aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/mm_types.h
blob: 24323c7d0bd484830739fd6846a263f2f36f609e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MM_TYPES_H
#define _LINUX_MM_TYPES_H

#include <linux/mm_types_task.h>

#include <linux/auxvec.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/rbtree.h>
#include <linux/maple_tree.h>
#include <linux/rwsem.h>
#include <linux/completion.h>
#include <linux/cpumask.h>
#include <linux/uprobes.h>
#include <linux/rcupdate.h>
#include <linux/page-flags-layout.h>
#include <linux/workqueue.h>
#include <linux/seqlock.h>
#include <linux/percpu_counter.h>

#include <asm/mmu.h>

#ifndef AT_VECTOR_SIZE_ARCH
#define AT_VECTOR_SIZE_ARCH 0
#endif
#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))

#define INIT_PASID	0

struct address_space;
struct mem_cgroup;

/*
 * Each physical page in the system has a struct page associated with
 * it to keep track of whatever it is we are using the page for at the
 * moment. Note that we have no way to track which tasks are using
 * a page, though if it is a pagecache page, rmap structures can tell us
 * who is mapping it.
 *
 * If you allocate the page using alloc_pages(), you can use some of the
 * space in struct page for your own purposes.  The five words in the main
 * union are available, except for bit 0 of the first word which must be
 * kept clear.  Many users use this word to store a pointer to an object
 * which is guaranteed to be aligned.  If you use the same storage as
 * page->mapping, you must restore it to NULL before freeing the page.
 *
 * If your page will not be mapped to userspace, you can also use the four
 * bytes in the mapcount union, but you must call page_mapcount_reset()
 * before freeing it.
 *
 * If you want to use the refcount field, it must be used in such a way
 * that other CPUs temporarily incrementing and then decrementing the
 * refcount does not cause problems.  On receiving the page from
 * alloc_pages(), the refcount will be positive.
 *
 * If you allocate pages of order > 0, you can use some of the fields
 * in each subpage, but you may need to restore some of their values
 * afterwards.
 *
 * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
 * That requires that freelist & counters in struct slab be adjacent and
 * double-word aligned. Because struct slab currently just reinterprets the
 * bits of struct page, we align all struct pages to double-word boundaries,
 * and ensure that 'freelist' is aligned within struct slab.
 */
#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
#define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
#else
#define _struct_page_alignment	__aligned(sizeof(unsigned long))
#endif

struct page {
	unsigned long flags;		/* Atomic flags, some possibly
					 * updated asynchronously */
	/*
	 * Five words (20/40 bytes) are available in this union.
	 * WARNING: bit 0 of the first word is used for PageTail(). That
	 * means the other users of this union MUST NOT use the bit to
	 * avoid collision and false-positive PageTail().
	 */
	union {
		struct {	/* Page cache and anonymous pages */
			/**
			 * @lru: Pageout list, eg. active_list protected by
			 * lruvec->lru_lock.  Sometimes used as a generic list
			 * by the page owner.
			 */
			union {
				struct list_head lru;

				/* Or, for the Unevictable "LRU list" slot */
				struct {
					/* Always even, to negate PageTail */
					void *__filler;
					/* Count page's or folio's mlocks */
					unsigned int mlock_count;
				};

				/* Or, free page */
				struct list_head buddy_list;
				struct list_head pcp_list;
			};
			/* See page-flags.h for PAGE_MAPPING_FLAGS */
			struct address_space *mapping;
			union {
				pgoff_t index;		/* Our offset within mapping. */
				unsigned long share;	/* share count for fsdax */
			};
			/**
			 * @private: Mapping-private opaque data.
			 * Usually used for buffer_heads if PagePrivate.
			 * Used for swp_entry_t if PageSwapCache.
			 * Indicates order in the buddy system if PageBuddy.
			 */
			unsigned long private;
		};
		struct {	/* page_pool used by netstack */
			/**
			 * @pp_magic: magic value to avoid recycling non
			 * page_pool allocated pages.
			 */
			unsigned long pp_magic;
			struct page_pool *pp;
			unsigned long _pp_mapping_pad;
			unsigned long dma_addr;
			atomic_long_t pp_ref_count;
		};
		struct {	/* Tail pages of compound page */
			unsigned long compound_head;	/* Bit zero is set */
		};
		struct {	/* ZONE_DEVICE pages */
			/** @pgmap: Points to the hosting device page map. */
			struct dev_pagemap *pgmap;
			void *zone_device_data;
			/*
			 * ZONE_DEVICE private pages are counted as being
			 * mapped so the next 3 words hold the mapping, index,
			 * and private fields from the source anonymous or
			 * page cache page while the page is migrated to device
			 * private memory.
			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
			 * use the mapping, index, and private fields when
			 * pmem backed DAX files are mapped.
			 */
		};

		/** @rcu_head: You can use this to free a page by RCU. */
		struct rcu_head rcu_head;
	};

	union {		/* This union is 4 bytes in size. */
		/*
		 * If the page can be mapped to userspace, encodes the number
		 * of times this page is referenced by a page table.
		 */
		atomic_t _mapcount;

		/*
		 * If the page is neither PageSlab nor mappable to userspace,
		 * the value stored here may help determine what this page
		 * is used for.  See page-flags.h for a list of page types
		 * which are currently stored here.
		 */
		unsigned int page_type;
	};

	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
	atomic_t _refcount;

#ifdef CONFIG_SLAB_OBJ_EXT
	unsigned long memcg_data;
#endif

	/*
	 * On machines where all RAM is mapped into kernel address space,
	 * we can simply calculate the virtual address. On machines with
	 * highmem some memory is mapped into kernel virtual memory
	 * dynamically, so we need a place to store that address.
	 * Note that this field could be 16 bits on x86 ... ;)
	 *
	 * Architectures with slow multiplication can define
	 * WANT_PAGE_VIRTUAL in asm/page.h
	 */
#if defined(WANT_PAGE_VIRTUAL)
	void *virtual;			/* Kernel virtual address (NULL if
					   not kmapped, ie. highmem) */
#endif /* WANT_PAGE_VIRTUAL */

#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
	int _last_cpupid;
#endif

#ifdef CONFIG_KMSAN
	/*
	 * KMSAN metadata for this page:
	 *  - shadow page: every bit indicates whether the corresponding
	 *    bit of the original page is initialized (0) or not (1);
	 *  - origin page: every 4 bytes contain an id of the stack trace
	 *    where the uninitialized value was created.
	 */
	struct page *kmsan_shadow;
	struct page *kmsan_origin;
#endif
} _struct_page_alignment;

/*
 * struct encoded_page - a nonexistent type marking this pointer
 *
 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
 * with the low bits of the pointer indicating extra context-dependent
 * information. Only used in mmu_gather handling, and this acts as a type
 * system check on that use.
 *
 * We only really have two guaranteed bits in general, although you could
 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 * for more.
 *
 * Use the supplied helper functions to endcode/decode the pointer and bits.
 */
struct encoded_page;

#define ENCODED_PAGE_BITS			3ul

/* Perform rmap removal after we have flushed the TLB. */
#define ENCODED_PAGE_BIT_DELAY_RMAP		1ul

/*
 * The next item in an encoded_page array is the "nr_pages" argument, specifying
 * the number of consecutive pages starting from this page, that all belong to
 * the same folio. For example, "nr_pages" corresponds to the number of folio
 * references that must be dropped. If this bit is not set, "nr_pages" is
 * implicitly 1.
 */
#define ENCODED_PAGE_BIT_NR_PAGES_NEXT		2ul

static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
{
	BUILD_BUG_ON(flags > ENCODED_PAGE_BITS);
	return (struct encoded_page *)(flags | (unsigned long)page);
}

static inline unsigned long encoded_page_flags(struct encoded_page *page)
{
	return ENCODED_PAGE_BITS & (unsigned long)page;
}

static inline struct page *encoded_page_ptr(struct encoded_page *page)
{
	return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page);
}

static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr)
{
	VM_WARN_ON_ONCE((nr << 2) >> 2 != nr);
	return (struct encoded_page *)(nr << 2);
}

static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page)
{
	return ((unsigned long)page) >> 2;
}

/*
 * A swap entry has to fit into a "unsigned long", as the entry is hidden
 * in the "index" field of the swapper address space.
 */
typedef struct {
	unsigned long val;
} swp_entry_t;

/**
 * struct folio - Represents a contiguous set of bytes.
 * @flags: Identical to the page flags.
 * @lru: Least Recently Used list; tracks how recently this folio was used.
 * @mlock_count: Number of times this folio has been pinned by mlock().
 * @mapping: The file this page belongs to, or refers to the anon_vma for
 *    anonymous memory.
 * @index: Offset within the file, in units of pages.  For anonymous memory,
 *    this is the index from the beginning of the mmap.
 * @private: Filesystem per-folio data (see folio_attach_private()).
 * @swap: Used for swp_entry_t if folio_test_swapcache().
 * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
 *    find out how many times this folio is mapped by userspace.
 * @_refcount: Do not access this member directly.  Use folio_ref_count()
 *    to find how many references there are to this folio.
 * @memcg_data: Memory Control Group data.
 * @virtual: Virtual address in the kernel direct map.
 * @_last_cpupid: IDs of last CPU and last process that accessed the folio.
 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
 * @_large_mapcount: Do not use directly, call folio_mapcount().
 * @_nr_pages_mapped: Do not use outside of rmap and debug code.
 * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
 * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
 * @_deferred_list: Folios to be split under memory pressure.
 *
 * A folio is a physically, virtually and logically contiguous set
 * of bytes.  It is a power-of-two in size, and it is aligned to that
 * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
 * in the page cache, it is at a file offset which is a multiple of that
 * power-of-two.  It may be mapped into userspace at an address which is
 * at an arbitrary page offset, but its kernel virtual address is aligned
 * to its size.
 */
struct folio {
	/* private: don't document the anon union */
	union {
		struct {
	/* public: */
			unsigned long flags;
			union {
				struct list_head lru;
	/* private: avoid cluttering the output */
				struct {
					void *__filler;
	/* public: */
					unsigned int mlock_count;
	/* private: */
				};
	/* public: */
			};
			struct address_space *mapping;
			pgoff_t index;
			union {
				void *private;
				swp_entry_t swap;
			};
			atomic_t _mapcount;
			atomic_t _refcount;
#ifdef CONFIG_SLAB_OBJ_EXT
			unsigned long memcg_data;
#endif
#if defined(WANT_PAGE_VIRTUAL)
			void *virtual;
#endif
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
			int _last_cpupid;
#endif
	/* private: the union with struct page is transitional */
		};
		struct page page;
	};
	union {
		struct {
			unsigned long _flags_1;
			unsigned long _head_1;
	/* public: */
			atomic_t _large_mapcount;
			atomic_t _entire_mapcount;
			atomic_t _nr_pages_mapped;
			atomic_t _pincount;
#ifdef CONFIG_64BIT
			unsigned int _folio_nr_pages;
#endif
	/* private: the union with struct page is transitional */
		};
		struct page __page_1;
	};
	union {
		struct {
			unsigned long _flags_2;
			unsigned long _head_2;
	/* public: */
			void *_hugetlb_subpool;
			void *_hugetlb_cgroup;
			void *_hugetlb_cgroup_rsvd;
			void *_hugetlb_hwpoison;
	/* private: the union with struct page is transitional */
		};
		struct {
			unsigned long _flags_2a;
			unsigned long _head_2a;
	/* public: */
			struct list_head _deferred_list;
	/* private: the union with struct page is transitional */
		};
		struct page __page_2;
	};
};

#define FOLIO_MATCH(pg, fl)						\
	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
FOLIO_MATCH(flags, flags);
FOLIO_MATCH(lru, lru);
FOLIO_MATCH(mapping, mapping);
FOLIO_MATCH(compound_head, lru);
FOLIO_MATCH(index, index);
FOLIO_MATCH(private, private);
FOLIO_MATCH(_mapcount, _mapcount);
FOLIO_MATCH(_refcount, _refcount);
#ifdef CONFIG_MEMCG
FOLIO_MATCH(memcg_data, memcg_data);
#endif
#if defined(WANT_PAGE_VIRTUAL)
FOLIO_MATCH(virtual, virtual);
#endif
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
FOLIO_MATCH(_last_cpupid, _last_cpupid);
#endif
#undef FOLIO_MATCH
#define FOLIO_MATCH(pg, fl)						\
	static_assert(offsetof(struct folio, fl) ==			\
			offsetof(struct page, pg) + sizeof(struct page))
FOLIO_MATCH(flags, _flags_1);
FOLIO_MATCH(compound_head, _head_1);
#undef FOLIO_MATCH
#define FOLIO_MATCH(pg, fl)						\
	static_assert(offsetof(struct folio, fl) ==			\
			offsetof(struct page, pg) + 2 * sizeof(struct page))
FOLIO_MATCH(flags, _flags_2);
FOLIO_MATCH(compound_head, _head_2);
FOLIO_MATCH(flags, _flags_2a);
FOLIO_MATCH(compound_head, _head_2a);
#undef FOLIO_MATCH

/**
 * struct ptdesc -    Memory descriptor for page tables.
 * @__page_flags:     Same as page flags. Powerpc only.
 * @pt_rcu_head:      For freeing page table pages.
 * @pt_list:          List of used page tables. Used for s390 and x86.
 * @_pt_pad_1:        Padding that aliases with page's compound head.
 * @pmd_huge_pte:     Protected by ptdesc->ptl, used for THPs.
 * @__page_mapping:   Aliases with page->mapping. Unused for page tables.
 * @pt_index:         Used for s390 gmap.
 * @pt_mm:            Used for x86 pgds.
 * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
 * @_pt_pad_2:        Padding to ensure proper alignment.
 * @ptl:              Lock for the page table.
 * @__page_type:      Same as page->page_type. Unused for page tables.
 * @__page_refcount:  Same as page refcount.
 * @pt_memcg_data:    Memcg data. Tracked for page tables here.
 *
 * This struct overlays struct page for now. Do not modify without a good
 * understanding of the issues.
 */
struct ptdesc {
	unsigned long __page_flags;

	union {
		struct rcu_head pt_rcu_head;
		struct list_head pt_list;
		struct {
			unsigned long _pt_pad_1;
			pgtable_t pmd_huge_pte;
		};
	};
	unsigned long __page_mapping;

	union {
		pgoff_t pt_index;
		struct mm_struct *pt_mm;
		atomic_t pt_frag_refcount;
	};

	union {
		unsigned long _pt_pad_2;
#if ALLOC_SPLIT_PTLOCKS
		spinlock_t *ptl;
#else
		spinlock_t ptl;
#endif
	};
	unsigned int __page_type;
	atomic_t __page_refcount;
#ifdef CONFIG_MEMCG
	unsigned long pt_memcg_data;
#endif
};

#define TABLE_MATCH(pg, pt)						\
	static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
TABLE_MATCH(flags, __page_flags);
TABLE_MATCH(compound_head, pt_list);
TABLE_MATCH(compound_head, _pt_pad_1);
TABLE_MATCH(mapping, __page_mapping);
TABLE_MATCH(index, pt_index);
TABLE_MATCH(rcu_head, pt_rcu_head);
TABLE_MATCH(page_type, __page_type);
TABLE_MATCH(_refcount, __page_refcount);
#ifdef CONFIG_MEMCG
TABLE_MATCH(memcg_data, pt_memcg_data);
#endif
#undef TABLE_MATCH
static_assert(sizeof(struct ptdesc) <= sizeof(struct page));

#define ptdesc_page(pt)			(_Generic((pt),			\
	const struct ptdesc *:		(const struct page *)(pt),	\
	struct ptdesc *:		(struct page *)(pt)))

#define ptdesc_folio(pt)		(_Generic((pt),			\
	const struct ptdesc *:		(const struct folio *)(pt),	\
	struct ptdesc *:		(struct folio *)(pt)))

#define page_ptdesc(p)			(_Generic((p),			\
	const struct page *:		(const struct ptdesc *)(p),	\
	struct page *:			(struct ptdesc *)(p)))

/*
 * Used for sizing the vmemmap region on some architectures
 */
#define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))

#define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
#define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)

/*
 * page_private can be used on tail pages.  However, PagePrivate is only
 * checked by the VM on the head page.  So page_private on the tail pages
 * should be used for data that's ancillary to the head page (eg attaching
 * buffer heads to tail pages after attaching buffer heads to the head page)
 */
#define page_private(page)		((page)->private)

static inline void set_page_private(struct page *page, unsigned long private)
{
	page->private = private;
}

static inline void *folio_get_private(struct folio *folio)
{
	return folio->private;
}

struct page_frag_cache {
	void * va;
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	__u16 offset;
	__u16 size;
#else
	__u32 offset;
#endif
	/* we maintain a pagecount bias, so that we dont dirty cache line
	 * containing page->_refcount every time we allocate a fragment.
	 */
	unsigned int		pagecnt_bias;
	bool pfmemalloc;
};

typedef unsigned long vm_flags_t;

/*
 * A region containing a mapping of a non-memory backed file under NOMMU
 * conditions.  These are held in a global tree and are pinned by the VMAs that
 * map parts of them.
 */
struct vm_region {
	struct rb_node	vm_rb;		/* link in global region tree */
	vm_flags_t	vm_flags;	/* VMA vm_flags */
	unsigned long	vm_start;	/* start address of region */
	unsigned long	vm_end;		/* region initialised to here */
	unsigned long	vm_top;		/* region allocated to here */
	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
	struct file	*vm_file;	/* the backing file or NULL */

	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
						* this region */
};

#ifdef CONFIG_USERFAULTFD
#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
struct vm_userfaultfd_ctx {
	struct userfaultfd_ctx *ctx;
};
#else /* CONFIG_USERFAULTFD */
#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
struct vm_userfaultfd_ctx {};
#endif /* CONFIG_USERFAULTFD */

struct anon_vma_name {
	struct kref kref;
	/* The name needs to be at the end because it is dynamically sized. */
	char name[];
};

#ifdef CONFIG_ANON_VMA_NAME
/*
 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
 * either keep holding the lock while using the returned pointer or it should
 * raise anon_vma_name refcount before releasing the lock.
 */
struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
struct anon_vma_name *anon_vma_name_alloc(const char *name);
void anon_vma_name_free(struct kref *kref);
#else /* CONFIG_ANON_VMA_NAME */
static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
{
	return NULL;
}

static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
{
	return NULL;
}
#endif

struct vma_lock {
	struct rw_semaphore lock;
};

struct vma_numab_state {
	/*
	 * Initialised as time in 'jiffies' after which VMA
	 * should be scanned.  Delays first scan of new VMA by at
	 * least sysctl_numa_balancing_scan_delay:
	 */
	unsigned long next_scan;

	/*
	 * Time in jiffies when pids_active[] is reset to
	 * detect phase change behaviour:
	 */
	unsigned long pids_active_reset;

	/*
	 * Approximate tracking of PIDs that trapped a NUMA hinting
	 * fault. May produce false positives due to hash collisions.
	 *
	 *   [0] Previous PID tracking
	 *   [1] Current PID tracking
	 *
	 * Window moves after next_pid_reset has expired approximately
	 * every VMA_PID_RESET_PERIOD jiffies:
	 */
	unsigned long pids_active[2];

	/* MM scan sequence ID when scan first started after VMA creation */
	int start_scan_seq;

	/*
	 * MM scan sequence ID when the VMA was last completely scanned.
	 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
	 */
	int prev_scan_seq;
};

/*
 * This struct describes a virtual memory area. There is one of these
 * per VM-area/task. A VM area is any part of the process virtual memory
 * space that has a special rule for the page-fault handlers (ie a shared
 * library, the executable area etc).
 */
struct vm_area_struct {
	/* The first cache line has the info for VMA tree walking. */

	union {
		struct {
			/* VMA covers [vm_start; vm_end) addresses within mm */
			unsigned long vm_start;
			unsigned long vm_end;
		};
#ifdef CONFIG_PER_VMA_LOCK
		struct rcu_head vm_rcu;	/* Used for deferred freeing. */
#endif
	};

	struct mm_struct *vm_mm;	/* The address space we belong to. */
	pgprot_t vm_page_prot;          /* Access permissions of this VMA. */

	/*
	 * Flags, see mm.h.
	 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
	 */
	union {
		const vm_flags_t vm_flags;
		vm_flags_t __private __vm_flags;
	};

#ifdef CONFIG_PER_VMA_LOCK
	/* Flag to indicate areas detached from the mm->mm_mt tree */
	bool detached;

	/*
	 * Can only be written (using WRITE_ONCE()) while holding both:
	 *  - mmap_lock (in write mode)
	 *  - vm_lock->lock (in write mode)
	 * Can be read reliably while holding one of:
	 *  - mmap_lock (in read or write mode)
	 *  - vm_lock->lock (in read or write mode)
	 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
	 * while holding nothing (except RCU to keep the VMA struct allocated).
	 *
	 * This sequence counter is explicitly allowed to overflow; sequence
	 * counter reuse can only lead to occasional unnecessary use of the
	 * slowpath.
	 */
	int vm_lock_seq;
	struct vma_lock *vm_lock;
#endif

	/*
	 * For areas with an address space and backing store,
	 * linkage into the address_space->i_mmap interval tree.
	 *
	 */
	struct {
		struct rb_node rb;
		unsigned long rb_subtree_last;
	} shared;

	/*
	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
	 * or brk vma (with NULL file) can only be in an anon_vma list.
	 */
	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
					  * page_table_lock */
	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */

	/* Function pointers to deal with this struct. */
	const struct vm_operations_struct *vm_ops;

	/* Information about our backing store: */
	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
					   units */
	struct file * vm_file;		/* File we map to (can be NULL). */
	void * vm_private_data;		/* was vm_pte (shared mem) */

#ifdef CONFIG_ANON_VMA_NAME
	/*
	 * For private and shared anonymous mappings, a pointer to a null
	 * terminated string containing the name given to the vma, or NULL if
	 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
	 */
	struct anon_vma_name *anon_name;
#endif
#ifdef CONFIG_SWAP
	atomic_long_t swap_readahead_info;
#endif
#ifndef CONFIG_MMU
	struct vm_region *vm_region;	/* NOMMU mapping region */
#endif
#ifdef CONFIG_NUMA
	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
#endif
#ifdef CONFIG_NUMA_BALANCING
	struct vma_numab_state *numab_state;	/* NUMA Balancing state */
#endif
	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
} __randomize_layout;

#ifdef CONFIG_NUMA
#define vma_policy(vma) ((vma)->vm_policy)
#else
#define vma_policy(vma) NULL
#endif

#ifdef CONFIG_SCHED_MM_CID
struct mm_cid {
	u64 time;
	int cid;
};
#endif

struct kioctx_table;
struct iommu_mm_data;
struct mm_struct {
	struct {
		/*
		 * Fields which are often written to are placed in a separate
		 * cache line.
		 */
		struct {
			/**
			 * @mm_count: The number of references to &struct
			 * mm_struct (@mm_users count as 1).
			 *
			 * Use mmgrab()/mmdrop() to modify. When this drops to
			 * 0, the &struct mm_struct is freed.
			 */
			atomic_t mm_count;
		} ____cacheline_aligned_in_smp;

		struct maple_tree mm_mt;

		unsigned long mmap_base;	/* base of mmap area */
		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
		/* Base addresses for compatible mmap() */
		unsigned long mmap_compat_base;
		unsigned long mmap_compat_legacy_base;
#endif
		unsigned long task_size;	/* size of task vm space */
		pgd_t * pgd;

#ifdef CONFIG_MEMBARRIER
		/**
		 * @membarrier_state: Flags controlling membarrier behavior.
		 *
		 * This field is close to @pgd to hopefully fit in the same
		 * cache-line, which needs to be touched by switch_mm().
		 */
		atomic_t membarrier_state;
#endif

		/**
		 * @mm_users: The number of users including userspace.
		 *
		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
		 * drops to 0 (i.e. when the task exits and there are no other
		 * temporary reference holders), we also release a reference on
		 * @mm_count (which may then free the &struct mm_struct if
		 * @mm_count also drops to 0).
		 */
		atomic_t mm_users;

#ifdef CONFIG_SCHED_MM_CID
		/**
		 * @pcpu_cid: Per-cpu current cid.
		 *
		 * Keep track of the currently allocated mm_cid for each cpu.
		 * The per-cpu mm_cid values are serialized by their respective
		 * runqueue locks.
		 */
		struct mm_cid __percpu *pcpu_cid;
		/*
		 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
		 *
		 * When the next mm_cid scan is due (in jiffies).
		 */
		unsigned long mm_cid_next_scan;
#endif
#ifdef CONFIG_MMU
		atomic_long_t pgtables_bytes;	/* size of all page tables */
#endif
		int map_count;			/* number of VMAs */

		spinlock_t page_table_lock; /* Protects page tables and some
					     * counters
					     */
		/*
		 * With some kernel config, the current mmap_lock's offset
		 * inside 'mm_struct' is at 0x120, which is very optimal, as
		 * its two hot fields 'count' and 'owner' sit in 2 different
		 * cachelines,  and when mmap_lock is highly contended, both
		 * of the 2 fields will be accessed frequently, current layout
		 * will help to reduce cache bouncing.
		 *
		 * So please be careful with adding new fields before
		 * mmap_lock, which can easily push the 2 fields into one
		 * cacheline.
		 */
		struct rw_semaphore mmap_lock;

		struct list_head mmlist; /* List of maybe swapped mm's.	These
					  * are globally strung together off
					  * init_mm.mmlist, and are protected
					  * by mmlist_lock
					  */
#ifdef CONFIG_PER_VMA_LOCK
		/*
		 * This field has lock-like semantics, meaning it is sometimes
		 * accessed with ACQUIRE/RELEASE semantics.
		 * Roughly speaking, incrementing the sequence number is
		 * equivalent to releasing locks on VMAs; reading the sequence
		 * number can be part of taking a read lock on a VMA.
		 *
		 * Can be modified under write mmap_lock using RELEASE
		 * semantics.
		 * Can be read with no other protection when holding write
		 * mmap_lock.
		 * Can be read with ACQUIRE semantics if not holding write
		 * mmap_lock.
		 */
		int mm_lock_seq;
#endif


		unsigned long hiwater_rss; /* High-watermark of RSS usage */
		unsigned long hiwater_vm;  /* High-water virtual memory usage */

		unsigned long total_vm;	   /* Total pages mapped */
		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
		atomic64_t    pinned_vm;   /* Refcount permanently increased */
		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
		unsigned long stack_vm;	   /* VM_STACK */
		unsigned long def_flags;

		/**
		 * @write_protect_seq: Locked when any thread is write
		 * protecting pages mapped by this mm to enforce a later COW,
		 * for instance during page table copying for fork().
		 */
		seqcount_t write_protect_seq;

		spinlock_t arg_lock; /* protect the below fields */

		unsigned long start_code, end_code, start_data, end_data;
		unsigned long start_brk, brk, start_stack;
		unsigned long arg_start, arg_end, env_start, env_end;

		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */

		struct percpu_counter rss_stat[NR_MM_COUNTERS];

		struct linux_binfmt *binfmt;

		/* Architecture-specific MM context */
		mm_context_t context;

		unsigned long flags; /* Must use atomic bitops to access */

#ifdef CONFIG_AIO
		spinlock_t			ioctx_lock;
		struct kioctx_table __rcu	*ioctx_table;
#endif
#ifdef CONFIG_MEMCG
		/*
		 * "owner" points to a task that is regarded as the canonical
		 * user/owner of this mm. All of the following must be true in
		 * order for it to be changed:
		 *
		 * current == mm->owner
		 * current->mm != mm
		 * new_owner->mm == mm
		 * new_owner->alloc_lock is held
		 */
		struct task_struct __rcu *owner;
#endif
		struct user_namespace *user_ns;

		/* store ref to file /proc/<pid>/exe symlink points to */
		struct file __rcu *exe_file;
#ifdef CONFIG_MMU_NOTIFIER
		struct mmu_notifier_subscriptions *notifier_subscriptions;
#endif
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
#endif
#ifdef CONFIG_NUMA_BALANCING
		/*
		 * numa_next_scan is the next time that PTEs will be remapped
		 * PROT_NONE to trigger NUMA hinting faults; such faults gather
		 * statistics and migrate pages to new nodes if necessary.
		 */
		unsigned long numa_next_scan;

		/* Restart point for scanning and remapping PTEs. */
		unsigned long numa_scan_offset;

		/* numa_scan_seq prevents two threads remapping PTEs. */
		int numa_scan_seq;
#endif
		/*
		 * An operation with batched TLB flushing is going on. Anything
		 * that can move process memory needs to flush the TLB when
		 * moving a PROT_NONE mapped page.
		 */
		atomic_t tlb_flush_pending;
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
		/* See flush_tlb_batched_pending() */
		atomic_t tlb_flush_batched;
#endif
		struct uprobes_state uprobes_state;
#ifdef CONFIG_PREEMPT_RT
		struct rcu_head delayed_drop;
#endif
#ifdef CONFIG_HUGETLB_PAGE
		atomic_long_t hugetlb_usage;
#endif
		struct work_struct async_put_work;

#ifdef CONFIG_IOMMU_MM_DATA
		struct iommu_mm_data *iommu_mm;
#endif
#ifdef CONFIG_KSM
		/*
		 * Represent how many pages of this process are involved in KSM
		 * merging (not including ksm_zero_pages).
		 */
		unsigned long ksm_merging_pages;
		/*
		 * Represent how many pages are checked for ksm merging
		 * including merged and not merged.
		 */
		unsigned long ksm_rmap_items;
		/*
		 * Represent how many empty pages are merged with kernel zero
		 * pages when enabling KSM use_zero_pages.
		 */
		unsigned long ksm_zero_pages;
#endif /* CONFIG_KSM */
#ifdef CONFIG_LRU_GEN_WALKS_MMU
		struct {
			/* this mm_struct is on lru_gen_mm_list */
			struct list_head list;
			/*
			 * Set when switching to this mm_struct, as a hint of
			 * whether it has been used since the last time per-node
			 * page table walkers cleared the corresponding bits.
			 */
			unsigned long bitmap;
#ifdef CONFIG_MEMCG
			/* points to the memcg of "owner" above */
			struct mem_cgroup *memcg;
#endif
		} lru_gen;
#endif /* CONFIG_LRU_GEN_WALKS_MMU */
	} __randomize_layout;

	/*
	 * The mm_cpumask needs to be at the end of mm_struct, because it
	 * is dynamically sized based on nr_cpu_ids.
	 */
	unsigned long cpu_bitmap[];
};

#define MM_MT_FLAGS	(MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
			 MT_FLAGS_USE_RCU)
extern struct mm_struct init_mm;

/* Pointer magic because the dynamic array size confuses some compilers. */
static inline void mm_init_cpumask(struct mm_struct *mm)
{
	unsigned long cpu_bitmap = (unsigned long)mm;

	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
	cpumask_clear((struct cpumask *)cpu_bitmap);
}

/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
{
	return (struct cpumask *)&mm->cpu_bitmap;
}

#ifdef CONFIG_LRU_GEN

struct lru_gen_mm_list {
	/* mm_struct list for page table walkers */
	struct list_head fifo;
	/* protects the list above */
	spinlock_t lock;
};

#endif /* CONFIG_LRU_GEN */

#ifdef CONFIG_LRU_GEN_WALKS_MMU

void lru_gen_add_mm(struct mm_struct *mm);
void lru_gen_del_mm(struct mm_struct *mm);
void lru_gen_migrate_mm(struct mm_struct *mm);

static inline void lru_gen_init_mm(struct mm_struct *mm)
{
	INIT_LIST_HEAD(&mm->lru_gen.list);
	mm->lru_gen.bitmap = 0;
#ifdef CONFIG_MEMCG
	mm->lru_gen.memcg = NULL;
#endif
}

static inline void lru_gen_use_mm(struct mm_struct *mm)
{
	/*
	 * When the bitmap is set, page reclaim knows this mm_struct has been
	 * used since the last time it cleared the bitmap. So it might be worth
	 * walking the page tables of this mm_struct to clear the accessed bit.
	 */
	WRITE_ONCE(mm->lru_gen.bitmap, -1);
}

#else /* !CONFIG_LRU_GEN_WALKS_MMU */

static inline void lru_gen_add_mm(struct mm_struct *mm)
{
}

static inline void lru_gen_del_mm(struct mm_struct *mm)
{
}

static inline void lru_gen_migrate_mm(struct mm_struct *mm)
{
}

static inline void lru_gen_init_mm(struct mm_struct *mm)
{
}

static inline void lru_gen_use_mm(struct mm_struct *mm)
{
}

#endif /* CONFIG_LRU_GEN_WALKS_MMU */

struct vma_iterator {
	struct ma_state mas;
};

#define VMA_ITERATOR(name, __mm, __addr)				\
	struct vma_iterator name = {					\
		.mas = {						\
			.tree = &(__mm)->mm_mt,				\
			.index = __addr,				\
			.node = NULL,					\
			.status = ma_start,				\
		},							\
	}

static inline void vma_iter_init(struct vma_iterator *vmi,
		struct mm_struct *mm, unsigned long addr)
{
	mas_init(&vmi->mas, &mm->mm_mt, addr);
}

#ifdef CONFIG_SCHED_MM_CID

enum mm_cid_state {
	MM_CID_UNSET = -1U,		/* Unset state has lazy_put flag set. */
	MM_CID_LAZY_PUT = (1U << 31),
};

static inline bool mm_cid_is_unset(int cid)
{
	return cid == MM_CID_UNSET;
}

static inline bool mm_cid_is_lazy_put(int cid)
{
	return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
}

static inline bool mm_cid_is_valid(int cid)
{
	return !(cid & MM_CID_LAZY_PUT);
}

static inline int mm_cid_set_lazy_put(int cid)
{
	return cid | MM_CID_LAZY_PUT;
}

static inline int mm_cid_clear_lazy_put(int cid)
{
	return cid & ~MM_CID_LAZY_PUT;
}

/* Accessor for struct mm_struct's cidmask. */
static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
{
	unsigned long cid_bitmap = (unsigned long)mm;

	cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
	/* Skip cpu_bitmap */
	cid_bitmap += cpumask_size();
	return (struct cpumask *)cid_bitmap;
}

static inline void mm_init_cid(struct mm_struct *mm)
{
	int i;

	for_each_possible_cpu(i) {
		struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);

		pcpu_cid->cid = MM_CID_UNSET;
		pcpu_cid->time = 0;
	}
	cpumask_clear(mm_cidmask(mm));
}

static inline int mm_alloc_cid_noprof(struct mm_struct *mm)
{
	mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid);
	if (!mm->pcpu_cid)
		return -ENOMEM;
	mm_init_cid(mm);
	return 0;
}
#define mm_alloc_cid(...)	alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__))

static inline void mm_destroy_cid(struct mm_struct *mm)
{
	free_percpu(mm->pcpu_cid);
	mm->pcpu_cid = NULL;
}

static inline unsigned int mm_cid_size(void)
{
	return cpumask_size();
}
#else /* CONFIG_SCHED_MM_CID */
static inline void mm_init_cid(struct mm_struct *mm) { }
static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; }
static inline void mm_destroy_cid(struct mm_struct *mm) { }
static inline unsigned int mm_cid_size(void)
{
	return 0;
}
#endif /* CONFIG_SCHED_MM_CID */

struct mmu_gather;
extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
extern void tlb_finish_mmu(struct mmu_gather *tlb);

struct vm_fault;

/**
 * typedef vm_fault_t - Return type for page fault handlers.
 *
 * Page fault handlers return a bitmask of %VM_FAULT values.
 */
typedef __bitwise unsigned int vm_fault_t;

/**
 * enum vm_fault_reason - Page fault handlers return a bitmask of
 * these values to tell the core VM what happened when handling the
 * fault. Used to decide whether a process gets delivered SIGBUS or
 * just gets major/minor fault counters bumped up.
 *
 * @VM_FAULT_OOM:		Out Of Memory
 * @VM_FAULT_SIGBUS:		Bad access
 * @VM_FAULT_MAJOR:		Page read from storage
 * @VM_FAULT_HWPOISON:		Hit poisoned small page
 * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
 *				in upper bits
 * @VM_FAULT_SIGSEGV:		segmentation fault
 * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
 * @VM_FAULT_LOCKED:		->fault locked the returned page
 * @VM_FAULT_RETRY:		->fault blocked, must retry
 * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
 * @VM_FAULT_DONE_COW:		->fault has fully handled COW
 * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
 *				fsync() to complete (for synchronous page faults
 *				in DAX)
 * @VM_FAULT_COMPLETED:		->fault completed, meanwhile mmap lock released
 * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
 *
 */
enum vm_fault_reason {
	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
	VM_FAULT_COMPLETED      = (__force vm_fault_t)0x004000,
	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
};

/* Encode hstate index for a hwpoisoned large page */
#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)

#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)

#define VM_FAULT_RESULT_TRACE \
	{ VM_FAULT_OOM,                 "OOM" },	\
	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
	{ VM_FAULT_MAJOR,               "MAJOR" },	\
	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
	{ VM_FAULT_LOCKED,              "LOCKED" },	\
	{ VM_FAULT_RETRY,               "RETRY" },	\
	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" },	\
	{ VM_FAULT_COMPLETED,           "COMPLETED" }

struct vm_special_mapping {
	const char *name;	/* The name, e.g. "[vdso]". */

	/*
	 * If .fault is not provided, this points to a
	 * NULL-terminated array of pages that back the special mapping.
	 *
	 * This must not be NULL unless .fault is provided.
	 */
	struct page **pages;

	/*
	 * If non-NULL, then this is called to resolve page faults
	 * on the special mapping.  If used, .pages is not checked.
	 */
	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
				struct vm_area_struct *vma,
				struct vm_fault *vmf);

	int (*mremap)(const struct vm_special_mapping *sm,
		     struct vm_area_struct *new_vma);
};

enum tlb_flush_reason {
	TLB_FLUSH_ON_TASK_SWITCH,
	TLB_REMOTE_SHOOTDOWN,
	TLB_LOCAL_SHOOTDOWN,
	TLB_LOCAL_MM_SHOOTDOWN,
	TLB_REMOTE_SEND_IPI,
	NR_TLB_FLUSH_REASONS,
};

/**
 * enum fault_flag - Fault flag definitions.
 * @FAULT_FLAG_WRITE: Fault was a write fault.
 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
 * @FAULT_FLAG_TRIED: The fault has been tried once.
 * @FAULT_FLAG_USER: The fault originated in userspace.
 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
 *                      COW mapping, making sure that an exclusive anon page is
 *                      mapped after the fault.
 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
 *                        We should only access orig_pte if this flag set.
 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
 *
 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
 * whether we would allow page faults to retry by specifying these two
 * fault flags correctly.  Currently there can be three legal combinations:
 *
 * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
 *                              this is the first try
 *
 * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
 *                              we've already tried at least once
 *
 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
 *
 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
 * be used.  Note that page faults can be allowed to retry for multiple times,
 * in which case we'll have an initial fault with flags (a) then later on
 * continuous faults with flags (b).  We should always try to detect pending
 * signals before a retry to make sure the continuous page faults can still be
 * interrupted if necessary.
 *
 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
 * applied to mappings that are not COW mappings.
 */
enum fault_flag {
	FAULT_FLAG_WRITE =		1 << 0,
	FAULT_FLAG_MKWRITE =		1 << 1,
	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
	FAULT_FLAG_KILLABLE =		1 << 4,
	FAULT_FLAG_TRIED = 		1 << 5,
	FAULT_FLAG_USER =		1 << 6,
	FAULT_FLAG_REMOTE =		1 << 7,
	FAULT_FLAG_INSTRUCTION =	1 << 8,
	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
	FAULT_FLAG_UNSHARE =		1 << 10,
	FAULT_FLAG_ORIG_PTE_VALID =	1 << 11,
	FAULT_FLAG_VMA_LOCK =		1 << 12,
};

typedef unsigned int __bitwise zap_flags_t;

/* Flags for clear_young_dirty_ptes(). */
typedef int __bitwise cydp_t;

/* Clear the access bit */
#define CYDP_CLEAR_YOUNG		((__force cydp_t)BIT(0))

/* Clear the dirty bit */
#define CYDP_CLEAR_DIRTY		((__force cydp_t)BIT(1))

/*
 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
 * other. Here is what they mean, and how to use them:
 *
 *
 * FIXME: For pages which are part of a filesystem, mappings are subject to the
 * lifetime enforced by the filesystem and we need guarantees that longterm
 * users like RDMA and V4L2 only establish mappings which coordinate usage with
 * the filesystem.  Ideas for this coordination include revoking the longterm
 * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
 * added after the problem with filesystems was found FS DAX VMAs are
 * specifically failed.  Filesystem pages are still subject to bugs and use of
 * FOLL_LONGTERM should be avoided on those pages.
 *
 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
 * that region.  And so, CMA attempts to migrate the page before pinning, when
 * FOLL_LONGTERM is specified.
 *
 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
 * but an additional pin counting system) will be invoked. This is intended for
 * anything that gets a page reference and then touches page data (for example,
 * Direct IO). This lets the filesystem know that some non-file-system entity is
 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
 * a call to unpin_user_page().
 *
 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
 * and separate refcounting mechanisms, however, and that means that each has
 * its own acquire and release mechanisms:
 *
 *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
 *
 *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
 *
 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
 * calls applied to them, and that's perfectly OK. This is a constraint on the
 * callers, not on the pages.)
 *
 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
 * directly by the caller. That's in order to help avoid mismatches when
 * releasing pages: get_user_pages*() pages must be released via put_page(),
 * while pin_user_pages*() pages must be released via unpin_user_page().
 *
 * Please see Documentation/core-api/pin_user_pages.rst for more information.
 */

enum {
	/* check pte is writable */
	FOLL_WRITE = 1 << 0,
	/* do get_page on page */
	FOLL_GET = 1 << 1,
	/* give error on hole if it would be zero */
	FOLL_DUMP = 1 << 2,
	/* get_user_pages read/write w/o permission */
	FOLL_FORCE = 1 << 3,
	/*
	 * if a disk transfer is needed, start the IO and return without waiting
	 * upon it
	 */
	FOLL_NOWAIT = 1 << 4,
	/* do not fault in pages */
	FOLL_NOFAULT = 1 << 5,
	/* check page is hwpoisoned */
	FOLL_HWPOISON = 1 << 6,
	/* don't do file mappings */
	FOLL_ANON = 1 << 7,
	/*
	 * FOLL_LONGTERM indicates that the page will be held for an indefinite
	 * time period _often_ under userspace control.  This is in contrast to
	 * iov_iter_get_pages(), whose usages are transient.
	 */
	FOLL_LONGTERM = 1 << 8,
	/* split huge pmd before returning */
	FOLL_SPLIT_PMD = 1 << 9,
	/* allow returning PCI P2PDMA pages */
	FOLL_PCI_P2PDMA = 1 << 10,
	/* allow interrupts from generic signals */
	FOLL_INTERRUPTIBLE = 1 << 11,
	/*
	 * Always honor (trigger) NUMA hinting faults.
	 *
	 * FOLL_WRITE implicitly honors NUMA hinting faults because a
	 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
	 * apply). get_user_pages_fast_only() always implicitly honors NUMA
	 * hinting faults.
	 */
	FOLL_HONOR_NUMA_FAULT = 1 << 12,

	/* See also internal only FOLL flags in mm/internal.h */
};

#endif /* _LINUX_MM_TYPES_H */