aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/pid.c
blob: 6ed44f56ca456f91d2e1a941043a8628091d8f98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
 * Generic pidhash and scalable, time-bounded PID allocator
 *
 * (C) 2002 William Irwin, IBM
 * (C) 2002 Ingo Molnar, Red Hat
 *
 * pid-structures are backing objects for tasks sharing a given ID to chain
 * against. There is very little to them aside from hashing them and
 * parking tasks using given ID's on a list.
 *
 * The hash is always changed with the tasklist_lock write-acquired,
 * and the hash is only accessed with the tasklist_lock at least
 * read-acquired, so there's no additional SMP locking needed here.
 *
 * We have a list of bitmap pages, which bitmaps represent the PID space.
 * Allocating and freeing PIDs is completely lockless. The worst-case
 * allocation scenario when all but one out of 1 million PIDs possible are
 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/hash.h>

#define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
static struct list_head *pid_hash[PIDTYPE_MAX];
static int pidhash_shift;

int pid_max = PID_MAX_DEFAULT;
int last_pid;

#define RESERVED_PIDS		300

#define PIDMAP_ENTRIES		(PID_MAX_LIMIT/PAGE_SIZE/8)
#define BITS_PER_PAGE		(PAGE_SIZE*8)
#define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)

/*
 * PID-map pages start out as NULL, they get allocated upon
 * first use and are never deallocated. This way a low pid_max
 * value does not cause lots of bitmaps to be allocated, but
 * the scheme scales to up to 4 million PIDs, runtime.
 */
typedef struct pidmap {
	atomic_t nr_free;
	void *page;
} pidmap_t;

static pidmap_t pidmap_array[PIDMAP_ENTRIES] =
	 { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } };

static pidmap_t *map_limit = pidmap_array + PIDMAP_ENTRIES;

static spinlock_t pidmap_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;

fastcall void free_pidmap(int pid)
{
	pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE;
	int offset = pid & BITS_PER_PAGE_MASK;

	clear_bit(offset, map->page);
	atomic_inc(&map->nr_free);
}

/*
 * Here we search for the next map that has free bits left.
 * Normally the next map has free PIDs.
 */
static inline pidmap_t *next_free_map(pidmap_t *map, int *max_steps)
{
	while (--*max_steps) {
		if (++map == map_limit)
			map = pidmap_array;
		if (unlikely(!map->page)) {
			unsigned long page = get_zeroed_page(GFP_KERNEL);
			/*
			 * Free the page if someone raced with us
			 * installing it:
			 */
			spin_lock(&pidmap_lock);
			if (map->page)
				free_page(page);
			else
				map->page = (void *)page;
			spin_unlock(&pidmap_lock);

			if (!map->page)
				break;
		}
		if (atomic_read(&map->nr_free))
			return map;
	}
	return NULL;
}

int alloc_pidmap(void)
{
	int pid, offset, max_steps = PIDMAP_ENTRIES + 1;
	pidmap_t *map;

	pid = last_pid + 1;
	if (pid >= pid_max)
		pid = RESERVED_PIDS;

	offset = pid & BITS_PER_PAGE_MASK;
	map = pidmap_array + pid / BITS_PER_PAGE;

	if (likely(map->page && !test_and_set_bit(offset, map->page))) {
		/*
		 * There is a small window for last_pid updates to race,
		 * but in that case the next allocation will go into the
		 * slowpath and that fixes things up.
		 */
return_pid:
		atomic_dec(&map->nr_free);
		last_pid = pid;
		return pid;
	}
	
	if (!offset || !atomic_read(&map->nr_free)) {
next_map:
		map = next_free_map(map, &max_steps);
		if (!map)
			goto failure;
		offset = 0;
	}
	/*
	 * Find the next zero bit:
	 */
scan_more:
	offset = find_next_zero_bit(map->page, BITS_PER_PAGE, offset);
	if (offset >= BITS_PER_PAGE)
		goto next_map;
	if (test_and_set_bit(offset, map->page))
		goto scan_more;

	/* we got the PID: */
	pid = (map - pidmap_array) * BITS_PER_PAGE + offset;
	goto return_pid;

failure:
	return -1;
}

fastcall struct pid *find_pid(enum pid_type type, int nr)
{
	struct list_head *elem, *bucket = &pid_hash[type][pid_hashfn(nr)];
	struct pid *pid;

	__list_for_each(elem, bucket) {
		pid = list_entry(elem, struct pid, hash_chain);
		if (pid->nr == nr)
			return pid;
	}
	return NULL;
}

void fastcall link_pid(task_t *task, struct pid_link *link, struct pid *pid)
{
	atomic_inc(&pid->count);
	list_add_tail(&link->pid_chain, &pid->task_list);
	link->pidptr = pid;
}

int fastcall attach_pid(task_t *task, enum pid_type type, int nr)
{
	struct pid *pid = find_pid(type, nr);

	if (pid)
		atomic_inc(&pid->count);
	else {
		pid = &task->pids[type].pid;
		pid->nr = nr;
		atomic_set(&pid->count, 1);
		INIT_LIST_HEAD(&pid->task_list);
		pid->task = task;
		get_task_struct(task);
		list_add(&pid->hash_chain, &pid_hash[type][pid_hashfn(nr)]);
	}
	list_add_tail(&task->pids[type].pid_chain, &pid->task_list);
	task->pids[type].pidptr = pid;

	return 0;
}

static inline int __detach_pid(task_t *task, enum pid_type type)
{
	struct pid_link *link = task->pids + type;
	struct pid *pid = link->pidptr;
	int nr;

	list_del(&link->pid_chain);
	if (!atomic_dec_and_test(&pid->count))
		return 0;

	nr = pid->nr;
	list_del(&pid->hash_chain);
	put_task_struct(pid->task);

	return nr;
}

static void _detach_pid(task_t *task, enum pid_type type)
{
	__detach_pid(task, type);
}

void fastcall detach_pid(task_t *task, enum pid_type type)
{
	int nr = __detach_pid(task, type);

	if (!nr)
		return;

	for (type = 0; type < PIDTYPE_MAX; ++type)
		if (find_pid(type, nr))
			return;
	free_pidmap(nr);
}

task_t *find_task_by_pid(int nr)
{
	struct pid *pid = find_pid(PIDTYPE_PID, nr);

	if (!pid)
		return NULL;
	return pid_task(pid->task_list.next, PIDTYPE_PID);
}

EXPORT_SYMBOL(find_task_by_pid);

/*
 * This function switches the PIDs if a non-leader thread calls
 * sys_execve() - this must be done without releasing the PID.
 * (which a detach_pid() would eventually do.)
 */
void switch_exec_pids(task_t *leader, task_t *thread)
{
	_detach_pid(leader, PIDTYPE_PID);
	_detach_pid(leader, PIDTYPE_TGID);
	_detach_pid(leader, PIDTYPE_PGID);
	_detach_pid(leader, PIDTYPE_SID);

	_detach_pid(thread, PIDTYPE_PID);
	_detach_pid(thread, PIDTYPE_TGID);

	leader->pid = leader->tgid = thread->pid;
	thread->pid = thread->tgid;

	attach_pid(thread, PIDTYPE_PID, thread->pid);
	attach_pid(thread, PIDTYPE_TGID, thread->tgid);
	attach_pid(thread, PIDTYPE_PGID, thread->signal->pgrp);
	attach_pid(thread, PIDTYPE_SID, thread->signal->session);
	list_add_tail(&thread->tasks, &init_task.tasks);

	attach_pid(leader, PIDTYPE_PID, leader->pid);
	attach_pid(leader, PIDTYPE_TGID, leader->tgid);
	attach_pid(leader, PIDTYPE_PGID, leader->signal->pgrp);
	attach_pid(leader, PIDTYPE_SID, leader->signal->session);
}

/*
 * The pid hash table is scaled according to the amount of memory in the
 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
 * more.
 */
void __init pidhash_init(void)
{
	int i, j, pidhash_size;
	unsigned long megabytes = max_pfn >> (20 - PAGE_SHIFT);

	pidhash_shift = max(4, fls(megabytes * 4));
	pidhash_shift = min(12, pidhash_shift);
	pidhash_size = 1 << pidhash_shift;

	printk("PID hash table entries: %d (order %d: %Zd bytes)\n",
		pidhash_size, pidhash_shift,
		pidhash_size * sizeof(struct list_head));

	for (i = 0; i < PIDTYPE_MAX; i++) {
		pid_hash[i] = alloc_bootmem(pidhash_size *
					sizeof(struct list_head));
		if (!pid_hash[i])
			panic("Could not alloc pidhash!\n");
		for (j = 0; j < pidhash_size; j++)
			INIT_LIST_HEAD(&pid_hash[i][j]);
	}
}

void __init pidmap_init(void)
{
	int i;

	pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL);
	set_bit(0, pidmap_array->page);
	atomic_dec(&pidmap_array->nr_free);

	/*
	 * Allocate PID 0, and hash it via all PID types:
	 */

	for (i = 0; i < PIDTYPE_MAX; i++)
		attach_pid(current, i, 0);
}