aboutsummaryrefslogtreecommitdiffstats
path: root/rust/kernel/types.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/types.rs')
-rw-r--r--rust/kernel/types.rs135
1 files changed, 135 insertions, 0 deletions
diff --git a/rust/kernel/types.rs b/rust/kernel/types.rs
index 9d0fdbc558433..29db59d6119a9 100644
--- a/rust/kernel/types.rs
+++ b/rust/kernel/types.rs
@@ -2,11 +2,14 @@
//! Kernel types.
+use crate::init::{self, PinInit};
use alloc::boxed::Box;
use core::{
cell::UnsafeCell,
+ marker::PhantomData,
mem::MaybeUninit,
ops::{Deref, DerefMut},
+ ptr::NonNull,
};
/// Used to transfer ownership to and from foreign (non-Rust) languages.
@@ -234,10 +237,142 @@ impl<T> Opaque<T> {
Self(MaybeUninit::uninit())
}
+ /// Creates a pin-initializer from the given initializer closure.
+ ///
+ /// The returned initializer calls the given closure with the pointer to the inner `T` of this
+ /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
+ ///
+ /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
+ /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
+ /// to verify at that point that the inner value is valid.
+ pub fn ffi_init(init_func: impl FnOnce(*mut T)) -> impl PinInit<Self> {
+ // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
+ // initialize the `T`.
+ unsafe {
+ init::pin_init_from_closure::<_, ::core::convert::Infallible>(move |slot| {
+ init_func(Self::raw_get(slot));
+ Ok(())
+ })
+ }
+ }
+
/// Returns a raw pointer to the opaque data.
pub fn get(&self) -> *mut T {
UnsafeCell::raw_get(self.0.as_ptr())
}
+
+ /// Gets the value behind `this`.
+ ///
+ /// This function is useful to get access to the value without creating intermediate
+ /// references.
+ pub const fn raw_get(this: *const Self) -> *mut T {
+ UnsafeCell::raw_get(this.cast::<UnsafeCell<T>>())
+ }
+}
+
+/// Types that are _always_ reference counted.
+///
+/// It allows such types to define their own custom ref increment and decrement functions.
+/// Additionally, it allows users to convert from a shared reference `&T` to an owned reference
+/// [`ARef<T>`].
+///
+/// This is usually implemented by wrappers to existing structures on the C side of the code. For
+/// Rust code, the recommendation is to use [`Arc`](crate::sync::Arc) to create reference-counted
+/// instances of a type.
+///
+/// # Safety
+///
+/// Implementers must ensure that increments to the reference count keep the object alive in memory
+/// at least until matching decrements are performed.
+///
+/// Implementers must also ensure that all instances are reference-counted. (Otherwise they
+/// won't be able to honour the requirement that [`AlwaysRefCounted::inc_ref`] keep the object
+/// alive.)
+pub unsafe trait AlwaysRefCounted {
+ /// Increments the reference count on the object.
+ fn inc_ref(&self);
+
+ /// Decrements the reference count on the object.
+ ///
+ /// Frees the object when the count reaches zero.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that there was a previous matching increment to the reference count,
+ /// and that the object is no longer used after its reference count is decremented (as it may
+ /// result in the object being freed), unless the caller owns another increment on the refcount
+ /// (e.g., it calls [`AlwaysRefCounted::inc_ref`] twice, then calls
+ /// [`AlwaysRefCounted::dec_ref`] once).
+ unsafe fn dec_ref(obj: NonNull<Self>);
+}
+
+/// An owned reference to an always-reference-counted object.
+///
+/// The object's reference count is automatically decremented when an instance of [`ARef`] is
+/// dropped. It is also automatically incremented when a new instance is created via
+/// [`ARef::clone`].
+///
+/// # Invariants
+///
+/// The pointer stored in `ptr` is non-null and valid for the lifetime of the [`ARef`] instance. In
+/// particular, the [`ARef`] instance owns an increment on the underlying object's reference count.
+pub struct ARef<T: AlwaysRefCounted> {
+ ptr: NonNull<T>,
+ _p: PhantomData<T>,
+}
+
+impl<T: AlwaysRefCounted> ARef<T> {
+ /// Creates a new instance of [`ARef`].
+ ///
+ /// It takes over an increment of the reference count on the underlying object.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that the reference count was incremented at least once, and that they
+ /// are properly relinquishing one increment. That is, if there is only one increment, callers
+ /// must not use the underlying object anymore -- it is only safe to do so via the newly
+ /// created [`ARef`].
+ pub unsafe fn from_raw(ptr: NonNull<T>) -> Self {
+ // INVARIANT: The safety requirements guarantee that the new instance now owns the
+ // increment on the refcount.
+ Self {
+ ptr,
+ _p: PhantomData,
+ }
+ }
+}
+
+impl<T: AlwaysRefCounted> Clone for ARef<T> {
+ fn clone(&self) -> Self {
+ self.inc_ref();
+ // SAFETY: We just incremented the refcount above.
+ unsafe { Self::from_raw(self.ptr) }
+ }
+}
+
+impl<T: AlwaysRefCounted> Deref for ARef<T> {
+ type Target = T;
+
+ fn deref(&self) -> &Self::Target {
+ // SAFETY: The type invariants guarantee that the object is valid.
+ unsafe { self.ptr.as_ref() }
+ }
+}
+
+impl<T: AlwaysRefCounted> From<&T> for ARef<T> {
+ fn from(b: &T) -> Self {
+ b.inc_ref();
+ // SAFETY: We just incremented the refcount above.
+ unsafe { Self::from_raw(NonNull::from(b)) }
+ }
+}
+
+impl<T: AlwaysRefCounted> Drop for ARef<T> {
+ fn drop(&mut self) {
+ // SAFETY: The type invariants guarantee that the `ARef` owns the reference we're about to
+ // decrement.
+ unsafe { T::dec_ref(self.ptr) };
+ }
}
/// A sum type that always holds either a value of type `L` or `R`.