️ ", " 😀 "].into_iter();
709    /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
710    ///
711    /// let result = src.intersperse_with(separator).collect::<String>();
712    /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
713    /// ```
714    /// [`Clone`]: crate::clone::Clone
715    /// [`intersperse`]: Iterator::intersperse
716    #[inline]
717    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
718    fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
719    where
720        Self: Sized,
721        G: FnMut() -> Self::Item,
722    {
723        IntersperseWith::new(self, separator)
724    }
725
726    /// Takes a closure and creates an iterator which calls that closure on each
727    /// element.
728    ///
729    /// `map()` transforms one iterator into another, by means of its argument:
730    /// something that implements [`FnMut`]. It produces a new iterator which
731    /// calls this closure on each element of the original iterator.
732    ///
733    /// If you are good at thinking in types, you can think of `map()` like this:
734    /// If you have an iterator that gives you elements of some type `A`, and
735    /// you want an iterator of some other type `B`, you can use `map()`,
736    /// passing a closure that takes an `A` and returns a `B`.
737    ///
738    /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
739    /// lazy, it is best used when you're already working with other iterators.
740    /// If you're doing some sort of looping for a side effect, it's considered
741    /// more idiomatic to use [`for`] than `map()`.
742    ///
743    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
744    ///
745    /// # Examples
746    ///
747    /// Basic usage:
748    ///
749    /// ```
750    /// let a = [1, 2, 3];
751    ///
752    /// let mut iter = a.iter().map(|x| 2 * x);
753    ///
754    /// assert_eq!(iter.next(), Some(2));
755    /// assert_eq!(iter.next(), Some(4));
756    /// assert_eq!(iter.next(), Some(6));
757    /// assert_eq!(iter.next(), None);
758    /// ```
759    ///
760    /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
761    ///
762    /// ```
763    /// # #![allow(unused_must_use)]
764    /// // don't do this:
765    /// (0..5).map(|x| println!("{x}"));
766    ///
767    /// // it won't even execute, as it is lazy. Rust will warn you about this.
768    ///
769    /// // Instead, use a for-loop:
770    /// for x in 0..5 {
771    ///     println!("{x}");
772    /// }
773    /// ```
774    #[rustc_diagnostic_item = "IteratorMap"]
775    #[inline]
776    #[stable(feature = "rust1", since = "1.0.0")]
777    fn map<B, F>(self, f: F) -> Map<Self, F>
778    where
779        Self: Sized,
780        F: FnMut(Self::Item) -> B,
781    {
782        Map::new(self, f)
783    }
784
785    /// Calls a closure on each element of an iterator.
786    ///
787    /// This is equivalent to using a [`for`] loop on the iterator, although
788    /// `break` and `continue` are not possible from a closure. It's generally
789    /// more idiomatic to use a `for` loop, but `for_each` may be more legible
790    /// when processing items at the end of longer iterator chains. In some
791    /// cases `for_each` may also be faster than a loop, because it will use
792    /// internal iteration on adapters like `Chain`.
793    ///
794    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
795    ///
796    /// # Examples
797    ///
798    /// Basic usage:
799    ///
800    /// ```
801    /// use std::sync::mpsc::channel;
802    ///
803    /// let (tx, rx) = channel();
804    /// (0..5).map(|x| x * 2 + 1)
805    ///       .for_each(move |x| tx.send(x).unwrap());
806    ///
807    /// let v: Vec<_> = rx.iter().collect();
808    /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
809    /// ```
810    ///
811    /// For such a small example, a `for` loop may be cleaner, but `for_each`
812    /// might be preferable to keep a functional style with longer iterators:
813    ///
814    /// ```
815    /// (0..5).flat_map(|x| (x * 100)..(x * 110))
816    ///       .enumerate()
817    ///       .filter(|&(i, x)| (i + x) % 3 == 0)
818    ///       .for_each(|(i, x)| println!("{i}:{x}"));
819    /// ```
820    #[inline]
821    #[stable(feature = "iterator_for_each", since = "1.21.0")]
822    fn for_each<F>(self, f: F)
823    where
824        Self: Sized,
825        F: FnMut(Self::Item),
826    {
827        #[inline]
828        fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
829            move |(), item| f(item)
830        }
831
832        self.fold((), call(f));
833    }
834
835    /// Creates an iterator which uses a closure to determine if an element
836    /// should be yielded.
837    ///
838    /// Given an element the closure must return `true` or `false`. The returned
839    /// iterator will yield only the elements for which the closure returns
840    /// `true`.
841    ///
842    /// # Examples
843    ///
844    /// Basic usage:
845    ///
846    /// ```
847    /// let a = [0i32, 1, 2];
848    ///
849    /// let mut iter = a.into_iter().filter(|x| x.is_positive());
850    ///
851    /// assert_eq!(iter.next(), Some(1));
852    /// assert_eq!(iter.next(), Some(2));
853    /// assert_eq!(iter.next(), None);
854    /// ```
855    ///
856    /// Because the closure passed to `filter()` takes a reference, and many
857    /// iterators iterate over references, this leads to a possibly confusing
858    /// situation, where the type of the closure is a double reference:
859    ///
860    /// ```
861    /// let s = &[0, 1, 2];
862    ///
863    /// let mut iter = s.iter().filter(|x| **x > 1); // needs two *s!
864    ///
865    /// assert_eq!(iter.next(), Some(&2));
866    /// assert_eq!(iter.next(), None);
867    /// ```
868    ///
869    /// It's common to instead use destructuring on the argument to strip away one:
870    ///
871    /// ```
872    /// let s = &[0, 1, 2];
873    ///
874    /// let mut iter = s.iter().filter(|&x| *x > 1); // both & and *
875    ///
876    /// assert_eq!(iter.next(), Some(&2));
877    /// assert_eq!(iter.next(), None);
878    /// ```
879    ///
880    /// or both:
881    ///
882    /// ```
883    /// let s = &[0, 1, 2];
884    ///
885    /// let mut iter = s.iter().filter(|&&x| x > 1); // two &s
886    ///
887    /// assert_eq!(iter.next(), Some(&2));
888    /// assert_eq!(iter.next(), None);
889    /// ```
890    ///
891    /// of these layers.
892    ///
893    /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
894    #[inline]
895    #[stable(feature = "rust1", since = "1.0.0")]
896    #[rustc_diagnostic_item = "iter_filter"]
897    fn filter<P>(self, predicate: P) -> Filter<Self, P>
898    where
899        Self: Sized,
900        P: FnMut(&Self::Item) -> bool,
901    {
902        Filter::new(self, predicate)
903    }
904
905    /// Creates an iterator that both filters and maps.
906    ///
907    /// The returned iterator yields only the `value`s for which the supplied
908    /// closure returns `Some(value)`.
909    ///
910    /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
911    /// concise. The example below shows how a `map().filter().map()` can be
912    /// shortened to a single call to `filter_map`.
913    ///
914    /// [`filter`]: Iterator::filter
915    /// [`map`]: Iterator::map
916    ///
917    /// # Examples
918    ///
919    /// Basic usage:
920    ///
921    /// ```
922    /// let a = ["1", "two", "NaN", "four", "5"];
923    ///
924    /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
925    ///
926    /// assert_eq!(iter.next(), Some(1));
927    /// assert_eq!(iter.next(), Some(5));
928    /// assert_eq!(iter.next(), None);
929    /// ```
930    ///
931    /// Here's the same example, but with [`filter`] and [`map`]:
932    ///
933    /// ```
934    /// let a = ["1", "two", "NaN", "four", "5"];
935    /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
936    /// assert_eq!(iter.next(), Some(1));
937    /// assert_eq!(iter.next(), Some(5));
938    /// assert_eq!(iter.next(), None);
939    /// ```
940    #[inline]
941    #[stable(feature = "rust1", since = "1.0.0")]
942    fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
943    where
944        Self: Sized,
945        F: FnMut(Self::Item) -> Option<B>,
946    {
947        FilterMap::new(self, f)
948    }
949
950    /// Creates an iterator which gives the current iteration count as well as
951    /// the next value.
952    ///
953    /// The iterator returned yields pairs `(i, val)`, where `i` is the
954    /// current index of iteration and `val` is the value returned by the
955    /// iterator.
956    ///
957    /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
958    /// different sized integer, the [`zip`] function provides similar
959    /// functionality.
960    ///
961    /// # Overflow Behavior
962    ///
963    /// The method does no guarding against overflows, so enumerating more than
964    /// [`usize::MAX`] elements either produces the wrong result or panics. If
965    /// overflow checks are enabled, a panic is guaranteed.
966    ///
967    /// # Panics
968    ///
969    /// The returned iterator might panic if the to-be-returned index would
970    /// overflow a [`usize`].
971    ///
972    /// [`zip`]: Iterator::zip
973    ///
974    /// # Examples
975    ///
976    /// ```
977    /// let a = ['a', 'b', 'c'];
978    ///
979    /// let mut iter = a.into_iter().enumerate();
980    ///
981    /// assert_eq!(iter.next(), Some((0, 'a')));
982    /// assert_eq!(iter.next(), Some((1, 'b')));
983    /// assert_eq!(iter.next(), Some((2, 'c')));
984    /// assert_eq!(iter.next(), None);
985    /// ```
986    #[inline]
987    #[stable(feature = "rust1", since = "1.0.0")]
988    #[rustc_diagnostic_item = "enumerate_method"]
989    fn enumerate(self) -> Enumerate<Self>
990    where
991        Self: Sized,
992    {
993        Enumerate::new(self)
994    }
995
996    /// Creates an iterator which can use the [`peek`] and [`peek_mut`] methods
997    /// to look at the next element of the iterator without consuming it. See
998    /// their documentation for more information.
999    ///
1000    /// Note that the underlying iterator is still advanced when [`peek`] or
1001    /// [`peek_mut`] are called for the first time: In order to retrieve the
1002    /// next element, [`next`] is called on the underlying iterator, hence any
1003    /// side effects (i.e. anything other than fetching the next value) of
1004    /// the [`next`] method will occur.
1005    ///
1006    ///
1007    /// # Examples
1008    ///
1009    /// Basic usage:
1010    ///
1011    /// ```
1012    /// let xs = [1, 2, 3];
1013    ///
1014    /// let mut iter = xs.into_iter().peekable();
1015    ///
1016    /// // peek() lets us see into the future
1017    /// assert_eq!(iter.peek(), Some(&1));
1018    /// assert_eq!(iter.next(), Some(1));
1019    ///
1020    /// assert_eq!(iter.next(), Some(2));
1021    ///
1022    /// // we can peek() multiple times, the iterator won't advance
1023    /// assert_eq!(iter.peek(), Some(&3));
1024    /// assert_eq!(iter.peek(), Some(&3));
1025    ///
1026    /// assert_eq!(iter.next(), Some(3));
1027    ///
1028    /// // after the iterator is finished, so is peek()
1029    /// assert_eq!(iter.peek(), None);
1030    /// assert_eq!(iter.next(), None);
1031    /// ```
1032    ///
1033    /// Using [`peek_mut`] to mutate the next item without advancing the
1034    /// iterator:
1035    ///
1036    /// ```
1037    /// let xs = [1, 2, 3];
1038    ///
1039    /// let mut iter = xs.into_iter().peekable();
1040    ///
1041    /// // `peek_mut()` lets us see into the future
1042    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1043    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1044    /// assert_eq!(iter.next(), Some(1));
1045    ///
1046    /// if let Some(p) = iter.peek_mut() {
1047    ///     assert_eq!(*p, 2);
1048    ///     // put a value into the iterator
1049    ///     *p = 1000;
1050    /// }
1051    ///
1052    /// // The value reappears as the iterator continues
1053    /// assert_eq!(iter.collect::<Vec<_>>(), vec![1000, 3]);
1054    /// ```
1055    /// [`peek`]: Peekable::peek
1056    /// [`peek_mut`]: Peekable::peek_mut
1057    /// [`next`]: Iterator::next
1058    #[inline]
1059    #[stable(feature = "rust1", since = "1.0.0")]
1060    fn peekable(self) -> Peekable<Self>
1061    where
1062        Self: Sized,
1063    {
1064        Peekable::new(self)
1065    }
1066
1067    /// Creates an iterator that [`skip`]s elements based on a predicate.
1068    ///
1069    /// [`skip`]: Iterator::skip
1070    ///
1071    /// `skip_while()` takes a closure as an argument. It will call this
1072    /// closure on each element of the iterator, and ignore elements
1073    /// until it returns `false`.
1074    ///
1075    /// After `false` is returned, `skip_while()`'s job is over, and the
1076    /// rest of the elements are yielded.
1077    ///
1078    /// # Examples
1079    ///
1080    /// Basic usage:
1081    ///
1082    /// ```
1083    /// let a = [-1i32, 0, 1];
1084    ///
1085    /// let mut iter = a.into_iter().skip_while(|x| x.is_negative());
1086    ///
1087    /// assert_eq!(iter.next(), Some(0));
1088    /// assert_eq!(iter.next(), Some(1));
1089    /// assert_eq!(iter.next(), None);
1090    /// ```
1091    ///
1092    /// Because the closure passed to `skip_while()` takes a reference, and many
1093    /// iterators iterate over references, this leads to a possibly confusing
1094    /// situation, where the type of the closure argument is a double reference:
1095    ///
1096    /// ```
1097    /// let s = &[-1, 0, 1];
1098    ///
1099    /// let mut iter = s.iter().skip_while(|x| **x < 0); // need two *s!
1100    ///
1101    /// assert_eq!(iter.next(), Some(&0));
1102    /// assert_eq!(iter.next(), Some(&1));
1103    /// assert_eq!(iter.next(), None);
1104    /// ```
1105    ///
1106    /// Stopping after an initial `false`:
1107    ///
1108    /// ```
1109    /// let a = [-1, 0, 1, -2];
1110    ///
1111    /// let mut iter = a.into_iter().skip_while(|&x| x < 0);
1112    ///
1113    /// assert_eq!(iter.next(), Some(0));
1114    /// assert_eq!(iter.next(), Some(1));
1115    ///
1116    /// // while this would have been false, since we already got a false,
1117    /// // skip_while() isn't used any more
1118    /// assert_eq!(iter.next(), Some(-2));
1119    ///
1120    /// assert_eq!(iter.next(), None);
1121    /// ```
1122    #[inline]
1123    #[doc(alias = "drop_while")]
1124    #[stable(feature = "rust1", since = "1.0.0")]
1125    fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1126    where
1127        Self: Sized,
1128        P: FnMut(&Self::Item) -> bool,
1129    {
1130        SkipWhile::new(self, predicate)
1131    }
1132
1133    /// Creates an iterator that yields elements based on a predicate.
1134    ///
1135    /// `take_while()` takes a closure as an argument. It will call this
1136    /// closure on each element of the iterator, and yield elements
1137    /// while it returns `true`.
1138    ///
1139    /// After `false` is returned, `take_while()`'s job is over, and the
1140    /// rest of the elements are ignored.
1141    ///
1142    /// # Examples
1143    ///
1144    /// Basic usage:
1145    ///
1146    /// ```
1147    /// let a = [-1i32, 0, 1];
1148    ///
1149    /// let mut iter = a.into_iter().take_while(|x| x.is_negative());
1150    ///
1151    /// assert_eq!(iter.next(), Some(-1));
1152    /// assert_eq!(iter.next(), None);
1153    /// ```
1154    ///
1155    /// Because the closure passed to `take_while()` takes a reference, and many
1156    /// iterators iterate over references, this leads to a possibly confusing
1157    /// situation, where the type of the closure is a double reference:
1158    ///
1159    /// ```
1160    /// let s = &[-1, 0, 1];
1161    ///
1162    /// let mut iter = s.iter().take_while(|x| **x < 0); // need two *s!
1163    ///
1164    /// assert_eq!(iter.next(), Some(&-1));
1165    /// assert_eq!(iter.next(), None);
1166    /// ```
1167    ///
1168    /// Stopping after an initial `false`:
1169    ///
1170    /// ```
1171    /// let a = [-1, 0, 1, -2];
1172    ///
1173    /// let mut iter = a.into_iter().take_while(|&x| x < 0);
1174    ///
1175    /// assert_eq!(iter.next(), Some(-1));
1176    ///
1177    /// // We have more elements that are less than zero, but since we already
1178    /// // got a false, take_while() ignores the remaining elements.
1179    /// assert_eq!(iter.next(), None);
1180    /// ```
1181    ///
1182    /// Because `take_while()` needs to look at the value in order to see if it
1183    /// should be included or not, consuming iterators will see that it is
1184    /// removed:
1185    ///
1186    /// ```
1187    /// let a = [1, 2, 3, 4];
1188    /// let mut iter = a.into_iter();
1189    ///
1190    /// let result: Vec<i32> = iter.by_ref().take_while(|&n| n != 3).collect();
1191    ///
1192    /// assert_eq!(result, [1, 2]);
1193    ///
1194    /// let result: Vec<i32> = iter.collect();
1195    ///
1196    /// assert_eq!(result, [4]);
1197    /// ```
1198    ///
1199    /// The `3` is no longer there, because it was consumed in order to see if
1200    /// the iteration should stop, but wasn't placed back into the iterator.
1201    #[inline]
1202    #[stable(feature = "rust1", since = "1.0.0")]
1203    fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1204    where
1205        Self: Sized,
1206        P: FnMut(&Self::Item) -> bool,
1207    {
1208        TakeWhile::new(self, predicate)
1209    }
1210
1211    /// Creates an iterator that both yields elements based on a predicate and maps.
1212    ///
1213    /// `map_while()` takes a closure as an argument. It will call this
1214    /// closure on each element of the iterator, and yield elements
1215    /// while it returns [`Some(_)`][`Some`].
1216    ///
1217    /// # Examples
1218    ///
1219    /// Basic usage:
1220    ///
1221    /// ```
1222    /// let a = [-1i32, 4, 0, 1];
1223    ///
1224    /// let mut iter = a.into_iter().map_while(|x| 16i32.checked_div(x));
1225    ///
1226    /// assert_eq!(iter.next(), Some(-16));
1227    /// assert_eq!(iter.next(), Some(4));
1228    /// assert_eq!(iter.next(), None);
1229    /// ```
1230    ///
1231    /// Here's the same example, but with [`take_while`] and [`map`]:
1232    ///
1233    /// [`take_while`]: Iterator::take_while
1234    /// [`map`]: Iterator::map
1235    ///
1236    /// ```
1237    /// let a = [-1i32, 4, 0, 1];
1238    ///
1239    /// let mut iter = a.into_iter()
1240    ///                 .map(|x| 16i32.checked_div(x))
1241    ///                 .take_while(|x| x.is_some())
1242    ///                 .map(|x| x.unwrap());
1243    ///
1244    /// assert_eq!(iter.next(), Some(-16));
1245    /// assert_eq!(iter.next(), Some(4));
1246    /// assert_eq!(iter.next(), None);
1247    /// ```
1248    ///
1249    /// Stopping after an initial [`None`]:
1250    ///
1251    /// ```
1252    /// let a = [0, 1, 2, -3, 4, 5, -6];
1253    ///
1254    /// let iter = a.into_iter().map_while(|x| u32::try_from(x).ok());
1255    /// let vec: Vec<_> = iter.collect();
1256    ///
1257    /// // We have more elements that could fit in u32 (such as 4, 5), but `map_while` returned `None` for `-3`
1258    /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
1259    /// assert_eq!(vec, [0, 1, 2]);
1260    /// ```
1261    ///
1262    /// Because `map_while()` needs to look at the value in order to see if it
1263    /// should be included or not, consuming iterators will see that it is
1264    /// removed:
1265    ///
1266    /// ```
1267    /// let a = [1, 2, -3, 4];
1268    /// let mut iter = a.into_iter();
1269    ///
1270    /// let result: Vec<u32> = iter.by_ref()
1271    ///                            .map_while(|n| u32::try_from(n).ok())
1272    ///                            .collect();
1273    ///
1274    /// assert_eq!(result, [1, 2]);
1275    ///
1276    /// let result: Vec<i32> = iter.collect();
1277    ///
1278    /// assert_eq!(result, [4]);
1279    /// ```
1280    ///
1281    /// The `-3` is no longer there, because it was consumed in order to see if
1282    /// the iteration should stop, but wasn't placed back into the iterator.
1283    ///
1284    /// Note that unlike [`take_while`] this iterator is **not** fused.
1285    /// It is also not specified what this iterator returns after the first [`None`] is returned.
1286    /// If you need a fused iterator, use [`fuse`].
1287    ///
1288    /// [`fuse`]: Iterator::fuse
1289    #[inline]
1290    #[stable(feature = "iter_map_while", since = "1.57.0")]
1291    fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1292    where
1293        Self: Sized,
1294        P: FnMut(Self::Item) -> Option<B>,
1295    {
1296        MapWhile::new(self, predicate)
1297    }
1298
1299    /// Creates an iterator that skips the first `n` elements.
1300    ///
1301    /// `skip(n)` skips elements until `n` elements are skipped or the end of the
1302    /// iterator is reached (whichever happens first). After that, all the remaining
1303    /// elements are yielded. In particular, if the original iterator is too short,
1304    /// then the returned iterator is empty.
1305    ///
1306    /// Rather than overriding this method directly, instead override the `nth` method.
1307    ///
1308    /// # Examples
1309    ///
1310    /// ```
1311    /// let a = [1, 2, 3];
1312    ///
1313    /// let mut iter = a.into_iter().skip(2);
1314    ///
1315    /// assert_eq!(iter.next(), Some(3));
1316    /// assert_eq!(iter.next(), None);
1317    /// ```
1318    #[inline]
1319    #[stable(feature = "rust1", since = "1.0.0")]
1320    fn skip(self, n: usize) -> Skip<Self>
1321    where
1322        Self: Sized,
1323    {
1324        Skip::new(self, n)
1325    }
1326
1327    /// Creates an iterator that yields the first `n` elements, or fewer
1328    /// if the underlying iterator ends sooner.
1329    ///
1330    /// `take(n)` yields elements until `n` elements are yielded or the end of
1331    /// the iterator is reached (whichever happens first).
1332    /// The returned iterator is a prefix of length `n` if the original iterator
1333    /// contains at least `n` elements, otherwise it contains all of the
1334    /// (fewer than `n`) elements of the original iterator.
1335    ///
1336    /// # Examples
1337    ///
1338    /// Basic usage:
1339    ///
1340    /// ```
1341    /// let a = [1, 2, 3];
1342    ///
1343    /// let mut iter = a.into_iter().take(2);
1344    ///
1345    /// assert_eq!(iter.next(), Some(1));
1346    /// assert_eq!(iter.next(), Some(2));
1347    /// assert_eq!(iter.next(), None);
1348    /// ```
1349    ///
1350    /// `take()` is often used with an infinite iterator, to make it finite:
1351    ///
1352    /// ```
1353    /// let mut iter = (0..).take(3);
1354    ///
1355    /// assert_eq!(iter.next(), Some(0));
1356    /// assert_eq!(iter.next(), Some(1));
1357    /// assert_eq!(iter.next(), Some(2));
1358    /// assert_eq!(iter.next(), None);
1359    /// ```
1360    ///
1361    /// If less than `n` elements are available,
1362    /// `take` will limit itself to the size of the underlying iterator:
1363    ///
1364    /// ```
1365    /// let v = [1, 2];
1366    /// let mut iter = v.into_iter().take(5);
1367    /// assert_eq!(iter.next(), Some(1));
1368    /// assert_eq!(iter.next(), Some(2));
1369    /// assert_eq!(iter.next(), None);
1370    /// ```
1371    ///
1372    /// Use [`by_ref`] to take from the iterator without consuming it, and then
1373    /// continue using the original iterator:
1374    ///
1375    /// ```
1376    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1377    ///
1378    /// // Take the first two words.
1379    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1380    /// assert_eq!(hello_world, vec!["hello", "world"]);
1381    ///
1382    /// // Collect the rest of the words.
1383    /// // We can only do this because we used `by_ref` earlier.
1384    /// let of_rust: Vec<_> = words.collect();
1385    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1386    /// ```
1387    ///
1388    /// [`by_ref`]: Iterator::by_ref
1389    #[doc(alias = "limit")]
1390    #[inline]
1391    #[stable(feature = "rust1", since = "1.0.0")]
1392    fn take(self, n: usize) -> Take<Self>
1393    where
1394        Self: Sized,
1395    {
1396        Take::new(self, n)
1397    }
1398
1399    /// An iterator adapter which, like [`fold`], holds internal state, but
1400    /// unlike [`fold`], produces a new iterator.
1401    ///
1402    /// [`fold`]: Iterator::fold
1403    ///
1404    /// `scan()` takes two arguments: an initial value which seeds the internal
1405    /// state, and a closure with two arguments, the first being a mutable
1406    /// reference to the internal state and the second an iterator element.
1407    /// The closure can assign to the internal state to share state between
1408    /// iterations.
1409    ///
1410    /// On iteration, the closure will be applied to each element of the
1411    /// iterator and the return value from the closure, an [`Option`], is
1412    /// returned by the `next` method. Thus the closure can return
1413    /// `Some(value)` to yield `value`, or `None` to end the iteration.
1414    ///
1415    /// # Examples
1416    ///
1417    /// ```
1418    /// let a = [1, 2, 3, 4];
1419    ///
1420    /// let mut iter = a.into_iter().scan(1, |state, x| {
1421    ///     // each iteration, we'll multiply the state by the element ...
1422    ///     *state = *state * x;
1423    ///
1424    ///     // ... and terminate if the state exceeds 6
1425    ///     if *state > 6 {
1426    ///         return None;
1427    ///     }
1428    ///     // ... else yield the negation of the state
1429    ///     Some(-*state)
1430    /// });
1431    ///
1432    /// assert_eq!(iter.next(), Some(-1));
1433    /// assert_eq!(iter.next(), Some(-2));
1434    /// assert_eq!(iter.next(), Some(-6));
1435    /// assert_eq!(iter.next(), None);
1436    /// ```
1437    #[inline]
1438    #[stable(feature = "rust1", since = "1.0.0")]
1439    fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
1440    where
1441        Self: Sized,
1442        F: FnMut(&mut St, Self::Item) -> Option<B>,
1443    {
1444        Scan::new(self, initial_state, f)
1445    }
1446
1447    /// Creates an iterator that works like map, but flattens nested structure.
1448    ///
1449    /// The [`map`] adapter is very useful, but only when the closure
1450    /// argument produces values. If it produces an iterator instead, there's
1451    /// an extra layer of indirection. `flat_map()` will remove this extra layer
1452    /// on its own.
1453    ///
1454    /// You can think of `flat_map(f)` as the semantic equivalent
1455    /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1456    ///
1457    /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
1458    /// one item for each element, and `flat_map()`'s closure returns an
1459    /// iterator for each element.
1460    ///
1461    /// [`map`]: Iterator::map
1462    /// [`flatten`]: Iterator::flatten
1463    ///
1464    /// # Examples
1465    ///
1466    /// ```
1467    /// let words = ["alpha", "beta", "gamma"];
1468    ///
1469    /// // chars() returns an iterator
1470    /// let merged: String = words.iter()
1471    ///                           .flat_map(|s| s.chars())
1472    ///                           .collect();
1473    /// assert_eq!(merged, "alphabetagamma");
1474    /// ```
1475    #[inline]
1476    #[stable(feature = "rust1", since = "1.0.0")]
1477    fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
1478    where
1479        Self: Sized,
1480        U: IntoIterator,
1481        F: FnMut(Self::Item) -> U,
1482    {
1483        FlatMap::new(self, f)
1484    }
1485
1486    /// Creates an iterator that flattens nested structure.
1487    ///
1488    /// This is useful when you have an iterator of iterators or an iterator of
1489    /// things that can be turned into iterators and you want to remove one
1490    /// level of indirection.
1491    ///
1492    /// # Examples
1493    ///
1494    /// Basic usage:
1495    ///
1496    /// ```
1497    /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1498    /// let flattened: Vec<_> = data.into_iter().flatten().collect();
1499    /// assert_eq!(flattened, [1, 2, 3, 4, 5, 6]);
1500    /// ```
1501    ///
1502    /// Mapping and then flattening:
1503    ///
1504    /// ```
1505    /// let words = ["alpha", "beta", "gamma"];
1506    ///
1507    /// // chars() returns an iterator
1508    /// let merged: String = words.iter()
1509    ///                           .map(|s| s.chars())
1510    ///                           .flatten()
1511    ///                           .collect();
1512    /// assert_eq!(merged, "alphabetagamma");
1513    /// ```
1514    ///
1515    /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1516    /// in this case since it conveys intent more clearly:
1517    ///
1518    /// ```
1519    /// let words = ["alpha", "beta", "gamma"];
1520    ///
1521    /// // chars() returns an iterator
1522    /// let merged: String = words.iter()
1523    ///                           .flat_map(|s| s.chars())
1524    ///                           .collect();
1525    /// assert_eq!(merged, "alphabetagamma");
1526    /// ```
1527    ///
1528    /// Flattening works on any `IntoIterator` type, including `Option` and `Result`:
1529    ///
1530    /// ```
1531    /// let options = vec![Some(123), Some(321), None, Some(231)];
1532    /// let flattened_options: Vec<_> = options.into_iter().flatten().collect();
1533    /// assert_eq!(flattened_options, [123, 321, 231]);
1534    ///
1535    /// let results = vec![Ok(123), Ok(321), Err(456), Ok(231)];
1536    /// let flattened_results: Vec<_> = results.into_iter().flatten().collect();
1537    /// assert_eq!(flattened_results, [123, 321, 231]);
1538    /// ```
1539    ///
1540    /// Flattening only removes one level of nesting at a time:
1541    ///
1542    /// ```
1543    /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1544    ///
1545    /// let d2: Vec<_> = d3.into_iter().flatten().collect();
1546    /// assert_eq!(d2, [[1, 2], [3, 4], [5, 6], [7, 8]]);
1547    ///
1548    /// let d1: Vec<_> = d3.into_iter().flatten().flatten().collect();
1549    /// assert_eq!(d1, [1, 2, 3, 4, 5, 6, 7, 8]);
1550    /// ```
1551    ///
1552    /// Here we see that `flatten()` does not perform a "deep" flatten.
1553    /// Instead, only one level of nesting is removed. That is, if you
1554    /// `flatten()` a three-dimensional array, the result will be
1555    /// two-dimensional and not one-dimensional. To get a one-dimensional
1556    /// structure, you have to `flatten()` again.
1557    ///
1558    /// [`flat_map()`]: Iterator::flat_map
1559    #[inline]
1560    #[stable(feature = "iterator_flatten", since = "1.29.0")]
1561    fn flatten(self) -> Flatten<Self>
1562    where
1563        Self: Sized,
1564        Self::Item: IntoIterator,
1565    {
1566        Flatten::new(self)
1567    }
1568
1569    /// Calls the given function `f` for each contiguous window of size `N` over
1570    /// `self` and returns an iterator over the outputs of `f`. Like [`slice::windows()`],
1571    /// the windows during mapping overlap as well.
1572    ///
1573    /// In the following example, the closure is called three times with the
1574    /// arguments `&['a', 'b']`, `&['b', 'c']` and `&['c', 'd']` respectively.
1575    ///
1576    /// ```
1577    /// #![feature(iter_map_windows)]
1578    ///
1579    /// let strings = "abcd".chars()
1580    ///     .map_windows(|[x, y]| format!("{}+{}", x, y))
1581    ///     .collect::<Vec<String>>();
1582    ///
1583    /// assert_eq!(strings, vec!["a+b", "b+c", "c+d"]);
1584    /// ```
1585    ///
1586    /// Note that the const parameter `N` is usually inferred by the
1587    /// destructured argument in the closure.
1588    ///
1589    /// The returned iterator yields 𝑘 − `N` + 1 items (where 𝑘 is the number of
1590    /// items yielded by `self`). If 𝑘 is less than `N`, this method yields an
1591    /// empty iterator.
1592    ///
1593    /// The returned iterator implements [`FusedIterator`], because once `self`
1594    /// returns `None`, even if it returns a `Some(T)` again in the next iterations,
1595    /// we cannot put it into a contiguous array buffer, and thus the returned iterator
1596    /// should be fused.
1597    ///
1598    /// [`slice::windows()`]: slice::windows
1599    /// [`FusedIterator`]: crate::iter::FusedIterator
1600    ///
1601    /// # Panics
1602    ///
1603    /// Panics if `N` is zero. This check will most probably get changed to a
1604    /// compile time error before this method gets stabilized.
1605    ///
1606    /// ```should_panic
1607    /// #![feature(iter_map_windows)]
1608    ///
1609    /// let iter = std::iter::repeat(0).map_windows(|&[]| ());
1610    /// ```
1611    ///
1612    /// # Examples
1613    ///
1614    /// Building the sums of neighboring numbers.
1615    ///
1616    /// ```
1617    /// #![feature(iter_map_windows)]
1618    ///
1619    /// let mut it = [1, 3, 8, 1].iter().map_windows(|&[a, b]| a + b);
1620    /// assert_eq!(it.next(), Some(4));  // 1 + 3
1621    /// assert_eq!(it.next(), Some(11)); // 3 + 8
1622    /// assert_eq!(it.next(), Some(9));  // 8 + 1
1623    /// assert_eq!(it.next(), None);
1624    /// ```
1625    ///
1626    /// Since the elements in the following example implement `Copy`, we can
1627    /// just copy the array and get an iterator over the windows.
1628    ///
1629    /// ```
1630    /// #![feature(iter_map_windows)]
1631    ///
1632    /// let mut it = "ferris".chars().map_windows(|w: &[_; 3]| *w);
1633    /// assert_eq!(it.next(), Some(['f', 'e', 'r']));
1634    /// assert_eq!(it.next(), Some(['e', 'r', 'r']));
1635    /// assert_eq!(it.next(), Some(['r', 'r', 'i']));
1636    /// assert_eq!(it.next(), Some(['r', 'i', 's']));
1637    /// assert_eq!(it.next(), None);
1638    /// ```
1639    ///
1640    /// You can also use this function to check the sortedness of an iterator.
1641    /// For the simple case, rather use [`Iterator::is_sorted`].
1642    ///
1643    /// ```
1644    /// #![feature(iter_map_windows)]
1645    ///
1646    /// let mut it = [0.5, 1.0, 3.5, 3.0, 8.5, 8.5, f32::NAN].iter()
1647    ///     .map_windows(|[a, b]| a <= b);
1648    ///
1649    /// assert_eq!(it.next(), Some(true));  // 0.5 <= 1.0
1650    /// assert_eq!(it.next(), Some(true));  // 1.0 <= 3.5
1651    /// assert_eq!(it.next(), Some(false)); // 3.5 <= 3.0
1652    /// assert_eq!(it.next(), Some(true));  // 3.0 <= 8.5
1653    /// assert_eq!(it.next(), Some(true));  // 8.5 <= 8.5
1654    /// assert_eq!(it.next(), Some(false)); // 8.5 <= NAN
1655    /// assert_eq!(it.next(), None);
1656    /// ```
1657    ///
1658    /// For non-fused iterators, they are fused after `map_windows`.
1659    ///
1660    /// ```
1661    /// #![feature(iter_map_windows)]
1662    ///
1663    /// #[derive(Default)]
1664    /// struct NonFusedIterator {
1665    ///     state: i32,
1666    /// }
1667    ///
1668    /// impl Iterator for NonFusedIterator {
1669    ///     type Item = i32;
1670    ///
1671    ///     fn next(&mut self) -> Option<i32> {
1672    ///         let val = self.state;
1673    ///         self.state = self.state + 1;
1674    ///
1675    ///         // yields `0..5` first, then only even numbers since `6..`.
1676    ///         if val < 5 || val % 2 == 0 {
1677    ///             Some(val)
1678    ///         } else {
1679    ///             None
1680    ///         }
1681    ///     }
1682    /// }
1683    ///
1684    ///
1685    /// let mut iter = NonFusedIterator::default();
1686    ///
1687    /// // yields 0..5 first.
1688    /// assert_eq!(iter.next(), Some(0));
1689    /// assert_eq!(iter.next(), Some(1));
1690    /// assert_eq!(iter.next(), Some(2));
1691    /// assert_eq!(iter.next(), Some(3));
1692    /// assert_eq!(iter.next(), Some(4));
1693    /// // then we can see our iterator going back and forth
1694    /// assert_eq!(iter.next(), None);
1695    /// assert_eq!(iter.next(), Some(6));
1696    /// assert_eq!(iter.next(), None);
1697    /// assert_eq!(iter.next(), Some(8));
1698    /// assert_eq!(iter.next(), None);
1699    ///
1700    /// // however, with `.map_windows()`, it is fused.
1701    /// let mut iter = NonFusedIterator::default()
1702    ///     .map_windows(|arr: &[_; 2]| *arr);
1703    ///
1704    /// assert_eq!(iter.next(), Some([0, 1]));
1705    /// assert_eq!(iter.next(), Some([1, 2]));
1706    /// assert_eq!(iter.next(), Some([2, 3]));
1707    /// assert_eq!(iter.next(), Some([3, 4]));
1708    /// assert_eq!(iter.next(), None);
1709    ///
1710    /// // it will always return `None` after the first time.
1711    /// assert_eq!(iter.next(), None);
1712    /// assert_eq!(iter.next(), None);
1713    /// assert_eq!(iter.next(), None);
1714    /// ```
1715    #[inline]
1716    #[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
1717    fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
1718    where
1719        Self: Sized,
1720        F: FnMut(&[Self::Item; N]) -> R,
1721    {
1722        MapWindows::new(self, f)
1723    }
1724
1725    /// Creates an iterator which ends after the first [`None`].
1726    ///
1727    /// After an iterator returns [`None`], future calls may or may not yield
1728    /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1729    /// [`None`] is given, it will always return [`None`] forever.
1730    ///
1731    /// Note that the [`Fuse`] wrapper is a no-op on iterators that implement
1732    /// the [`FusedIterator`] trait. `fuse()` may therefore behave incorrectly
1733    /// if the [`FusedIterator`] trait is improperly implemented.
1734    ///
1735    /// [`Some(T)`]: Some
1736    /// [`FusedIterator`]: crate::iter::FusedIterator
1737    ///
1738    /// # Examples
1739    ///
1740    /// ```
1741    /// // an iterator which alternates between Some and None
1742    /// struct Alternate {
1743    ///     state: i32,
1744    /// }
1745    ///
1746    /// impl Iterator for Alternate {
1747    ///     type Item = i32;
1748    ///
1749    ///     fn next(&mut self) -> Option<i32> {
1750    ///         let val = self.state;
1751    ///         self.state = self.state + 1;
1752    ///
1753    ///         // if it's even, Some(i32), else None
1754    ///         (val % 2 == 0).then_some(val)
1755    ///     }
1756    /// }
1757    ///
1758    /// let mut iter = Alternate { state: 0 };
1759    ///
1760    /// // we can see our iterator going back and forth
1761    /// assert_eq!(iter.next(), Some(0));
1762    /// assert_eq!(iter.next(), None);
1763    /// assert_eq!(iter.next(), Some(2));
1764    /// assert_eq!(iter.next(), None);
1765    ///
1766    /// // however, once we fuse it...
1767    /// let mut iter = iter.fuse();
1768    ///
1769    /// assert_eq!(iter.next(), Some(4));
1770    /// assert_eq!(iter.next(), None);
1771    ///
1772    /// // it will always return `None` after the first time.
1773    /// assert_eq!(iter.next(), None);
1774    /// assert_eq!(iter.next(), None);
1775    /// assert_eq!(iter.next(), None);
1776    /// ```
1777    #[inline]
1778    #[stable(feature = "rust1", since = "1.0.0")]
1779    fn fuse(self) -> Fuse<Self>
1780    where
1781        Self: Sized,
1782    {
1783        Fuse::new(self)
1784    }
1785
1786    /// Does something with each element of an iterator, passing the value on.
1787    ///
1788    /// When using iterators, you'll often chain several of them together.
1789    /// While working on such code, you might want to check out what's
1790    /// happening at various parts in the pipeline. To do that, insert
1791    /// a call to `inspect()`.
1792    ///
1793    /// It's more common for `inspect()` to be used as a debugging tool than to
1794    /// exist in your final code, but applications may find it useful in certain
1795    /// situations when errors need to be logged before being discarded.
1796    ///
1797    /// # Examples
1798    ///
1799    /// Basic usage:
1800    ///
1801    /// ```
1802    /// let a = [1, 4, 2, 3];
1803    ///
1804    /// // this iterator sequence is complex.
1805    /// let sum = a.iter()
1806    ///     .cloned()
1807    ///     .filter(|x| x % 2 == 0)
1808    ///     .fold(0, |sum, i| sum + i);
1809    ///
1810    /// println!("{sum}");
1811    ///
1812    /// // let's add some inspect() calls to investigate what's happening
1813    /// let sum = a.iter()
1814    ///     .cloned()
1815    ///     .inspect(|x| println!("about to filter: {x}"))
1816    ///     .filter(|x| x % 2 == 0)
1817    ///     .inspect(|x| println!("made it through filter: {x}"))
1818    ///     .fold(0, |sum, i| sum + i);
1819    ///
1820    /// println!("{sum}");
1821    /// ```
1822    ///
1823    /// This will print:
1824    ///
1825    /// ```text
1826    /// 6
1827    /// about to filter: 1
1828    /// about to filter: 4
1829    /// made it through filter: 4
1830    /// about to filter: 2
1831    /// made it through filter: 2
1832    /// about to filter: 3
1833    /// 6
1834    /// ```
1835    ///
1836    /// Logging errors before discarding them:
1837    ///
1838    /// ```
1839    /// let lines = ["1", "2", "a"];
1840    ///
1841    /// let sum: i32 = lines
1842    ///     .iter()
1843    ///     .map(|line| line.parse::<i32>())
1844    ///     .inspect(|num| {
1845    ///         if let Err(ref e) = *num {
1846    ///             println!("Parsing error: {e}");
1847    ///         }
1848    ///     })
1849    ///     .filter_map(Result::ok)
1850    ///     .sum();
1851    ///
1852    /// println!("Sum: {sum}");
1853    /// ```
1854    ///
1855    /// This will print:
1856    ///
1857    /// ```text
1858    /// Parsing error: invalid digit found in string
1859    /// Sum: 3
1860    /// ```
1861    #[inline]
1862    #[stable(feature = "rust1", since = "1.0.0")]
1863    fn inspect<F>(self, f: F) -> Inspect<Self, F>
1864    where
1865        Self: Sized,
1866        F: FnMut(&Self::Item),
1867    {
1868        Inspect::new(self, f)
1869    }
1870
1871    /// Creates a "by reference" adapter for this instance of `Iterator`.
1872    ///
1873    /// Consuming method calls (direct or indirect calls to `next`)
1874    /// on the "by reference" adapter will consume the original iterator,
1875    /// but ownership-taking methods (those with a `self` parameter)
1876    /// only take ownership of the "by reference" iterator.
1877    ///
1878    /// This is useful for applying ownership-taking methods
1879    /// (such as `take` in the example below)
1880    /// without giving up ownership of the original iterator,
1881    /// so you can use the original iterator afterwards.
1882    ///
1883    /// Uses [`impl<I: Iterator + ?Sized> Iterator for &mut I { type Item = I::Item; ...}`](https://doc.rust-lang.org/nightly/std/iter/trait.Iterator.html#impl-Iterator-for-%26mut+I).
1884    ///
1885    /// # Examples
1886    ///
1887    /// ```
1888    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1889    ///
1890    /// // Take the first two words.
1891    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1892    /// assert_eq!(hello_world, vec!["hello", "world"]);
1893    ///
1894    /// // Collect the rest of the words.
1895    /// // We can only do this because we used `by_ref` earlier.
1896    /// let of_rust: Vec<_> = words.collect();
1897    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1898    /// ```
1899    #[stable(feature = "rust1", since = "1.0.0")]
1900    fn by_ref(&mut self) -> &mut Self
1901    where
1902        Self: Sized,
1903    {
1904        self
1905    }
1906
1907    /// Transforms an iterator into a collection.
1908    ///
1909    /// `collect()` can take anything iterable, and turn it into a relevant
1910    /// collection. This is one of the more powerful methods in the standard
1911    /// library, used in a variety of contexts.
1912    ///
1913    /// The most basic pattern in which `collect()` is used is to turn one
1914    /// collection into another. You take a collection, call [`iter`] on it,
1915    /// do a bunch of transformations, and then `collect()` at the end.
1916    ///
1917    /// `collect()` can also create instances of types that are not typical
1918    /// collections. For example, a [`String`] can be built from [`char`]s,
1919    /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
1920    /// into `Result<Collection<T>, E>`. See the examples below for more.
1921    ///
1922    /// Because `collect()` is so general, it can cause problems with type
1923    /// inference. As such, `collect()` is one of the few times you'll see
1924    /// the syntax affectionately known as the 'turbofish': `::<>`. This
1925    /// helps the inference algorithm understand specifically which collection
1926    /// you're trying to collect into.
1927    ///
1928    /// # Examples
1929    ///
1930    /// Basic usage:
1931    ///
1932    /// ```
1933    /// let a = [1, 2, 3];
1934    ///
1935    /// let doubled: Vec<i32> = a.iter()
1936    ///                          .map(|x| x * 2)
1937    ///                          .collect();
1938    ///
1939    /// assert_eq!(vec![2, 4, 6], doubled);
1940    /// ```
1941    ///
1942    /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1943    /// we could collect into, for example, a [`VecDeque<T>`] instead:
1944    ///
1945    /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1946    ///
1947    /// ```
1948    /// use std::collections::VecDeque;
1949    ///
1950    /// let a = [1, 2, 3];
1951    ///
1952    /// let doubled: VecDeque<i32> = a.iter().map(|x| x * 2).collect();
1953    ///
1954    /// assert_eq!(2, doubled[0]);
1955    /// assert_eq!(4, doubled[1]);
1956    /// assert_eq!(6, doubled[2]);
1957    /// ```
1958    ///
1959    /// Using the 'turbofish' instead of annotating `doubled`:
1960    ///
1961    /// ```
1962    /// let a = [1, 2, 3];
1963    ///
1964    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
1965    ///
1966    /// assert_eq!(vec![2, 4, 6], doubled);
1967    /// ```
1968    ///
1969    /// Because `collect()` only cares about what you're collecting into, you can
1970    /// still use a partial type hint, `_`, with the turbofish:
1971    ///
1972    /// ```
1973    /// let a = [1, 2, 3];
1974    ///
1975    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
1976    ///
1977    /// assert_eq!(vec![2, 4, 6], doubled);
1978    /// ```
1979    ///
1980    /// Using `collect()` to make a [`String`]:
1981    ///
1982    /// ```
1983    /// let chars = ['g', 'd', 'k', 'k', 'n'];
1984    ///
1985    /// let hello: String = chars.into_iter()
1986    ///     .map(|x| x as u8)
1987    ///     .map(|x| (x + 1) as char)
1988    ///     .collect();
1989    ///
1990    /// assert_eq!("hello", hello);
1991    /// ```
1992    ///
1993    /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
1994    /// see if any of them failed:
1995    ///
1996    /// ```
1997    /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
1998    ///
1999    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2000    ///
2001    /// // gives us the first error
2002    /// assert_eq!(Err("nope"), result);
2003    ///
2004    /// let results = [Ok(1), Ok(3)];
2005    ///
2006    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2007    ///
2008    /// // gives us the list of answers
2009    /// assert_eq!(Ok(vec![1, 3]), result);
2010    /// ```
2011    ///
2012    /// [`iter`]: Iterator::next
2013    /// [`String`]: ../../std/string/struct.String.html
2014    /// [`char`]: type@char
2015    #[inline]
2016    #[stable(feature = "rust1", since = "1.0.0")]
2017    #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
2018    #[rustc_diagnostic_item = "iterator_collect_fn"]
2019    fn collect<B: FromIterator<Self::Item>>(self) -> B
2020    where
2021        Self: Sized,
2022    {
2023        // This is too aggressive to turn on for everything all the time, but PR#137908
2024        // accidentally noticed that some rustc iterators had malformed `size_hint`s,
2025        // so this will help catch such things in debug-assertions-std runners,
2026        // even if users won't actually ever see it.
2027        if cfg!(debug_assertions) {
2028            let hint = self.size_hint();
2029            assert!(hint.1.is_none_or(|high| high >= hint.0), "Malformed size_hint {hint:?}");
2030        }
2031
2032        FromIterator::from_iter(self)
2033    }
2034
2035    /// Fallibly transforms an iterator into a collection, short circuiting if
2036    /// a failure is encountered.
2037    ///
2038    /// `try_collect()` is a variation of [`collect()`][`collect`] that allows fallible
2039    /// conversions during collection. Its main use case is simplifying conversions from
2040    /// iterators yielding [`Option<T>`][`Option`] into `Option<Collection<T>>`, or similarly for other [`Try`]
2041    /// types (e.g. [`Result`]).
2042    ///
2043    /// Importantly, `try_collect()` doesn't require that the outer [`Try`] type also implements [`FromIterator`];
2044    /// only the inner type produced on `Try::Output` must implement it. Concretely,
2045    /// this means that collecting into `ControlFlow<_, Vec<i32>>` is valid because `Vec<i32>` implements
2046    /// [`FromIterator`], even though [`ControlFlow`] doesn't.
2047    ///
2048    /// Also, if a failure is encountered during `try_collect()`, the iterator is still valid and
2049    /// may continue to be used, in which case it will continue iterating starting after the element that
2050    /// triggered the failure. See the last example below for an example of how this works.
2051    ///
2052    /// # Examples
2053    /// Successfully collecting an iterator of `Option<i32>` into `Option<Vec<i32>>`:
2054    /// ```
2055    /// #![feature(iterator_try_collect)]
2056    ///
2057    /// let u = vec![Some(1), Some(2), Some(3)];
2058    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2059    /// assert_eq!(v, Some(vec![1, 2, 3]));
2060    /// ```
2061    ///
2062    /// Failing to collect in the same way:
2063    /// ```
2064    /// #![feature(iterator_try_collect)]
2065    ///
2066    /// let u = vec![Some(1), Some(2), None, Some(3)];
2067    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2068    /// assert_eq!(v, None);
2069    /// ```
2070    ///
2071    /// A similar example, but with `Result`:
2072    /// ```
2073    /// #![feature(iterator_try_collect)]
2074    ///
2075    /// let u: Vec<Result<i32, ()>> = vec![Ok(1), Ok(2), Ok(3)];
2076    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2077    /// assert_eq!(v, Ok(vec![1, 2, 3]));
2078    ///
2079    /// let u = vec![Ok(1), Ok(2), Err(()), Ok(3)];
2080    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2081    /// assert_eq!(v, Err(()));
2082    /// ```
2083    ///
2084    /// Finally, even [`ControlFlow`] works, despite the fact that it
2085    /// doesn't implement [`FromIterator`]. Note also that the iterator can
2086    /// continue to be used, even if a failure is encountered:
2087    ///
2088    /// ```
2089    /// #![feature(iterator_try_collect)]
2090    ///
2091    /// use core::ops::ControlFlow::{Break, Continue};
2092    ///
2093    /// let u = [Continue(1), Continue(2), Break(3), Continue(4), Continue(5)];
2094    /// let mut it = u.into_iter();
2095    ///
2096    /// let v = it.try_collect::<Vec<_>>();
2097    /// assert_eq!(v, Break(3));
2098    ///
2099    /// let v = it.try_collect::<Vec<_>>();
2100    /// assert_eq!(v, Continue(vec![4, 5]));
2101    /// ```
2102    ///
2103    /// [`collect`]: Iterator::collect
2104    #[inline]
2105    #[unstable(feature = "iterator_try_collect", issue = "94047")]
2106    fn try_collect<B>(&mut self) -> ChangeOutputType<Self::Item, B>
2107    where
2108        Self: Sized,
2109        Self::Item: Try<Residual: Residual<B>>,
2110        B: FromIterator<<Self::Item as Try>::Output>,
2111    {
2112        try_process(ByRefSized(self), |i| i.collect())
2113    }
2114
2115    /// Collects all the items from an iterator into a collection.
2116    ///
2117    /// This method consumes the iterator and adds all its items to the
2118    /// passed collection. The collection is then returned, so the call chain
2119    /// can be continued.
2120    ///
2121    /// This is useful when you already have a collection and want to add
2122    /// the iterator items to it.
2123    ///
2124    /// This method is a convenience method to call [Extend::extend](trait.Extend.html),
2125    /// but instead of being called on a collection, it's called on an iterator.
2126    ///
2127    /// # Examples
2128    ///
2129    /// Basic usage:
2130    ///
2131    /// ```
2132    /// #![feature(iter_collect_into)]
2133    ///
2134    /// let a = [1, 2, 3];
2135    /// let mut vec: Vec::<i32> = vec![0, 1];
2136    ///
2137    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2138    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2139    ///
2140    /// assert_eq!(vec, vec![0, 1, 2, 4, 6, 10, 20, 30]);
2141    /// ```
2142    ///
2143    /// `Vec` can have a manual set capacity to avoid reallocating it:
2144    ///
2145    /// ```
2146    /// #![feature(iter_collect_into)]
2147    ///
2148    /// let a = [1, 2, 3];
2149    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2150    ///
2151    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2152    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2153    ///
2154    /// assert_eq!(6, vec.capacity());
2155    /// assert_eq!(vec, vec![2, 4, 6, 10, 20, 30]);
2156    /// ```
2157    ///
2158    /// The returned mutable reference can be used to continue the call chain:
2159    ///
2160    /// ```
2161    /// #![feature(iter_collect_into)]
2162    ///
2163    /// let a = [1, 2, 3];
2164    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2165    ///
2166    /// let count = a.iter().collect_into(&mut vec).iter().count();
2167    ///
2168    /// assert_eq!(count, vec.len());
2169    /// assert_eq!(vec, vec![1, 2, 3]);
2170    ///
2171    /// let count = a.iter().collect_into(&mut vec).iter().count();
2172    ///
2173    /// assert_eq!(count, vec.len());
2174    /// assert_eq!(vec, vec![1, 2, 3, 1, 2, 3]);
2175    /// ```
2176    #[inline]
2177    #[unstable(feature = "iter_collect_into", reason = "new API", issue = "94780")]
2178    fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
2179    where
2180        Self: Sized,
2181    {
2182        collection.extend(self);
2183        collection
2184    }
2185
2186    /// Consumes an iterator, creating two collections from it.
2187    ///
2188    /// The predicate passed to `partition()` can return `true`, or `false`.
2189    /// `partition()` returns a pair, all of the elements for which it returned
2190    /// `true`, and all of the elements for which it returned `false`.
2191    ///
2192    /// See also [`is_partitioned()`] and [`partition_in_place()`].
2193    ///
2194    /// [`is_partitioned()`]: Iterator::is_partitioned
2195    /// [`partition_in_place()`]: Iterator::partition_in_place
2196    ///
2197    /// # Examples
2198    ///
2199    /// ```
2200    /// let a = [1, 2, 3];
2201    ///
2202    /// let (even, odd): (Vec<_>, Vec<_>) = a
2203    ///     .into_iter()
2204    ///     .partition(|n| n % 2 == 0);
2205    ///
2206    /// assert_eq!(even, [2]);
2207    /// assert_eq!(odd, [1, 3]);
2208    /// ```
2209    #[stable(feature = "rust1", since = "1.0.0")]
2210    fn partition<B, F>(self, f: F) -> (B, B)
2211    where
2212        Self: Sized,
2213        B: Default + Extend<Self::Item>,
2214        F: FnMut(&Self::Item) -> bool,
2215    {
2216        #[inline]
2217        fn extend<'a, T, B: Extend<T>>(
2218            mut f: impl FnMut(&T) -> bool + 'a,
2219            left: &'a mut B,
2220            right: &'a mut B,
2221        ) -> impl FnMut((), T) + 'a {
2222            move |(), x| {
2223                if f(&x) {
2224                    left.extend_one(x);
2225                } else {
2226                    right.extend_one(x);
2227                }
2228            }
2229        }
2230
2231        let mut left: B = Default::default();
2232        let mut right: B = Default::default();
2233
2234        self.fold((), extend(f, &mut left, &mut right));
2235
2236        (left, right)
2237    }
2238
2239    /// Reorders the elements of this iterator *in-place* according to the given predicate,
2240    /// such that all those that return `true` precede all those that return `false`.
2241    /// Returns the number of `true` elements found.
2242    ///
2243    /// The relative order of partitioned items is not maintained.
2244    ///
2245    /// # Current implementation
2246    ///
2247    /// The current algorithm tries to find the first element for which the predicate evaluates
2248    /// to false and the last element for which it evaluates to true, and repeatedly swaps them.
2249    ///
2250    /// Time complexity: *O*(*n*)
2251    ///
2252    /// See also [`is_partitioned()`] and [`partition()`].
2253    ///
2254    /// [`is_partitioned()`]: Iterator::is_partitioned
2255    /// [`partition()`]: Iterator::partition
2256    ///
2257    /// # Examples
2258    ///
2259    /// ```
2260    /// #![feature(iter_partition_in_place)]
2261    ///
2262    /// let mut a = [1, 2, 3, 4, 5, 6, 7];
2263    ///
2264    /// // Partition in-place between evens and odds
2265    /// let i = a.iter_mut().partition_in_place(|n| n % 2 == 0);
2266    ///
2267    /// assert_eq!(i, 3);
2268    /// assert!(a[..i].iter().all(|n| n % 2 == 0)); // evens
2269    /// assert!(a[i..].iter().all(|n| n % 2 == 1)); // odds
2270    /// ```
2271    #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
2272    fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
2273    where
2274        Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
2275        P: FnMut(&T) -> bool,
2276    {
2277        // FIXME: should we worry about the count overflowing? The only way to have more than
2278        // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
2279
2280        // These closure "factory" functions exist to avoid genericity in `Self`.
2281
2282        #[inline]
2283        fn is_false<'a, T>(
2284            predicate: &'a mut impl FnMut(&T) -> bool,
2285            true_count: &'a mut usize,
2286        ) -> impl FnMut(&&mut T) -> bool + 'a {
2287            move |x| {
2288                let p = predicate(&**x);
2289                *true_count += p as usize;
2290                !p
2291            }
2292        }
2293
2294        #[inline]
2295        fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
2296            move |x| predicate(&**x)
2297        }
2298
2299        // Repeatedly find the first `false` and swap it with the last `true`.
2300        let mut true_count = 0;
2301        while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
2302            if let Some(tail) = self.rfind(is_true(predicate)) {
2303                crate::mem::swap(head, tail);
2304                true_count += 1;
2305            } else {
2306                break;
2307            }
2308        }
2309        true_count
2310    }
2311
2312    /// Checks if the elements of this iterator are partitioned according to the given predicate,
2313    /// such that all those that return `true` precede all those that return `false`.
2314    ///
2315    /// See also [`partition()`] and [`partition_in_place()`].
2316    ///
2317    /// [`partition()`]: Iterator::partition
2318    /// [`partition_in_place()`]: Iterator::partition_in_place
2319    ///
2320    /// # Examples
2321    ///
2322    /// ```
2323    /// #![feature(iter_is_partitioned)]
2324    ///
2325    /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
2326    /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
2327    /// ```
2328    #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
2329    fn is_partitioned<P>(mut self, mut predicate: P) -> bool
2330    where
2331        Self: Sized,
2332        P: FnMut(Self::Item) -> bool,
2333    {
2334        // Either all items test `true`, or the first clause stops at `false`
2335        // and we check that there are no more `true` items after that.
2336        self.all(&mut predicate) || !self.any(predicate)
2337    }
2338
2339    /// An iterator method that applies a function as long as it returns
2340    /// successfully, producing a single, final value.
2341    ///
2342    /// `try_fold()` takes two arguments: an initial value, and a closure with
2343    /// two arguments: an 'accumulator', and an element. The closure either
2344    /// returns successfully, with the value that the accumulator should have
2345    /// for the next iteration, or it returns failure, with an error value that
2346    /// is propagated back to the caller immediately (short-circuiting).
2347    ///
2348    /// The initial value is the value the accumulator will have on the first
2349    /// call. If applying the closure succeeded against every element of the
2350    /// iterator, `try_fold()` returns the final accumulator as success.
2351    ///
2352    /// Folding is useful whenever you have a collection of something, and want
2353    /// to produce a single value from it.
2354    ///
2355    /// # Note to Implementors
2356    ///
2357    /// Several of the other (forward) methods have default implementations in
2358    /// terms of this one, so try to implement this explicitly if it can
2359    /// do something better than the default `for` loop implementation.
2360    ///
2361    /// In particular, try to have this call `try_fold()` on the internal parts
2362    /// from which this iterator is composed. If multiple calls are needed,
2363    /// the `?` operator may be convenient for chaining the accumulator value
2364    /// along, but beware any invariants that need to be upheld before those
2365    /// early returns. This is a `&mut self` method, so iteration needs to be
2366    /// resumable after hitting an error here.
2367    ///
2368    /// # Examples
2369    ///
2370    /// Basic usage:
2371    ///
2372    /// ```
2373    /// let a = [1, 2, 3];
2374    ///
2375    /// // the checked sum of all of the elements of the array
2376    /// let sum = a.into_iter().try_fold(0i8, |acc, x| acc.checked_add(x));
2377    ///
2378    /// assert_eq!(sum, Some(6));
2379    /// ```
2380    ///
2381    /// Short-circuiting:
2382    ///
2383    /// ```
2384    /// let a = [10, 20, 30, 100, 40, 50];
2385    /// let mut iter = a.into_iter();
2386    ///
2387    /// // This sum overflows when adding the 100 element
2388    /// let sum = iter.try_fold(0i8, |acc, x| acc.checked_add(x));
2389    /// assert_eq!(sum, None);
2390    ///
2391    /// // Because it short-circuited, the remaining elements are still
2392    /// // available through the iterator.
2393    /// assert_eq!(iter.len(), 2);
2394    /// assert_eq!(iter.next(), Some(40));
2395    /// ```
2396    ///
2397    /// While you cannot `break` from a closure, the [`ControlFlow`] type allows
2398    /// a similar idea:
2399    ///
2400    /// ```
2401    /// use std::ops::ControlFlow;
2402    ///
2403    /// let triangular = (1..30).try_fold(0_i8, |prev, x| {
2404    ///     if let Some(next) = prev.checked_add(x) {
2405    ///         ControlFlow::Continue(next)
2406    ///     } else {
2407    ///         ControlFlow::Break(prev)
2408    ///     }
2409    /// });
2410    /// assert_eq!(triangular, ControlFlow::Break(120));
2411    ///
2412    /// let triangular = (1..30).try_fold(0_u64, |prev, x| {
2413    ///     if let Some(next) = prev.checked_add(x) {
2414    ///         ControlFlow::Continue(next)
2415    ///     } else {
2416    ///         ControlFlow::Break(prev)
2417    ///     }
2418    /// });
2419    /// assert_eq!(triangular, ControlFlow::Continue(435));
2420    /// ```
2421    #[inline]
2422    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2423    fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
2424    where
2425        Self: Sized,
2426        F: FnMut(B, Self::Item) -> R,
2427        R: Try<Output = B>,
2428    {
2429        let mut accum = init;
2430        while let Some(x) = self.next() {
2431            accum = f(accum, x)?;
2432        }
2433        try { accum }
2434    }
2435
2436    /// An iterator method that applies a fallible function to each item in the
2437    /// iterator, stopping at the first error and returning that error.
2438    ///
2439    /// This can also be thought of as the fallible form of [`for_each()`]
2440    /// or as the stateless version of [`try_fold()`].
2441    ///
2442    /// [`for_each()`]: Iterator::for_each
2443    /// [`try_fold()`]: Iterator::try_fold
2444    ///
2445    /// # Examples
2446    ///
2447    /// ```
2448    /// use std::fs::rename;
2449    /// use std::io::{stdout, Write};
2450    /// use std::path::Path;
2451    ///
2452    /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
2453    ///
2454    /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{x}"));
2455    /// assert!(res.is_ok());
2456    ///
2457    /// let mut it = data.iter().cloned();
2458    /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
2459    /// assert!(res.is_err());
2460    /// // It short-circuited, so the remaining items are still in the iterator:
2461    /// assert_eq!(it.next(), Some("stale_bread.json"));
2462    /// ```
2463    ///
2464    /// The [`ControlFlow`] type can be used with this method for the situations
2465    /// in which you'd use `break` and `continue` in a normal loop:
2466    ///
2467    /// ```
2468    /// use std::ops::ControlFlow;
2469    ///
2470    /// let r = (2..100).try_for_each(|x| {
2471    ///     if 323 % x == 0 {
2472    ///         return ControlFlow::Break(x)
2473    ///     }
2474    ///
2475    ///     ControlFlow::Continue(())
2476    /// });
2477    /// assert_eq!(r, ControlFlow::Break(17));
2478    /// ```
2479    #[inline]
2480    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2481    fn try_for_each<F, R>(&mut self, f: F) -> R
2482    where
2483        Self: Sized,
2484        F: FnMut(Self::Item) -> R,
2485        R: Try<Output = ()>,
2486    {
2487        #[inline]
2488        fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
2489            move |(), x| f(x)
2490        }
2491
2492        self.try_fold((), call(f))
2493    }
2494
2495    /// Folds every element into an accumulator by applying an operation,
2496    /// returning the final result.
2497    ///
2498    /// `fold()` takes two arguments: an initial value, and a closure with two
2499    /// arguments: an 'accumulator', and an element. The closure returns the value that
2500    /// the accumulator should have for the next iteration.
2501    ///
2502    /// The initial value is the value the accumulator will have on the first
2503    /// call.
2504    ///
2505    /// After applying this closure to every element of the iterator, `fold()`
2506    /// returns the accumulator.
2507    ///
2508    /// This operation is sometimes called 'reduce' or 'inject'.
2509    ///
2510    /// Folding is useful whenever you have a collection of something, and want
2511    /// to produce a single value from it.
2512    ///
2513    /// Note: `fold()`, and similar methods that traverse the entire iterator,
2514    /// might not terminate for infinite iterators, even on traits for which a
2515    /// result is determinable in finite time.
2516    ///
2517    /// Note: [`reduce()`] can be used to use the first element as the initial
2518    /// value, if the accumulator type and item type is the same.
2519    ///
2520    /// Note: `fold()` combines elements in a *left-associative* fashion. For associative
2521    /// operators like `+`, the order the elements are combined in is not important, but for non-associative
2522    /// operators like `-` the order will affect the final result.
2523    /// For a *right-associative* version of `fold()`, see [`DoubleEndedIterator::rfold()`].
2524    ///
2525    /// # Note to Implementors
2526    ///
2527    /// Several of the other (forward) methods have default implementations in
2528    /// terms of this one, so try to implement this explicitly if it can
2529    /// do something better than the default `for` loop implementation.
2530    ///
2531    /// In particular, try to have this call `fold()` on the internal parts
2532    /// from which this iterator is composed.
2533    ///
2534    /// # Examples
2535    ///
2536    /// Basic usage:
2537    ///
2538    /// ```
2539    /// let a = [1, 2, 3];
2540    ///
2541    /// // the sum of all of the elements of the array
2542    /// let sum = a.iter().fold(0, |acc, x| acc + x);
2543    ///
2544    /// assert_eq!(sum, 6);
2545    /// ```
2546    ///
2547    /// Let's walk through each step of the iteration here:
2548    ///
2549    /// | element | acc | x | result |
2550    /// |---------|-----|---|--------|
2551    /// |         | 0   |   |        |
2552    /// | 1       | 0   | 1 | 1      |
2553    /// | 2       | 1   | 2 | 3      |
2554    /// | 3       | 3   | 3 | 6      |
2555    ///
2556    /// And so, our final result, `6`.
2557    ///
2558    /// This example demonstrates the left-associative nature of `fold()`:
2559    /// it builds a string, starting with an initial value
2560    /// and continuing with each element from the front until the back:
2561    ///
2562    /// ```
2563    /// let numbers = [1, 2, 3, 4, 5];
2564    ///
2565    /// let zero = "0".to_string();
2566    ///
2567    /// let result = numbers.iter().fold(zero, |acc, &x| {
2568    ///     format!("({acc} + {x})")
2569    /// });
2570    ///
2571    /// assert_eq!(result, "(((((0 + 1) + 2) + 3) + 4) + 5)");
2572    /// ```
2573    /// It's common for people who haven't used iterators a lot to
2574    /// use a `for` loop with a list of things to build up a result. Those
2575    /// can be turned into `fold()`s:
2576    ///
2577    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
2578    ///
2579    /// ```
2580    /// let numbers = [1, 2, 3, 4, 5];
2581    ///
2582    /// let mut result = 0;
2583    ///
2584    /// // for loop:
2585    /// for i in &numbers {
2586    ///     result = result + i;
2587    /// }
2588    ///
2589    /// // fold:
2590    /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
2591    ///
2592    /// // they're the same
2593    /// assert_eq!(result, result2);
2594    /// ```
2595    ///
2596    /// [`reduce()`]: Iterator::reduce
2597    #[doc(alias = "inject", alias = "foldl")]
2598    #[inline]
2599    #[stable(feature = "rust1", since = "1.0.0")]
2600    fn fold<B, F>(mut self, init: B, mut f: F) -> B
2601    where
2602        Self: Sized,
2603        F: FnMut(B, Self::Item) -> B,
2604    {
2605        let mut accum = init;
2606        while let Some(x) = self.next() {
2607            accum = f(accum, x);
2608        }
2609        accum
2610    }
2611
2612    /// Reduces the elements to a single one, by repeatedly applying a reducing
2613    /// operation.
2614    ///
2615    /// If the iterator is empty, returns [`None`]; otherwise, returns the
2616    /// result of the reduction.
2617    ///
2618    /// The reducing function is a closure with two arguments: an 'accumulator', and an element.
2619    /// For iterators with at least one element, this is the same as [`fold()`]
2620    /// with the first element of the iterator as the initial accumulator value, folding
2621    /// every subsequent element into it.
2622    ///
2623    /// [`fold()`]: Iterator::fold
2624    ///
2625    /// # Example
2626    ///
2627    /// ```
2628    /// let reduced: i32 = (1..10).reduce(|acc, e| acc + e).unwrap_or(0);
2629    /// assert_eq!(reduced, 45);
2630    ///
2631    /// // Which is equivalent to doing it with `fold`:
2632    /// let folded: i32 = (1..10).fold(0, |acc, e| acc + e);
2633    /// assert_eq!(reduced, folded);
2634    /// ```
2635    #[inline]
2636    #[stable(feature = "iterator_fold_self", since = "1.51.0")]
2637    fn reduce<F>(mut self, f: F) -> Option<Self::Item>
2638    where
2639        Self: Sized,
2640        F: FnMut(Self::Item, Self::Item) -> Self::Item,
2641    {
2642        let first = self.next()?;
2643        Some(self.fold(first, f))
2644    }
2645
2646    /// Reduces the elements to a single one by repeatedly applying a reducing operation. If the
2647    /// closure returns a failure, the failure is propagated back to the caller immediately.
2648    ///
2649    /// The return type of this method depends on the return type of the closure. If the closure
2650    /// returns `Result<Self::Item, E>`, then this function will return `Result<Option<Self::Item>,
2651    /// E>`. If the closure returns `Option<Self::Item>`, then this function will return
2652    /// `Option<Option<Self::Item>>`.
2653    ///
2654    /// When called on an empty iterator, this function will return either `Some(None)` or
2655    /// `Ok(None)` depending on the type of the provided closure.
2656    ///
2657    /// For iterators with at least one element, this is essentially the same as calling
2658    /// [`try_fold()`] with the first element of the iterator as the initial accumulator value.
2659    ///
2660    /// [`try_fold()`]: Iterator::try_fold
2661    ///
2662    /// # Examples
2663    ///
2664    /// Safely calculate the sum of a series of numbers:
2665    ///
2666    /// ```
2667    /// #![feature(iterator_try_reduce)]
2668    ///
2669    /// let numbers: Vec<usize> = vec![10, 20, 5, 23, 0];
2670    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2671    /// assert_eq!(sum, Some(Some(58)));
2672    /// ```
2673    ///
2674    /// Determine when a reduction short circuited:
2675    ///
2676    /// ```
2677    /// #![feature(iterator_try_reduce)]
2678    ///
2679    /// let numbers = vec![1, 2, 3, usize::MAX, 4, 5];
2680    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2681    /// assert_eq!(sum, None);
2682    /// ```
2683    ///
2684    /// Determine when a reduction was not performed because there are no elements:
2685    ///
2686    /// ```
2687    /// #![feature(iterator_try_reduce)]
2688    ///
2689    /// let numbers: Vec<usize> = Vec::new();
2690    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2691    /// assert_eq!(sum, Some(None));
2692    /// ```
2693    ///
2694    /// Use a [`Result`] instead of an [`Option`]:
2695    ///
2696    /// ```
2697    /// #![feature(iterator_try_reduce)]
2698    ///
2699    /// let numbers = vec!["1", "2", "3", "4", "5"];
2700    /// let max: Result<Option<_>, <usize as std::str::FromStr>::Err> =
2701    ///     numbers.into_iter().try_reduce(|x, y| {
2702    ///         if x.parse::<usize>()? > y.parse::<usize>()? { Ok(x) } else { Ok(y) }
2703    ///     });
2704    /// assert_eq!(max, Ok(Some("5")));
2705    /// ```
2706    #[inline]
2707    #[unstable(feature = "iterator_try_reduce", reason = "new API", issue = "87053")]
2708    fn try_reduce<R>(
2709        &mut self,
2710        f: impl FnMut(Self::Item, Self::Item) -> R,
2711    ) -> ChangeOutputType<R, Option<R::Output>>
2712    where
2713        Self: Sized,
2714        R: Try<Output = Self::Item, Residual: Residual<Option<Self::Item>>>,
2715    {
2716        let first = match self.next() {
2717            Some(i) => i,
2718            None => return Try::from_output(None),
2719        };
2720
2721        match self.try_fold(first, f).branch() {
2722            ControlFlow::Break(r) => FromResidual::from_residual(r),
2723            ControlFlow::Continue(i) => Try::from_output(Some(i)),
2724        }
2725    }
2726
2727    /// Tests if every element of the iterator matches a predicate.
2728    ///
2729    /// `all()` takes a closure that returns `true` or `false`. It applies
2730    /// this closure to each element of the iterator, and if they all return
2731    /// `true`, then so does `all()`. If any of them return `false`, it
2732    /// returns `false`.
2733    ///
2734    /// `all()` is short-circuiting; in other words, it will stop processing
2735    /// as soon as it finds a `false`, given that no matter what else happens,
2736    /// the result will also be `false`.
2737    ///
2738    /// An empty iterator returns `true`.
2739    ///
2740    /// # Examples
2741    ///
2742    /// Basic usage:
2743    ///
2744    /// ```
2745    /// let a = [1, 2, 3];
2746    ///
2747    /// assert!(a.into_iter().all(|x| x > 0));
2748    ///
2749    /// assert!(!a.into_iter().all(|x| x > 2));
2750    /// ```
2751    ///
2752    /// Stopping at the first `false`:
2753    ///
2754    /// ```
2755    /// let a = [1, 2, 3];
2756    ///
2757    /// let mut iter = a.into_iter();
2758    ///
2759    /// assert!(!iter.all(|x| x != 2));
2760    ///
2761    /// // we can still use `iter`, as there are more elements.
2762    /// assert_eq!(iter.next(), Some(3));
2763    /// ```
2764    #[inline]
2765    #[stable(feature = "rust1", since = "1.0.0")]
2766    fn all<F>(&mut self, f: F) -> bool
2767    where
2768        Self: Sized,
2769        F: FnMut(Self::Item) -> bool,
2770    {
2771        #[inline]
2772        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2773            move |(), x| {
2774                if f(x) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
2775            }
2776        }
2777        self.try_fold((), check(f)) == ControlFlow::Continue(())
2778    }
2779
2780    /// Tests if any element of the iterator matches a predicate.
2781    ///
2782    /// `any()` takes a closure that returns `true` or `false`. It applies
2783    /// this closure to each element of the iterator, and if any of them return
2784    /// `true`, then so does `any()`. If they all return `false`, it
2785    /// returns `false`.
2786    ///
2787    /// `any()` is short-circuiting; in other words, it will stop processing
2788    /// as soon as it finds a `true`, given that no matter what else happens,
2789    /// the result will also be `true`.
2790    ///
2791    /// An empty iterator returns `false`.
2792    ///
2793    /// # Examples
2794    ///
2795    /// Basic usage:
2796    ///
2797    /// ```
2798    /// let a = [1, 2, 3];
2799    ///
2800    /// assert!(a.into_iter().any(|x| x > 0));
2801    ///
2802    /// assert!(!a.into_iter().any(|x| x > 5));
2803    /// ```
2804    ///
2805    /// Stopping at the first `true`:
2806    ///
2807    /// ```
2808    /// let a = [1, 2, 3];
2809    ///
2810    /// let mut iter = a.into_iter();
2811    ///
2812    /// assert!(iter.any(|x| x != 2));
2813    ///
2814    /// // we can still use `iter`, as there are more elements.
2815    /// assert_eq!(iter.next(), Some(2));
2816    /// ```
2817    #[inline]
2818    #[stable(feature = "rust1", since = "1.0.0")]
2819    fn any<F>(&mut self, f: F) -> bool
2820    where
2821        Self: Sized,
2822        F: FnMut(Self::Item) -> bool,
2823    {
2824        #[inline]
2825        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2826            move |(), x| {
2827                if f(x) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) }
2828            }
2829        }
2830
2831        self.try_fold((), check(f)) == ControlFlow::Break(())
2832    }
2833
2834    /// Searches for an element of an iterator that satisfies a predicate.
2835    ///
2836    /// `find()` takes a closure that returns `true` or `false`. It applies
2837    /// this closure to each element of the iterator, and if any of them return
2838    /// `true`, then `find()` returns [`Some(element)`]. If they all return
2839    /// `false`, it returns [`None`].
2840    ///
2841    /// `find()` is short-circuiting; in other words, it will stop processing
2842    /// as soon as the closure returns `true`.
2843    ///
2844    /// Because `find()` takes a reference, and many iterators iterate over
2845    /// references, this leads to a possibly confusing situation where the
2846    /// argument is a double reference. You can see this effect in the
2847    /// examples below, with `&&x`.
2848    ///
2849    /// If you need the index of the element, see [`position()`].
2850    ///
2851    /// [`Some(element)`]: Some
2852    /// [`position()`]: Iterator::position
2853    ///
2854    /// # Examples
2855    ///
2856    /// Basic usage:
2857    ///
2858    /// ```
2859    /// let a = [1, 2, 3];
2860    ///
2861    /// assert_eq!(a.into_iter().find(|&x| x == 2), Some(2));
2862    /// assert_eq!(a.into_iter().find(|&x| x == 5), None);
2863    /// ```
2864    ///
2865    /// Stopping at the first `true`:
2866    ///
2867    /// ```
2868    /// let a = [1, 2, 3];
2869    ///
2870    /// let mut iter = a.into_iter();
2871    ///
2872    /// assert_eq!(iter.find(|&x| x == 2), Some(2));
2873    ///
2874    /// // we can still use `iter`, as there are more elements.
2875    /// assert_eq!(iter.next(), Some(3));
2876    /// ```
2877    ///
2878    /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
2879    #[inline]
2880    #[stable(feature = "rust1", since = "1.0.0")]
2881    fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
2882    where
2883        Self: Sized,
2884        P: FnMut(&Self::Item) -> bool,
2885    {
2886        #[inline]
2887        fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
2888            move |(), x| {
2889                if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::Continue(()) }
2890            }
2891        }
2892
2893        self.try_fold((), check(predicate)).break_value()
2894    }
2895
2896    /// Applies function to the elements of iterator and returns
2897    /// the first non-none result.
2898    ///
2899    /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2900    ///
2901    /// # Examples
2902    ///
2903    /// ```
2904    /// let a = ["lol", "NaN", "2", "5"];
2905    ///
2906    /// let first_number = a.iter().find_map(|s| s.parse().ok());
2907    ///
2908    /// assert_eq!(first_number, Some(2));
2909    /// ```
2910    #[inline]
2911    #[stable(feature = "iterator_find_map", since = "1.30.0")]
2912    fn find_map<B, F>(&mut self, f: F) -> Option<B>
2913    where
2914        Self: Sized,
2915        F: FnMut(Self::Item) -> Option<B>,
2916    {
2917        #[inline]
2918        fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
2919            move |(), x| match f(x) {
2920                Some(x) => ControlFlow::Break(x),
2921                None => ControlFlow::Continue(()),
2922            }
2923        }
2924
2925        self.try_fold((), check(f)).break_value()
2926    }
2927
2928    /// Applies function to the elements of iterator and returns
2929    /// the first true result or the first error.
2930    ///
2931    /// The return type of this method depends on the return type of the closure.
2932    /// If you return `Result<bool, E>` from the closure, you'll get a `Result<Option<Self::Item>, E>`.
2933    /// If you return `Option<bool>` from the closure, you'll get an `Option<Option<Self::Item>>`.
2934    ///
2935    /// # Examples
2936    ///
2937    /// ```
2938    /// #![feature(try_find)]
2939    ///
2940    /// let a = ["1", "2", "lol", "NaN", "5"];
2941    ///
2942    /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
2943    ///     Ok(s.parse::<i32>()? == search)
2944    /// };
2945    ///
2946    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 2));
2947    /// assert_eq!(result, Ok(Some("2")));
2948    ///
2949    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 5));
2950    /// assert!(result.is_err());
2951    /// ```
2952    ///
2953    /// This also supports other types which implement [`Try`], not just [`Result`].
2954    ///
2955    /// ```
2956    /// #![feature(try_find)]
2957    ///
2958    /// use std::num::NonZero;
2959    ///
2960    /// let a = [3, 5, 7, 4, 9, 0, 11u32];
2961    /// let result = a.into_iter().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2962    /// assert_eq!(result, Some(Some(4)));
2963    /// let result = a.into_iter().take(3).try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2964    /// assert_eq!(result, Some(None));
2965    /// let result = a.into_iter().rev().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2966    /// assert_eq!(result, None);
2967    /// ```
2968    #[inline]
2969    #[unstable(feature = "try_find", reason = "new API", issue = "63178")]
2970    fn try_find<R>(
2971        &mut self,
2972        f: impl FnMut(&Self::Item) -> R,
2973    ) -> ChangeOutputType<R, Option<Self::Item>>
2974    where
2975        Self: Sized,
2976        R: Try<Output = bool, Residual: Residual<Option<Self::Item>>>,
2977    {
2978        #[inline]
2979        fn check<I, V, R>(
2980            mut f: impl FnMut(&I) -> V,
2981        ) -> impl FnMut((), I) -> ControlFlow<R::TryType>
2982        where
2983            V: Try<Output = bool, Residual = R>,
2984            R: Residual<Option<I>>,
2985        {
2986            move |(), x| match f(&x).branch() {
2987                ControlFlow::Continue(false) => ControlFlow::Continue(()),
2988                ControlFlow::Continue(true) => ControlFlow::Break(Try::from_output(Some(x))),
2989                ControlFlow::Break(r) => ControlFlow::Break(FromResidual::from_residual(r)),
2990            }
2991        }
2992
2993        match self.try_fold((), check(f)) {
2994            ControlFlow::Break(x) => x,
2995            ControlFlow::Continue(()) => Try::from_output(None),
2996        }
2997    }
2998
2999    /// Searches for an element in an iterator, returning its index.
3000    ///
3001    /// `position()` takes a closure that returns `true` or `false`. It applies
3002    /// this closure to each element of the iterator, and if one of them
3003    /// returns `true`, then `position()` returns [`Some(index)`]. If all of
3004    /// them return `false`, it returns [`None`].
3005    ///
3006    /// `position()` is short-circuiting; in other words, it will stop
3007    /// processing as soon as it finds a `true`.
3008    ///
3009    /// # Overflow Behavior
3010    ///
3011    /// The method does no guarding against overflows, so if there are more
3012    /// than [`usize::MAX`] non-matching elements, it either produces the wrong
3013    /// result or panics. If overflow checks are enabled, a panic is
3014    /// guaranteed.
3015    ///
3016    /// # Panics
3017    ///
3018    /// This function might panic if the iterator has more than `usize::MAX`
3019    /// non-matching elements.
3020    ///
3021    /// [`Some(index)`]: Some
3022    ///
3023    /// # Examples
3024    ///
3025    /// Basic usage:
3026    ///
3027    /// ```
3028    /// let a = [1, 2, 3];
3029    ///
3030    /// assert_eq!(a.into_iter().position(|x| x == 2), Some(1));
3031    ///
3032    /// assert_eq!(a.into_iter().position(|x| x == 5), None);
3033    /// ```
3034    ///
3035    /// Stopping at the first `true`:
3036    ///
3037    /// ```
3038    /// let a = [1, 2, 3, 4];
3039    ///
3040    /// let mut iter = a.into_iter();
3041    ///
3042    /// assert_eq!(iter.position(|x| x >= 2), Some(1));
3043    ///
3044    /// // we can still use `iter`, as there are more elements.
3045    /// assert_eq!(iter.next(), Some(3));
3046    ///
3047    /// // The returned index depends on iterator state
3048    /// assert_eq!(iter.position(|x| x == 4), Some(0));
3049    ///
3050    /// ```
3051    #[inline]
3052    #[stable(feature = "rust1", since = "1.0.0")]
3053    fn position<P>(&mut self, predicate: P) -> Option<usize>
3054    where
3055        Self: Sized,
3056        P: FnMut(Self::Item) -> bool,
3057    {
3058        #[inline]
3059        fn check<'a, T>(
3060            mut predicate: impl FnMut(T) -> bool + 'a,
3061            acc: &'a mut usize,
3062        ) -> impl FnMut((), T) -> ControlFlow<usize, ()> + 'a {
3063            #[rustc_inherit_overflow_checks]
3064            move |_, x| {
3065                if predicate(x) {
3066                    ControlFlow::Break(*acc)
3067                } else {
3068                    *acc += 1;
3069                    ControlFlow::Continue(())
3070                }
3071            }
3072        }
3073
3074        let mut acc = 0;
3075        self.try_fold((), check(predicate, &mut acc)).break_value()
3076    }
3077
3078    /// Searches for an element in an iterator from the right, returning its
3079    /// index.
3080    ///
3081    /// `rposition()` takes a closure that returns `true` or `false`. It applies
3082    /// this closure to each element of the iterator, starting from the end,
3083    /// and if one of them returns `true`, then `rposition()` returns
3084    /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
3085    ///
3086    /// `rposition()` is short-circuiting; in other words, it will stop
3087    /// processing as soon as it finds a `true`.
3088    ///
3089    /// [`Some(index)`]: Some
3090    ///
3091    /// # Examples
3092    ///
3093    /// Basic usage:
3094    ///
3095    /// ```
3096    /// let a = [1, 2, 3];
3097    ///
3098    /// assert_eq!(a.into_iter().rposition(|x| x == 3), Some(2));
3099    ///
3100    /// assert_eq!(a.into_iter().rposition(|x| x == 5), None);
3101    /// ```
3102    ///
3103    /// Stopping at the first `true`:
3104    ///
3105    /// ```
3106    /// let a = [-1, 2, 3, 4];
3107    ///
3108    /// let mut iter = a.into_iter();
3109    ///
3110    /// assert_eq!(iter.rposition(|x| x >= 2), Some(3));
3111    ///
3112    /// // we can still use `iter`, as there are more elements.
3113    /// assert_eq!(iter.next(), Some(-1));
3114    /// assert_eq!(iter.next_back(), Some(3));
3115    /// ```
3116    #[inline]
3117    #[stable(feature = "rust1", since = "1.0.0")]
3118    fn rposition<P>(&mut self, predicate: P) -> Option<usize>
3119    where
3120        P: FnMut(Self::Item) -> bool,
3121        Self: Sized + ExactSizeIterator + DoubleEndedIterator,
3122    {
3123        // No need for an overflow check here, because `ExactSizeIterator`
3124        // implies that the number of elements fits into a `usize`.
3125        #[inline]
3126        fn check<T>(
3127            mut predicate: impl FnMut(T) -> bool,
3128        ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
3129            move |i, x| {
3130                let i = i - 1;
3131                if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
3132            }
3133        }
3134
3135        let n = self.len();
3136        self.try_rfold(n, check(predicate)).break_value()
3137    }
3138
3139    /// Returns the maximum element of an iterator.
3140    ///
3141    /// If several elements are equally maximum, the last element is
3142    /// returned. If the iterator is empty, [`None`] is returned.
3143    ///
3144    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3145    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3146    /// ```
3147    /// assert_eq!(
3148    ///     [2.4, f32::NAN, 1.3]
3149    ///         .into_iter()
3150    ///         .reduce(f32::max)
3151    ///         .unwrap_or(0.),
3152    ///     2.4
3153    /// );
3154    /// ```
3155    ///
3156    /// # Examples
3157    ///
3158    /// ```
3159    /// let a = [1, 2, 3];
3160    /// let b: [u32; 0] = [];
3161    ///
3162    /// assert_eq!(a.into_iter().max(), Some(3));
3163    /// assert_eq!(b.into_iter().max(), None);
3164    /// ```
3165    #[inline]
3166    #[stable(feature = "rust1", since = "1.0.0")]
3167    fn max(self) -> Option<Self::Item>
3168    where
3169        Self: Sized,
3170        Self::Item: Ord,
3171    {
3172        self.max_by(Ord::cmp)
3173    }
3174
3175    /// Returns the minimum element of an iterator.
3176    ///
3177    /// If several elements are equally minimum, the first element is returned.
3178    /// If the iterator is empty, [`None`] is returned.
3179    ///
3180    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3181    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3182    /// ```
3183    /// assert_eq!(
3184    ///     [2.4, f32::NAN, 1.3]
3185    ///         .into_iter()
3186    ///         .reduce(f32::min)
3187    ///         .unwrap_or(0.),
3188    ///     1.3
3189    /// );
3190    /// ```
3191    ///
3192    /// # Examples
3193    ///
3194    /// ```
3195    /// let a = [1, 2, 3];
3196    /// let b: [u32; 0] = [];
3197    ///
3198    /// assert_eq!(a.into_iter().min(), Some(1));
3199    /// assert_eq!(b.into_iter().min(), None);
3200    /// ```
3201    #[inline]
3202    #[stable(feature = "rust1", since = "1.0.0")]
3203    fn min(self) -> Option<Self::Item>
3204    where
3205        Self: Sized,
3206        Self::Item: Ord,
3207    {
3208        self.min_by(Ord::cmp)
3209    }
3210
3211    /// Returns the element that gives the maximum value from the
3212    /// specified function.
3213    ///
3214    /// If several elements are equally maximum, the last element is
3215    /// returned. If the iterator is empty, [`None`] is returned.
3216    ///
3217    /// # Examples
3218    ///
3219    /// ```
3220    /// let a = [-3_i32, 0, 1, 5, -10];
3221    /// assert_eq!(a.into_iter().max_by_key(|x| x.abs()).unwrap(), -10);
3222    /// ```
3223    #[inline]
3224    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3225    fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3226    where
3227        Self: Sized,
3228        F: FnMut(&Self::Item) -> B,
3229    {
3230        #[inline]
3231        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3232            move |x| (f(&x), x)
3233        }
3234
3235        #[inline]
3236        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3237            x_p.cmp(y_p)
3238        }
3239
3240        let (_, x) = self.map(key(f)).max_by(compare)?;
3241        Some(x)
3242    }
3243
3244    /// Returns the element that gives the maximum value with respect to the
3245    /// specified comparison function.
3246    ///
3247    /// If several elements are equally maximum, the last element is
3248    /// returned. If the iterator is empty, [`None`] is returned.
3249    ///
3250    /// # Examples
3251    ///
3252    /// ```
3253    /// let a = [-3_i32, 0, 1, 5, -10];
3254    /// assert_eq!(a.into_iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
3255    /// ```
3256    #[inline]
3257    #[stable(feature = "iter_max_by", since = "1.15.0")]
3258    fn max_by<F>(self, compare: F) -> Option<Self::Item>
3259    where
3260        Self: Sized,
3261        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3262    {
3263        #[inline]
3264        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3265            move |x, y| cmp::max_by(x, y, &mut compare)
3266        }
3267
3268        self.reduce(fold(compare))
3269    }
3270
3271    /// Returns the element that gives the minimum value from the
3272    /// specified function.
3273    ///
3274    /// If several elements are equally minimum, the first element is
3275    /// returned. If the iterator is empty, [`None`] is returned.
3276    ///
3277    /// # Examples
3278    ///
3279    /// ```
3280    /// let a = [-3_i32, 0, 1, 5, -10];
3281    /// assert_eq!(a.into_iter().min_by_key(|x| x.abs()).unwrap(), 0);
3282    /// ```
3283    #[inline]
3284    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3285    fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3286    where
3287        Self: Sized,
3288        F: FnMut(&Self::Item) -> B,
3289    {
3290        #[inline]
3291        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3292            move |x| (f(&x), x)
3293        }
3294
3295        #[inline]
3296        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3297            x_p.cmp(y_p)
3298        }
3299
3300        let (_, x) = self.map(key(f)).min_by(compare)?;
3301        Some(x)
3302    }
3303
3304    /// Returns the element that gives the minimum value with respect to the
3305    /// specified comparison function.
3306    ///
3307    /// If several elements are equally minimum, the first element is
3308    /// returned. If the iterator is empty, [`None`] is returned.
3309    ///
3310    /// # Examples
3311    ///
3312    /// ```
3313    /// let a = [-3_i32, 0, 1, 5, -10];
3314    /// assert_eq!(a.into_iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
3315    /// ```
3316    #[inline]
3317    #[stable(feature = "iter_min_by", since = "1.15.0")]
3318    fn min_by<F>(self, compare: F) -> Option<Self::Item>
3319    where
3320        Self: Sized,
3321        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3322    {
3323        #[inline]
3324        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3325            move |x, y| cmp::min_by(x, y, &mut compare)
3326        }
3327
3328        self.reduce(fold(compare))
3329    }
3330
3331    /// Reverses an iterator's direction.
3332    ///
3333    /// Usually, iterators iterate from left to right. After using `rev()`,
3334    /// an iterator will instead iterate from right to left.
3335    ///
3336    /// This is only possible if the iterator has an end, so `rev()` only
3337    /// works on [`DoubleEndedIterator`]s.
3338    ///
3339    /// # Examples
3340    ///
3341    /// ```
3342    /// let a = [1, 2, 3];
3343    ///
3344    /// let mut iter = a.into_iter().rev();
3345    ///
3346    /// assert_eq!(iter.next(), Some(3));
3347    /// assert_eq!(iter.next(), Some(2));
3348    /// assert_eq!(iter.next(), Some(1));
3349    ///
3350    /// assert_eq!(iter.next(), None);
3351    /// ```
3352    #[inline]
3353    #[doc(alias = "reverse")]
3354    #[stable(feature = "rust1", since = "1.0.0")]
3355    fn rev(self) -> Rev<Self>
3356    where
3357        Self: Sized + DoubleEndedIterator,
3358    {
3359        Rev::new(self)
3360    }
3361
3362    /// Converts an iterator of pairs into a pair of containers.
3363    ///
3364    /// `unzip()` consumes an entire iterator of pairs, producing two
3365    /// collections: one from the left elements of the pairs, and one
3366    /// from the right elements.
3367    ///
3368    /// This function is, in some sense, the opposite of [`zip`].
3369    ///
3370    /// [`zip`]: Iterator::zip
3371    ///
3372    /// # Examples
3373    ///
3374    /// ```
3375    /// let a = [(1, 2), (3, 4), (5, 6)];
3376    ///
3377    /// let (left, right): (Vec<_>, Vec<_>) = a.into_iter().unzip();
3378    ///
3379    /// assert_eq!(left, [1, 3, 5]);
3380    /// assert_eq!(right, [2, 4, 6]);
3381    ///
3382    /// // you can also unzip multiple nested tuples at once
3383    /// let a = [(1, (2, 3)), (4, (5, 6))];
3384    ///
3385    /// let (x, (y, z)): (Vec<_>, (Vec<_>, Vec<_>)) = a.into_iter().unzip();
3386    /// assert_eq!(x, [1, 4]);
3387    /// assert_eq!(y, [2, 5]);
3388    /// assert_eq!(z, [3, 6]);
3389    /// ```
3390    #[stable(feature = "rust1", since = "1.0.0")]
3391    fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
3392    where
3393        FromA: Default + Extend<A>,
3394        FromB: Default + Extend<B>,
3395        Self: Sized + Iterator<Item = (A, B)>,
3396    {
3397        let mut unzipped: (FromA, FromB) = Default::default();
3398        unzipped.extend(self);
3399        unzipped
3400    }
3401
3402    /// Creates an iterator which copies all of its elements.
3403    ///
3404    /// This is useful when you have an iterator over `&T`, but you need an
3405    /// iterator over `T`.
3406    ///
3407    /// # Examples
3408    ///
3409    /// ```
3410    /// let a = [1, 2, 3];
3411    ///
3412    /// let v_copied: Vec<_> = a.iter().copied().collect();
3413    ///
3414    /// // copied is the same as .map(|&x| x)
3415    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3416    ///
3417    /// assert_eq!(v_copied, [1, 2, 3]);
3418    /// assert_eq!(v_map, [1, 2, 3]);
3419    /// ```
3420    #[stable(feature = "iter_copied", since = "1.36.0")]
3421    #[rustc_diagnostic_item = "iter_copied"]
3422    fn copied<'a, T>(self) -> Copied<Self>
3423    where
3424        T: Copy + 'a,
3425        Self: Sized + Iterator<Item = &'a T>,
3426    {
3427        Copied::new(self)
3428    }
3429
3430    /// Creates an iterator which [`clone`]s all of its elements.
3431    ///
3432    /// This is useful when you have an iterator over `&T`, but you need an
3433    /// iterator over `T`.
3434    ///
3435    /// There is no guarantee whatsoever about the `clone` method actually
3436    /// being called *or* optimized away. So code should not depend on
3437    /// either.
3438    ///
3439    /// [`clone`]: Clone::clone
3440    ///
3441    /// # Examples
3442    ///
3443    /// Basic usage:
3444    ///
3445    /// ```
3446    /// let a = [1, 2, 3];
3447    ///
3448    /// let v_cloned: Vec<_> = a.iter().cloned().collect();
3449    ///
3450    /// // cloned is the same as .map(|&x| x), for integers
3451    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3452    ///
3453    /// assert_eq!(v_cloned, [1, 2, 3]);
3454    /// assert_eq!(v_map, [1, 2, 3]);
3455    /// ```
3456    ///
3457    /// To get the best performance, try to clone late:
3458    ///
3459    /// ```
3460    /// let a = [vec![0_u8, 1, 2], vec![3, 4], vec![23]];
3461    /// // don't do this:
3462    /// let slower: Vec<_> = a.iter().cloned().filter(|s| s.len() == 1).collect();
3463    /// assert_eq!(&[vec![23]], &slower[..]);
3464    /// // instead call `cloned` late
3465    /// let faster: Vec<_> = a.iter().filter(|s| s.len() == 1).cloned().collect();
3466    /// assert_eq!(&[vec![23]], &faster[..]);
3467    /// ```
3468    #[stable(feature = "rust1", since = "1.0.0")]
3469    #[rustc_diagnostic_item = "iter_cloned"]
3470    fn cloned<'a, T>(self) -> Cloned<Self>
3471    where
3472        T: Clone + 'a,
3473        Self: Sized + Iterator<Item = &'a T>,
3474    {
3475        Cloned::new(self)
3476    }
3477
3478    /// Repeats an iterator endlessly.
3479    ///
3480    /// Instead of stopping at [`None`], the iterator will instead start again,
3481    /// from the beginning. After iterating again, it will start at the
3482    /// beginning again. And again. And again. Forever. Note that in case the
3483    /// original iterator is empty, the resulting iterator will also be empty.
3484    ///
3485    /// # Examples
3486    ///
3487    /// ```
3488    /// let a = [1, 2, 3];
3489    ///
3490    /// let mut iter = a.into_iter().cycle();
3491    ///
3492    /// loop {
3493    ///     assert_eq!(iter.next(), Some(1));
3494    ///     assert_eq!(iter.next(), Some(2));
3495    ///     assert_eq!(iter.next(), Some(3));
3496    /// #   break;
3497    /// }
3498    /// ```
3499    #[stable(feature = "rust1", since = "1.0.0")]
3500    #[inline]
3501    fn cycle(self) -> Cycle<Self>
3502    where
3503        Self: Sized + Clone,
3504    {
3505        Cycle::new(self)
3506    }
3507
3508    /// Returns an iterator over `N` elements of the iterator at a time.
3509    ///
3510    /// The chunks do not overlap. If `N` does not divide the length of the
3511    /// iterator, then the last up to `N-1` elements will be omitted and can be
3512    /// retrieved from the [`.into_remainder()`][ArrayChunks::into_remainder]
3513    /// function of the iterator.
3514    ///
3515    /// # Panics
3516    ///
3517    /// Panics if `N` is zero.
3518    ///
3519    /// # Examples
3520    ///
3521    /// Basic usage:
3522    ///
3523    /// ```
3524    /// #![feature(iter_array_chunks)]
3525    ///
3526    /// let mut iter = "lorem".chars().array_chunks();
3527    /// assert_eq!(iter.next(), Some(['l', 'o']));
3528    /// assert_eq!(iter.next(), Some(['r', 'e']));
3529    /// assert_eq!(iter.next(), None);
3530    /// assert_eq!(iter.into_remainder().as_slice(), &['m']);
3531    /// ```
3532    ///
3533    /// ```
3534    /// #![feature(iter_array_chunks)]
3535    ///
3536    /// let data = [1, 1, 2, -2, 6, 0, 3, 1];
3537    /// //          ^-----^  ^------^
3538    /// for [x, y, z] in data.iter().array_chunks() {
3539    ///     assert_eq!(x + y + z, 4);
3540    /// }
3541    /// ```
3542    #[track_caller]
3543    #[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "100450")]
3544    fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
3545    where
3546        Self: Sized,
3547    {
3548        ArrayChunks::new(self)
3549    }
3550
3551    /// Sums the elements of an iterator.
3552    ///
3553    /// Takes each element, adds them together, and returns the result.
3554    ///
3555    /// An empty iterator returns the *additive identity* ("zero") of the type,
3556    /// which is `0` for integers and `-0.0` for floats.
3557    ///
3558    /// `sum()` can be used to sum any type implementing [`Sum`][`core::iter::Sum`],
3559    /// including [`Option`][`Option::sum`] and [`Result`][`Result::sum`].
3560    ///
3561    /// # Panics
3562    ///
3563    /// When calling `sum()` and a primitive integer type is being returned, this
3564    /// method will panic if the computation overflows and overflow checks are
3565    /// enabled.
3566    ///
3567    /// # Examples
3568    ///
3569    /// ```
3570    /// let a = [1, 2, 3];
3571    /// let sum: i32 = a.iter().sum();
3572    ///
3573    /// assert_eq!(sum, 6);
3574    ///
3575    /// let b: Vec<f32> = vec![];
3576    /// let sum: f32 = b.iter().sum();
3577    /// assert_eq!(sum, -0.0_f32);
3578    /// ```
3579    #[stable(feature = "iter_arith", since = "1.11.0")]
3580    fn sum<S>(self) -> S
3581    where
3582        Self: Sized,
3583        S: Sum<Self::Item>,
3584    {
3585        Sum::sum(self)
3586    }
3587
3588    /// Iterates over the entire iterator, multiplying all the elements
3589    ///
3590    /// An empty iterator returns the one value of the type.
3591    ///
3592    /// `product()` can be used to multiply any type implementing [`Product`][`core::iter::Product`],
3593    /// including [`Option`][`Option::product`] and [`Result`][`Result::product`].
3594    ///
3595    /// # Panics
3596    ///
3597    /// When calling `product()` and a primitive integer type is being returned,
3598    /// method will panic if the computation overflows and overflow checks are
3599    /// enabled.
3600    ///
3601    /// # Examples
3602    ///
3603    /// ```
3604    /// fn factorial(n: u32) -> u32 {
3605    ///     (1..=n).product()
3606    /// }
3607    /// assert_eq!(factorial(0), 1);
3608    /// assert_eq!(factorial(1), 1);
3609    /// assert_eq!(factorial(5), 120);
3610    /// ```
3611    #[stable(feature = "iter_arith", since = "1.11.0")]
3612    fn product<P>(self) -> P
3613    where
3614        Self: Sized,
3615        P: Product<Self::Item>,
3616    {
3617        Product::product(self)
3618    }
3619
3620    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3621    /// of another.
3622    ///
3623    /// # Examples
3624    ///
3625    /// ```
3626    /// use std::cmp::Ordering;
3627    ///
3628    /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
3629    /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
3630    /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
3631    /// ```
3632    #[stable(feature = "iter_order", since = "1.5.0")]
3633    fn cmp<I>(self, other: I) -> Ordering
3634    where
3635        I: IntoIterator<Item = Self::Item>,
3636        Self::Item: Ord,
3637        Self: Sized,
3638    {
3639        self.cmp_by(other, |x, y| x.cmp(&y))
3640    }
3641
3642    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3643    /// of another with respect to the specified comparison function.
3644    ///
3645    /// # Examples
3646    ///
3647    /// ```
3648    /// #![feature(iter_order_by)]
3649    ///
3650    /// use std::cmp::Ordering;
3651    ///
3652    /// let xs = [1, 2, 3, 4];
3653    /// let ys = [1, 4, 9, 16];
3654    ///
3655    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| x.cmp(&y)), Ordering::Less);
3656    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (x * x).cmp(&y)), Ordering::Equal);
3657    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (2 * x).cmp(&y)), Ordering::Greater);
3658    /// ```
3659    #[unstable(feature = "iter_order_by", issue = "64295")]
3660    fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
3661    where
3662        Self: Sized,
3663        I: IntoIterator,
3664        F: FnMut(Self::Item, I::Item) -> Ordering,
3665    {
3666        #[inline]
3667        fn compare<X, Y, F>(mut cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Ordering>
3668        where
3669            F: FnMut(X, Y) -> Ordering,
3670        {
3671            move |x, y| match cmp(x, y) {
3672                Ordering::Equal => ControlFlow::Continue(()),
3673                non_eq => ControlFlow::Break(non_eq),
3674            }
3675        }
3676
3677        match iter_compare(self, other.into_iter(), compare(cmp)) {
3678            ControlFlow::Continue(ord) => ord,
3679            ControlFlow::Break(ord) => ord,
3680        }
3681    }
3682
3683    /// [Lexicographically](Ord#lexicographical-comparison) compares the [`PartialOrd`] elements of
3684    /// this [`Iterator`] with those of another. The comparison works like short-circuit
3685    /// evaluation, returning a result without comparing the remaining elements.
3686    /// As soon as an order can be determined, the evaluation stops and a result is returned.
3687    ///
3688    /// # Examples
3689    ///
3690    /// ```
3691    /// use std::cmp::Ordering;
3692    ///
3693    /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
3694    /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
3695    /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
3696    /// ```
3697    ///
3698    /// For floating-point numbers, NaN does not have a total order and will result
3699    /// in `None` when compared:
3700    ///
3701    /// ```
3702    /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
3703    /// ```
3704    ///
3705    /// The results are determined by the order of evaluation.
3706    ///
3707    /// ```
3708    /// use std::cmp::Ordering;
3709    ///
3710    /// assert_eq!([1.0, f64::NAN].iter().partial_cmp([2.0, f64::NAN].iter()), Some(Ordering::Less));
3711    /// assert_eq!([2.0, f64::NAN].iter().partial_cmp([1.0, f64::NAN].iter()), Some(Ordering::Greater));
3712    /// assert_eq!([f64::NAN, 1.0].iter().partial_cmp([f64::NAN, 2.0].iter()), None);
3713    /// ```
3714    ///
3715    #[stable(feature = "iter_order", since = "1.5.0")]
3716    fn partial_cmp<I>(self, other: I) -> Option<Ordering>
3717    where
3718        I: IntoIterator,
3719        Self::Item: PartialOrd<I::Item>,
3720        Self: Sized,
3721    {
3722        self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
3723    }
3724
3725    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3726    /// of another with respect to the specified comparison function.
3727    ///
3728    /// # Examples
3729    ///
3730    /// ```
3731    /// #![feature(iter_order_by)]
3732    ///
3733    /// use std::cmp::Ordering;
3734    ///
3735    /// let xs = [1.0, 2.0, 3.0, 4.0];
3736    /// let ys = [1.0, 4.0, 9.0, 16.0];
3737    ///
3738    /// assert_eq!(
3739    ///     xs.iter().partial_cmp_by(ys, |x, y| x.partial_cmp(&y)),
3740    ///     Some(Ordering::Less)
3741    /// );
3742    /// assert_eq!(
3743    ///     xs.iter().partial_cmp_by(ys, |x, y| (x * x).partial_cmp(&y)),
3744    ///     Some(Ordering::Equal)
3745    /// );
3746    /// assert_eq!(
3747    ///     xs.iter().partial_cmp_by(ys, |x, y| (2.0 * x).partial_cmp(&y)),
3748    ///     Some(Ordering::Greater)
3749    /// );
3750    /// ```
3751    #[unstable(feature = "iter_order_by", issue = "64295")]
3752    fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
3753    where
3754        Self: Sized,
3755        I: IntoIterator,
3756        F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
3757    {
3758        #[inline]
3759        fn compare<X, Y, F>(mut partial_cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Option<Ordering>>
3760        where
3761            F: FnMut(X, Y) -> Option<Ordering>,
3762        {
3763            move |x, y| match partial_cmp(x, y) {
3764                Some(Ordering::Equal) => ControlFlow::Continue(()),
3765                non_eq => ControlFlow::Break(non_eq),
3766            }
3767        }
3768
3769        match iter_compare(self, other.into_iter(), compare(partial_cmp)) {
3770            ControlFlow::Continue(ord) => Some(ord),
3771            ControlFlow::Break(ord) => ord,
3772        }
3773    }
3774
3775    /// Determines if the elements of this [`Iterator`] are equal to those of
3776    /// another.
3777    ///
3778    /// # Examples
3779    ///
3780    /// ```
3781    /// assert_eq!([1].iter().eq([1].iter()), true);
3782    /// assert_eq!([1].iter().eq([1, 2].iter()), false);
3783    /// ```
3784    #[stable(feature = "iter_order", since = "1.5.0")]
3785    fn eq<I>(self, other: I) -> bool
3786    where
3787        I: IntoIterator,
3788        Self::Item: PartialEq<I::Item>,
3789        Self: Sized,
3790    {
3791        self.eq_by(other, |x, y| x == y)
3792    }
3793
3794    /// Determines if the elements of this [`Iterator`] are equal to those of
3795    /// another with respect to the specified equality function.
3796    ///
3797    /// # Examples
3798    ///
3799    /// ```
3800    /// #![feature(iter_order_by)]
3801    ///
3802    /// let xs = [1, 2, 3, 4];
3803    /// let ys = [1, 4, 9, 16];
3804    ///
3805    /// assert!(xs.iter().eq_by(ys, |x, y| x * x == y));
3806    /// ```
3807    #[unstable(feature = "iter_order_by", issue = "64295")]
3808    fn eq_by<I, F>(self, other: I, eq: F) -> bool
3809    where
3810        Self: Sized,
3811        I: IntoIterator,
3812        F: FnMut(Self::Item, I::Item) -> bool,
3813    {
3814        #[inline]
3815        fn compare<X, Y, F>(mut eq: F) -> impl FnMut(X, Y) -> ControlFlow<()>
3816        where
3817            F: FnMut(X, Y) -> bool,
3818        {
3819            move |x, y| {
3820                if eq(x, y) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
3821            }
3822        }
3823
3824        SpecIterEq::spec_iter_eq(self, other.into_iter(), compare(eq))
3825    }
3826
3827    /// Determines if the elements of this [`Iterator`] are not equal to those of
3828    /// another.
3829    ///
3830    /// # Examples
3831    ///
3832    /// ```
3833    /// assert_eq!([1].iter().ne([1].iter()), false);
3834    /// assert_eq!([1].iter().ne([1, 2].iter()), true);
3835    /// ```
3836    #[stable(feature = "iter_order", since = "1.5.0")]
3837    fn ne<I>(self, other: I) -> bool
3838    where
3839        I: IntoIterator,
3840        Self::Item: PartialEq<I::Item>,
3841        Self: Sized,
3842    {
3843        !self.eq(other)
3844    }
3845
3846    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3847    /// less than those of another.
3848    ///
3849    /// # Examples
3850    ///
3851    /// ```
3852    /// assert_eq!([1].iter().lt([1].iter()), false);
3853    /// assert_eq!([1].iter().lt([1, 2].iter()), true);
3854    /// assert_eq!([1, 2].iter().lt([1].iter()), false);
3855    /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
3856    /// ```
3857    #[stable(feature = "iter_order", since = "1.5.0")]
3858    fn lt<I>(self, other: I) -> bool
3859    where
3860        I: IntoIterator,
3861        Self::Item: PartialOrd<I::Item>,
3862        Self: Sized,
3863    {
3864        self.partial_cmp(other) == Some(Ordering::Less)
3865    }
3866
3867    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3868    /// less or equal to those of another.
3869    ///
3870    /// # Examples
3871    ///
3872    /// ```
3873    /// assert_eq!([1].iter().le([1].iter()), true);
3874    /// assert_eq!([1].iter().le([1, 2].iter()), true);
3875    /// assert_eq!([1, 2].iter().le([1].iter()), false);
3876    /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
3877    /// ```
3878    #[stable(feature = "iter_order", since = "1.5.0")]
3879    fn le<I>(self, other: I) -> bool
3880    where
3881        I: IntoIterator,
3882        Self::Item: PartialOrd<I::Item>,
3883        Self: Sized,
3884    {
3885        matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
3886    }
3887
3888    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3889    /// greater than those of another.
3890    ///
3891    /// # Examples
3892    ///
3893    /// ```
3894    /// assert_eq!([1].iter().gt([1].iter()), false);
3895    /// assert_eq!([1].iter().gt([1, 2].iter()), false);
3896    /// assert_eq!([1, 2].iter().gt([1].iter()), true);
3897    /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
3898    /// ```
3899    #[stable(feature = "iter_order", since = "1.5.0")]
3900    fn gt<I>(self, other: I) -> bool
3901    where
3902        I: IntoIterator,
3903        Self::Item: PartialOrd<I::Item>,
3904        Self: Sized,
3905    {
3906        self.partial_cmp(other) == Some(Ordering::Greater)
3907    }
3908
3909    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3910    /// greater than or equal to those of another.
3911    ///
3912    /// # Examples
3913    ///
3914    /// ```
3915    /// assert_eq!([1].iter().ge([1].iter()), true);
3916    /// assert_eq!([1].iter().ge([1, 2].iter()), false);
3917    /// assert_eq!([1, 2].iter().ge([1].iter()), true);
3918    /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
3919    /// ```
3920    #[stable(feature = "iter_order", since = "1.5.0")]
3921    fn ge<I>(self, other: I) -> bool
3922    where
3923        I: IntoIterator,
3924        Self::Item: PartialOrd<I::Item>,
3925        Self: Sized,
3926    {
3927        matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
3928    }
3929
3930    /// Checks if the elements of this iterator are sorted.
3931    ///
3932    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
3933    /// iterator yields exactly zero or one element, `true` is returned.
3934    ///
3935    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
3936    /// implies that this function returns `false` if any two consecutive items are not
3937    /// comparable.
3938    ///
3939    /// # Examples
3940    ///
3941    /// ```
3942    /// assert!([1, 2, 2, 9].iter().is_sorted());
3943    /// assert!(![1, 3, 2, 4].iter().is_sorted());
3944    /// assert!([0].iter().is_sorted());
3945    /// assert!(std::iter::empty::<i32>().is_sorted());
3946    /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
3947    /// ```
3948    #[inline]
3949    #[stable(feature = "is_sorted", since = "1.82.0")]
3950    fn is_sorted(self) -> bool
3951    where
3952        Self: Sized,
3953        Self::Item: PartialOrd,
3954    {
3955        self.is_sorted_by(|a, b| a <= b)
3956    }
3957
3958    /// Checks if the elements of this iterator are sorted using the given comparator function.
3959    ///
3960    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
3961    /// function to determine whether two elements are to be considered in sorted order.
3962    ///
3963    /// # Examples
3964    ///
3965    /// ```
3966    /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a <= b));
3967    /// assert!(![1, 2, 2, 9].iter().is_sorted_by(|a, b| a < b));
3968    ///
3969    /// assert!([0].iter().is_sorted_by(|a, b| true));
3970    /// assert!([0].iter().is_sorted_by(|a, b| false));
3971    ///
3972    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| false));
3973    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| true));
3974    /// ```
3975    #[stable(feature = "is_sorted", since = "1.82.0")]
3976    fn is_sorted_by<F>(mut self, compare: F) -> bool
3977    where
3978        Self: Sized,
3979        F: FnMut(&Self::Item, &Self::Item) -> bool,
3980    {
3981        #[inline]
3982        fn check<'a, T>(
3983            last: &'a mut T,
3984            mut compare: impl FnMut(&T, &T) -> bool + 'a,
3985        ) -> impl FnMut(T) -> bool + 'a {
3986            move |curr| {
3987                if !compare(&last, &curr) {
3988                    return false;
3989                }
3990                *last = curr;
3991                true
3992            }
3993        }
3994
3995        let mut last = match self.next() {
3996            Some(e) => e,
3997            None => return true,
3998        };
3999
4000        self.all(check(&mut last, compare))
4001    }
4002
4003    /// Checks if the elements of this iterator are sorted using the given key extraction
4004    /// function.
4005    ///
4006    /// Instead of comparing the iterator's elements directly, this function compares the keys of
4007    /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
4008    /// its documentation for more information.
4009    ///
4010    /// [`is_sorted`]: Iterator::is_sorted
4011    ///
4012    /// # Examples
4013    ///
4014    /// ```
4015    /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
4016    /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
4017    /// ```
4018    #[inline]
4019    #[stable(feature = "is_sorted", since = "1.82.0")]
4020    fn is_sorted_by_key<F, K>(self, f: F) -> bool
4021    where
4022        Self: Sized,
4023        F: FnMut(Self::Item) -> K,
4024        K: PartialOrd,
4025    {
4026        self.map(f).is_sorted()
4027    }
4028
4029    /// See [TrustedRandomAccess][super::super::TrustedRandomAccess]
4030    // The unusual name is to avoid name collisions in method resolution
4031    // see #76479.
4032    #[inline]
4033    #[doc(hidden)]
4034    #[unstable(feature = "trusted_random_access", issue = "none")]
4035    unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
4036    where
4037        Self: TrustedRandomAccessNoCoerce,
4038    {
4039        unreachable!("Always specialized");
4040    }
4041}
4042
4043trait SpecIterEq<B: Iterator>: Iterator {
4044    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4045    where
4046        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>;
4047}
4048
4049impl<A: Iterator, B: Iterator> SpecIterEq<B> for A {
4050    #[inline]
4051    default fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4052    where
4053        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4054    {
4055        iter_eq(self, b, f)
4056    }
4057}
4058
4059impl<A: Iterator + TrustedLen, B: Iterator + TrustedLen> SpecIterEq<B> for A {
4060    #[inline]
4061    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4062    where
4063        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4064    {
4065        // we *can't* short-circuit if:
4066        match (self.size_hint(), b.size_hint()) {
4067            // ... both iterators have the same length
4068            ((_, Some(a)), (_, Some(b))) if a == b => {}
4069            // ... or both of them are longer than `usize::MAX` (i.e. have an unknown length).
4070            ((_, None), (_, None)) => {}
4071            // otherwise, we can ascertain that they are unequal without actually comparing items
4072            _ => return false,
4073        }
4074
4075        iter_eq(self, b, f)
4076    }
4077}
4078
4079/// Compares two iterators element-wise using the given function.
4080///
4081/// If `ControlFlow::Continue(())` is returned from the function, the comparison moves on to the next
4082/// elements of both iterators. Returning `ControlFlow::Break(x)` short-circuits the iteration and
4083/// returns `ControlFlow::Break(x)`. If one of the iterators runs out of elements,
4084/// `ControlFlow::Continue(ord)` is returned where `ord` is the result of comparing the lengths of
4085/// the iterators.
4086///
4087/// Isolates the logic shared by ['cmp_by'](Iterator::cmp_by),
4088/// ['partial_cmp_by'](Iterator::partial_cmp_by), and ['eq_by'](Iterator::eq_by).
4089#[inline]
4090fn iter_compare<A, B, F, T>(mut a: A, mut b: B, f: F) -> ControlFlow<T, Ordering>
4091where
4092    A: Iterator,
4093    B: Iterator,
4094    F: FnMut(A::Item, B::Item) -> ControlFlow<T>,
4095{
4096    #[inline]
4097    fn compare<'a, B, X, T>(
4098        b: &'a mut B,
4099        mut f: impl FnMut(X, B::Item) -> ControlFlow<T> + 'a,
4100    ) -> impl FnMut(X) -> ControlFlow<ControlFlow<T, Ordering>> + 'a
4101    where
4102        B: Iterator,
4103    {
4104        move |x| match b.next() {
4105            None => ControlFlow::Break(ControlFlow::Continue(Ordering::Greater)),
4106            Some(y) => f(x, y).map_break(ControlFlow::Break),
4107        }
4108    }
4109
4110    match a.try_for_each(compare(&mut b, f)) {
4111        ControlFlow::Continue(()) => ControlFlow::Continue(match b.next() {
4112            None => Ordering::Equal,
4113            Some(_) => Ordering::Less,
4114        }),
4115        ControlFlow::Break(x) => x,
4116    }
4117}
4118
4119#[inline]
4120fn iter_eq<A, B, F>(a: A, b: B, f: F) -> bool
4121where
4122    A: Iterator,
4123    B: Iterator,
4124    F: FnMut(A::Item, B::Item) -> ControlFlow<()>,
4125{
4126    iter_compare(a, b, f).continue_value().is_some_and(|ord| ord == Ordering::Equal)
4127}
4128
4129/// Implements `Iterator` for mutable references to iterators, such as those produced by [`Iterator::by_ref`].
4130///
4131/// This implementation passes all method calls on to the original iterator.
4132#[stable(feature = "rust1", since = "1.0.0")]
4133impl<I: Iterator + ?Sized> Iterator for &mut I {
4134    type Item = I::Item;
4135    #[inline]
4136    fn next(&mut self) -> Option<I::Item> {
4137        (**self).next()
4138    }
4139    fn size_hint(&self) -> (usize, Option<usize>) {
4140        (**self).size_hint()
4141    }
4142    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
4143        (**self).advance_by(n)
4144    }
4145    fn nth(&mut self, n: usize) -> Option<Self::Item> {
4146        (**self).nth(n)
4147    }
4148    fn fold<B, F>(self, init: B, f: F) -> B
4149    where
4150        F: FnMut(B, Self::Item) -> B,
4151    {
4152        self.spec_fold(init, f)
4153    }
4154    fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4155    where
4156        F: FnMut(B, Self::Item) -> R,
4157        R: Try<Output = B>,
4158    {
4159        self.spec_try_fold(init, f)
4160    }
4161}
4162
4163/// Helper trait to specialize `fold` and `try_fold` for `&mut I where I: Sized`
4164trait IteratorRefSpec: Iterator {
4165    fn spec_fold<B, F>(self, init: B, f: F) -> B
4166    where
4167        F: FnMut(B, Self::Item) -> B;
4168
4169    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4170    where
4171        F: FnMut(B, Self::Item) -> R,
4172        R: Try<Output = B>;
4173}
4174
4175impl<I: Iterator + ?Sized> IteratorRefSpec for &mut I {
4176    default fn spec_fold<B, F>(self, init: B, mut f: F) -> B
4177    where
4178        F: FnMut(B, Self::Item) -> B,
4179    {
4180        let mut accum = init;
4181        while let Some(x) = self.next() {
4182            accum = f(accum, x);
4183        }
4184        accum
4185    }
4186
4187    default fn spec_try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
4188    where
4189        F: FnMut(B, Self::Item) -> R,
4190        R: Try<Output = B>,
4191    {
4192        let mut accum = init;
4193        while let Some(x) = self.next() {
4194            accum = f(accum, x)?;
4195        }
4196        try { accum }
4197    }
4198}
4199
4200impl<I: Iterator> IteratorRefSpec for &mut I {
4201    impl_fold_via_try_fold! { spec_fold -> spec_try_fold }
4202
4203    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4204    where
4205        F: FnMut(B, Self::Item) -> R,
4206        R: Try<Output = B>,
4207    {
4208        (**self).try_fold(init, f)
4209    }
4210}