aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2004-06-17 19:24:59 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2004-06-17 19:24:59 -0700
commitb345f31256c9595615b011a223837b01155b14a1 (patch)
tree8d5e1b97e8e24602e3cbbcda3ae4bbdebe0f6593 /Documentation
parent6a3e50e54081c9017a9d842a48a5732804915378 (diff)
parent412523e9949a2b48f5b74f19ebe48bbde8726bf5 (diff)
downloadhistory-b345f31256c9595615b011a223837b01155b14a1.tar.gz
Merge duplicate selinux network hooks
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/binfmt_misc.txt30
-rw-r--r--Documentation/device-mapper/dm-io.txt75
-rw-r--r--Documentation/device-mapper/kcopyd.txt47
-rw-r--r--Documentation/device-mapper/linear.txt61
-rw-r--r--Documentation/device-mapper/striped.txt58
-rw-r--r--Documentation/device-mapper/zero.txt37
-rw-r--r--Documentation/fb/sisfb.txt158
-rw-r--r--Documentation/filesystems/proc.txt2
-rw-r--r--Documentation/hpet.txt298
-rw-r--r--Documentation/ioctl-number.txt2
10 files changed, 763 insertions, 5 deletions
diff --git a/Documentation/binfmt_misc.txt b/Documentation/binfmt_misc.txt
index 3de8edbe66d3dc..d097f09ee15ad2 100644
--- a/Documentation/binfmt_misc.txt
+++ b/Documentation/binfmt_misc.txt
@@ -15,7 +15,7 @@ First you must mount binfmt_misc:
mount binfmt_misc -t binfmt_misc /proc/sys/fs/binfmt_misc
To actually register a new binary type, you have to set up a string looking like
-:name:type:offset:magic:mask:interpreter: (where you can choose the ':' upon
+:name:type:offset:magic:mask:interpreter:flags (where you can choose the ':' upon
your needs) and echo it to /proc/sys/fs/binfmt_misc/register.
Here is what the fields mean:
- 'name' is an identifier string. A new /proc file will be created with this
@@ -34,6 +34,28 @@ Here is what the fields mean:
The mask is anded with the byte sequence of the file.
- 'interpreter' is the program that should be invoked with the binary as first
argument (specify the full path)
+ - 'flags' is an optional field that controls several aspects of the invocation
+ of the interpreter. It is a string of capital letters, each controls a certain
+ aspect. The following flags are supported -
+ 'P' - preserve-argv[0]. Legacy behavior of binfmt_misc is to overwrite the
+ original argv[0] with the full path to the binary. When this flag is
+ included, binfmt_misc will add an argument to the argument vector for
+ this purpose, thus preserving the original argv[0].
+ 'O' - open-binary. Legacy behavior of binfmt_misc is to pass the full path
+ of the binary to the interpreter as an argument. When this flag is
+ included, binfmt_misc will open the file for reading and pass its
+ descriptor as an argument, instead of the full path, thus allowing
+ the interpreter to execute non-readable binaries. This feature should
+ be used with care - the interpreter has to be trusted not to emit
+ the contents of the non-readable binary.
+ 'C' - credentials. Currently, the behavior of binfmt_misc is to calculate
+ the credentials and security token of the new process according to
+ the interpreter. When this flag is included, these attributes are
+ calculated according to the binary. It also implies the 'O' flag.
+ This feature should be used with care as the interpreter
+ will run with root permissions when a setuid binary owned by root
+ is run with binfmt_misc.
+
There are some restrictions:
- the whole register string may not exceed 255 characters
@@ -83,9 +105,9 @@ If you want to pass special arguments to your interpreter, you can
write a wrapper script for it. See Documentation/java.txt for an
example.
-Your interpreter should NOT look in the PATH for the filename; the
-kernel passes it the full filename to use. Using the PATH can cause
-unexpected behaviour and be a security hazard.
+Your interpreter should NOT look in the PATH for the filename; the kernel
+passes it the full filename (or the file descriptor) to use. Using $PATH can
+cause unexpected behaviour and can be a security hazard.
There is a web page about binfmt_misc at
diff --git a/Documentation/device-mapper/dm-io.txt b/Documentation/device-mapper/dm-io.txt
new file mode 100644
index 00000000000000..3b5d9a52cdcf0f
--- /dev/null
+++ b/Documentation/device-mapper/dm-io.txt
@@ -0,0 +1,75 @@
+dm-io
+=====
+
+Dm-io provides synchronous and asynchronous I/O services. There are three
+types of I/O services available, and each type has a sync and an async
+version.
+
+The user must set up an io_region structure to describe the desired location
+of the I/O. Each io_region indicates a block-device along with the starting
+sector and size of the region.
+
+ struct io_region {
+ struct block_device *bdev;
+ sector_t sector;
+ sector_t count;
+ };
+
+Dm-io can read from one io_region or write to one or more io_regions. Writes
+to multiple regions are specified by an array of io_region structures.
+
+The first I/O service type takes a list of memory pages as the data buffer for
+the I/O, along with an offset into the first page.
+
+ struct page_list {
+ struct page_list *next;
+ struct page *page;
+ };
+
+ int dm_io_sync(unsigned int num_regions, struct io_region *where, int rw,
+ struct page_list *pl, unsigned int offset,
+ unsigned long *error_bits);
+ int dm_io_async(unsigned int num_regions, struct io_region *where, int rw,
+ struct page_list *pl, unsigned int offset,
+ io_notify_fn fn, void *context);
+
+The second I/O service type takes an array of bio vectors as the data buffer
+for the I/O. This service can be handy if the caller has a pre-assembled bio,
+but wants to direct different portions of the bio to different devices.
+
+ int dm_io_sync_bvec(unsigned int num_regions, struct io_region *where,
+ int rw, struct bio_vec *bvec,
+ unsigned long *error_bits);
+ int dm_io_async_bvec(unsigned int num_regions, struct io_region *where,
+ int rw, struct bio_vec *bvec,
+ io_notify_fn fn, void *context);
+
+The third I/O service type takes a pointer to a vmalloc'd memory buffer as the
+data buffer for the I/O. This service can be handy if the caller needs to do
+I/O to a large region but doesn't want to allocate a large number of individual
+memory pages.
+
+ int dm_io_sync_vm(unsigned int num_regions, struct io_region *where, int rw,
+ void *data, unsigned long *error_bits);
+ int dm_io_async_vm(unsigned int num_regions, struct io_region *where, int rw,
+ void *data, io_notify_fn fn, void *context);
+
+Callers of the asynchronous I/O services must include the name of a completion
+callback routine and a pointer to some context data for the I/O.
+
+ typedef void (*io_notify_fn)(unsigned long error, void *context);
+
+The "error" parameter in this callback, as well as the "*error" parameter in
+all of the synchronous versions, is a bitset (instead of a simple error value).
+In the case of an write-I/O to multiple regions, this bitset allows dm-io to
+indicate success or failure on each individual region.
+
+Before using any of the dm-io services, the user should call dm_io_get()
+and specify the number of pages they expect to perform I/O on concurrently.
+Dm-io will attempt to resize its mempool to make sure enough pages are
+always available in order to avoid unnecessary waiting while performing I/O.
+
+When the user is finished using the dm-io services, they should call
+dm_io_put() and specify the same number of pages that were given on the
+dm_io_get() call.
+
diff --git a/Documentation/device-mapper/kcopyd.txt b/Documentation/device-mapper/kcopyd.txt
new file mode 100644
index 00000000000000..820382c4cecfb4
--- /dev/null
+++ b/Documentation/device-mapper/kcopyd.txt
@@ -0,0 +1,47 @@
+kcopyd
+======
+
+Kcopyd provides the ability to copy a range of sectors from one block-device
+to one or more other block-devices, with an asynchronous completion
+notification. It is used by dm-snapshot and dm-mirror.
+
+Users of kcopyd must first create a client and indicate how many memory pages
+to set aside for their copy jobs. This is done with a call to
+kcopyd_client_create().
+
+ int kcopyd_client_create(unsigned int num_pages,
+ struct kcopyd_client **result);
+
+To start a copy job, the user must set up io_region structures to describe
+the source and destinations of the copy. Each io_region indicates a
+block-device along with the starting sector and size of the region. The source
+of the copy is given as one io_region structure, and the destinations of the
+copy are given as an array of io_region structures.
+
+ struct io_region {
+ struct block_device *bdev;
+ sector_t sector;
+ sector_t count;
+ };
+
+To start the copy, the user calls kcopyd_copy(), passing in the client
+pointer, pointers to the source and destination io_regions, the name of a
+completion callback routine, and a pointer to some context data for the copy.
+
+ int kcopyd_copy(struct kcopyd_client *kc, struct io_region *from,
+ unsigned int num_dests, struct io_region *dests,
+ unsigned int flags, kcopyd_notify_fn fn, void *context);
+
+ typedef void (*kcopyd_notify_fn)(int read_err, unsigned int write_err,
+ void *context);
+
+When the copy completes, kcopyd will call the user's completion routine,
+passing back the user's context pointer. It will also indicate if a read or
+write error occurred during the copy.
+
+When a user is done with all their copy jobs, they should call
+kcopyd_client_destroy() to delete the kcopyd client, which will release the
+associated memory pages.
+
+ void kcopyd_client_destroy(struct kcopyd_client *kc);
+
diff --git a/Documentation/device-mapper/linear.txt b/Documentation/device-mapper/linear.txt
new file mode 100644
index 00000000000000..d5307d380a45d9
--- /dev/null
+++ b/Documentation/device-mapper/linear.txt
@@ -0,0 +1,61 @@
+dm-linear
+=========
+
+Device-Mapper's "linear" target maps a linear range of the Device-Mapper
+device onto a linear range of another device. This is the basic building
+block of logical volume managers.
+
+Parameters: <dev path> <offset>
+ <dev path>: Full pathname to the underlying block-device, or a
+ "major:minor" device-number.
+ <offset>: Starting sector within the device.
+
+
+Example scripts
+===============
+[[
+#!/bin/sh
+# Create an identity mapping for a device
+echo "0 `blockdev --getsize $1` linear $1 0" | dmsetup create identity
+]]
+
+
+[[
+#!/bin/sh
+# Join 2 devices together
+size1=`blockdev --getsize $1`
+size2=`blockdev --getsize $2`
+echo "0 $size1 linear $1 0
+$size1 $size2 linear $2 0" | dmsetup create joined
+]]
+
+
+[[
+#!/usr/bin/perl -w
+# Split a device into 4M chunks and then join them together in reverse order.
+
+my $name = "reverse";
+my $extent_size = 4 * 1024 * 2;
+my $dev = $ARGV[0];
+my $table = "";
+my $count = 0;
+
+if (!defined($dev)) {
+ die("Please specify a device.\n");
+}
+
+my $dev_size = `blockdev --getsize $dev`;
+my $extents = int($dev_size / $extent_size) -
+ (($dev_size % $extent_size) ? 1 : 0);
+
+while ($extents > 0) {
+ my $this_start = $count * $extent_size;
+ $extents--;
+ $count++;
+ my $this_offset = $extents * $extent_size;
+
+ $table .= "$this_start $extent_size linear $dev $this_offset\n";
+}
+
+`echo \"$table\" | dmsetup create $name`;
+]]
diff --git a/Documentation/device-mapper/striped.txt b/Documentation/device-mapper/striped.txt
new file mode 100644
index 00000000000000..f34d3236b9da83
--- /dev/null
+++ b/Documentation/device-mapper/striped.txt
@@ -0,0 +1,58 @@
+dm-stripe
+=========
+
+Device-Mapper's "striped" target is used to create a striped (i.e. RAID-0)
+device across one or more underlying devices. Data is written in "chunks",
+with consecutive chunks rotating among the underlying devices. This can
+potentially provide improved I/O throughput by utilizing several physical
+devices in parallel.
+
+Parameters: <num devs> <chunk size> [<dev path> <offset>]+
+ <num devs>: Number of underlying devices.
+ <chunk size>: Size of each chunk of data. Must be a power-of-2 and at
+ least as large as the system's PAGE_SIZE.
+ <dev path>: Full pathname to the underlying block-device, or a
+ "major:minor" device-number.
+ <offset>: Starting sector within the device.
+
+One or more underlying devices can be specified. The striped device size must
+be a multiple of the chunk size and a multiple of the number of underlying
+devices.
+
+
+Example scripts
+===============
+
+[[
+#!/usr/bin/perl -w
+# Create a striped device across any number of underlying devices. The device
+# will be called "stripe_dev" and have a chunk-size of 128k.
+
+my $chunk_size = 128 * 2;
+my $dev_name = "stripe_dev";
+my $num_devs = @ARGV;
+my @devs = @ARGV;
+my ($min_dev_size, $stripe_dev_size, $i);
+
+if (!$num_devs) {
+ die("Specify at least one device\n");
+}
+
+$min_dev_size = `blockdev --getsize $devs[0]`;
+for ($i = 1; $i < $num_devs; $i++) {
+ my $this_size = `blockdev --getsize $devs[$i]`;
+ $min_dev_size = ($min_dev_size < $this_size) ?
+ $min_dev_size : $this_size;
+}
+
+$stripe_dev_size = $min_dev_size * $num_devs;
+$stripe_dev_size -= $stripe_dev_size % ($chunk_size * $num_devs);
+
+$table = "0 $stripe_dev_size striped $num_devs $chunk_size";
+for ($i = 0; $i < $num_devs; $i++) {
+ $table .= " $devs[$i] 0";
+}
+
+`echo $table | dmsetup create $dev_name`;
+]]
+
diff --git a/Documentation/device-mapper/zero.txt b/Documentation/device-mapper/zero.txt
new file mode 100644
index 00000000000000..20fb38e7fa7e2f
--- /dev/null
+++ b/Documentation/device-mapper/zero.txt
@@ -0,0 +1,37 @@
+dm-zero
+=======
+
+Device-Mapper's "zero" target provides a block-device that always returns
+zero'd data on reads and silently drops writes. This is similar behavior to
+/dev/zero, but as a block-device instead of a character-device.
+
+Dm-zero has no target-specific parameters.
+
+One very interesting use of dm-zero is for creating "sparse" devices in
+conjunction with dm-snapshot. A sparse device reports a device-size larger
+than the amount of actual storage space available for that device. A user can
+write data anywhere within the sparse device and read it back like a normal
+device. Reads to previously unwritten areas will return a zero'd buffer. When
+enough data has been written to fill up the actual storage space, the sparse
+device is deactivated. This can be very useful for testing device and
+filesystem limitations.
+
+To create a sparse device, start by creating a dm-zero device that's the
+desired size of the sparse device. For this example, we'll assume a 10TB
+sparse device.
+
+TEN_TERABYTES=`expr 10 \* 1024 \* 1024 \* 1024 \* 2` # 10 TB in sectors
+echo "0 $TEN_TERABYTES zero" | dmsetup create zero1
+
+Then create a snapshot of the zero device, using any available block-device as
+the COW device. The size of the COW device will determine the amount of real
+space available to the sparse device. For this example, we'll assume /dev/sdb1
+is an available 10GB partition.
+
+echo "0 $TEN_TERABYTES snapshot /dev/mapper/zero1 /dev/sdb1 p 128" | \
+ dmsetup create sparse1
+
+This will create a 10TB sparse device called /dev/mapper/sparse1 that has
+10GB of actual storage space available. If more than 10GB of data is written
+to this device, it will start returning I/O errors.
+
diff --git a/Documentation/fb/sisfb.txt b/Documentation/fb/sisfb.txt
new file mode 100644
index 00000000000000..3b50c517a08d62
--- /dev/null
+++ b/Documentation/fb/sisfb.txt
@@ -0,0 +1,158 @@
+
+What is sisfb?
+==============
+
+sisfb is a framebuffer device driver for SiS (Silicon Integrated Systems)
+graphics chips. Supported are:
+
+- SiS 300 series: SiS 300/305, 540, 630(S), 730(S)
+- SiS 315 series: SiS 315/H/PRO, 55x, (M)65x, 740, (M)661(F/M)X, (M)741(GX)
+- SiS 330 series: SiS 330 ("Xabre"), (M)760
+
+
+Why do I need a framebuffer driver?
+===================================
+
+sisfb is eg. useful if you want a high-resolution text console. Besides that,
+sisfb is required to run DirectFB (which comes with an additional, dedicated
+driver for the 315 series).
+
+On the 300 series, sisfb on kernels older than 2.6.3 furthermore plays an
+important role in connection with DRM/DRI: Sisfb manages the memory heap
+used by DRM/DRI for 3D texture and other data. This memory management is
+required for using DRI/DRM.
+
+Kernels >= around 2.6.3 do not need sisfb any longer for DRI/DRM memory
+management. The SiS DRM driver has been updated and features a memory manager
+of its own (which will be used if sisfb is not compiled). So unless you want
+a graphical console, you don't need sisfb on kernels >=2.6.3.
+
+Sidenote: Since this seems to be a commonly made mistake: sisfb and vesafb
+cannot be active at the same time! Do only select one of them in your kernel
+configuration.
+
+
+How are parameters passed to sisfb?
+===================================
+
+Well, it depends: If compiled statically into the kernel, use lilo's append
+statement to add the parameters to the kernel command line. Please see lilo's
+(or GRUB's) documentation for more information. If sisfb is a kernel module,
+parameters are given with the modprobe (or insmod) command.
+
+Example for sisfb as part of the static kernel: Add the following line to your
+lilo.conf:
+
+ append="video=sisfb:mode:1024x768x16,mem:12288,rate:75"
+
+Example for sisfb as a module: Start sisfb by typing
+
+ modprobe sisfb mode=1024x768x16 rate=75 mem=12288
+
+A common mistake is that folks use a wrong parameter format when using the
+driver compiled into the kernel. Please note: If compiled into the kernel,
+the parameter format is video=sisfb:mode:none or video=sisfb:mode:1024x768x16
+(or whatever mode you want to use, alternatively using any other format
+described above or the vesa keyword instead of mode). If compiled as a module,
+the parameter format reads mode=none or mode=1024x768x16 (or whatever mode you
+want to use). Using a "=" for a ":" (and vice versa) is a huge difference!
+Additionally: If you give more than one argument to the in-kernel sisfb, the
+arguments are separated with ",". For example:
+
+ video=sisfb:mode:1024x768x16,rate:75,mem:12288
+
+
+How do I use it?
+================
+
+Preface statement: This file only covers very little of the driver's
+capabilities and features. Please refer to the author's and maintainer's
+website at http://www.winischhofer.net/linuxsisvga.shtml for more
+information. Additionally, "modinfo sisfb" gives an overview over all
+supported options including some explanation.
+
+The desired display mode can be specified using the keyword "mode" with
+a parameter in one of the follwing formats:
+ - XxYxDepth or
+ - XxY-Depth or
+ - XxY-Depth@Rate or
+ - XxY
+ - or simply use the VESA mode number in hexadecimal or decimal.
+
+For example: 1024x768x16, 1024x768-16@75, 1280x1024-16. If no depth is
+specified, it defaults to 8. If no rate is given, it defaults to 60Hz. Depth 32
+means 24bit color depth (but 32 bit framebuffer depth, which is not relevant
+to the user).
+
+Additionally, sisfb understands the keyword "vesa" followed by a VESA mode
+number in decimal or hexadecimal. For example: vesa=791 or vesa=0x117. Please
+use either "mode" or "vesa" but not both.
+
+Linux 2.4 only: If no mode is given, sisfb defaults to "no mode" (mode=none) if
+compiled as a module; if sisfb is statically compiled into the kernel, it
+defaults to 800x600x8 unless CRT2 type is LCD, in which case the LCD's native
+resolution is used. If you want to switch to a different mode, use the fbset
+shell command.
+
+Linux 2.6 only: If no mode is given, sisfb defaults to 800x600x8 unless CRT2
+type is LCD, in which case it defaults to the LCD's native resolution. If
+you want to switch to another mode, use the stty shell command.
+
+You should compile in both vgacon (to boot if you remove you SiS card from
+your system) and sisfb (for graphics mode). Under Linux 2.6, also "Framebuffer
+console support" (fbcon) is needed for a graphical console.
+
+You should *not* compile-in vesafb. And please do not use the "vga=" keyword
+in lilo's or grub's configuration file; mode selection is done using the
+"mode" or "vesa" keywords as a parameter. See above and below.
+
+
+X11
+===
+
+If using XFree86 or X.org, it is recommended that you don't use the "fbdev"
+driver but the dedicated "sis" X driver. The "sis" X driver and sisfb are
+developed by the same person (Thomas Winischhofer) and cooperate well with
+each other.
+
+
+SVGALib
+=======
+
+SVGALib, if directly accessing the hardware, never restores the screen
+correctly, especially on laptops or if the output devices are LCD or TV.
+Therefore, use the chipset "FBDEV" in SVGALib configuration. This will make
+SVGALib use the framebuffer device for mode switches and restoration.
+
+
+Configuration
+=============
+
+(Some) accepted options:
+
+off - Disable sisfb. This option is only understood if sisfb is
+ in-kernel, not a module.
+mem:X - size of memory for the console, rest will be used for DRI/DRM. X
+ is in kilobytes. On 300 series, the default is 4096, 8192 or
+ 16384 (each in kilobyte) depending on how much video ram the card
+ has. On 315/330 series, the default is the maximum available ram
+ (since DRI/DRM is not supported for these chipsets).
+noaccel - do not use 2D acceleration engine. (Default: use acceleration)
+noypan - disable y-panning and scroll by redrawing the entire screen.
+ This is much slower than y-panning. (Default: use y-panning)
+vesa:X - selects startup videomode. X is number from 0 to 0x1FF and
+ represents the VESA mode number (can be given in decimal or
+ hexadecimal form, the latter prefixed with "0x").
+mode:X - selects startup videomode. Please see above for the format of
+ "X".
+
+Boolean options such as "noaccel" or "noypan" are to be given without a
+parameter if sisfb is in-kernel (for example "video=sisfb:noypan). If
+sisfb is a module, these are to be set to 1 (for example "modprobe sisfb
+noypan=1").
+
+--
+Thomas Winischhofer <thomas@winischhofer.net>
+May 27, 2004
+
+
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 7842c9b9aa8216..995da97a263319 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -201,7 +201,7 @@ Table 1-3: Kernel info in /proc
devices Available devices (block and character)
dma Used DMS channels
filesystems Supported filesystems
- driver Various drivers grouped here, currently rtc (2.4)
+ driver Various drivers grouped here, currently rtc (2.4) and hpet (2.6)
execdomains Execdomains, related to security (2.4)
fb Frame Buffer devices (2.4)
fs File system parameters, currently nfs/exports (2.4)
diff --git a/Documentation/hpet.txt b/Documentation/hpet.txt
new file mode 100644
index 00000000000000..584ebc2770b54a
--- /dev/null
+++ b/Documentation/hpet.txt
@@ -0,0 +1,298 @@
+ High Precision Event Timer Driver for Linux
+
+The High Precision Event Timer (HPET) hardware is the future replacement for the 8254 and Real
+Time Clock (RTC) periodic timer functionality. Each HPET can have up two 32 timers. It is possible
+to configure the first two timers as legacy replacements for 8254 and RTC periodic. A specification
+done by INTEL and Microsoft can be found at http://www.intel.com/labs/platcomp/hpet/hpetspec.htm.
+
+The driver supports detection of HPET driver allocation and initialization of the HPET before the
+driver module_init routine is called. This enables platform code which uses timer 0 or 1 as the
+main timer to intercept HPET initialization. An example of this initialization can be found in
+arch/i386/kernel/time_hpet.c.
+
+The driver provides two APIs which are very similar to the API found in the rtc.c driver.
+There is a user space API and a kernel space API. An example user space program is provided
+below.
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include <fcntl.h>
+#include <string.h>
+#include <memory.h>
+#include <malloc.h>
+#include <time.h>
+#include <ctype.h>
+#include <sys/types.h>
+#include <sys/wait.h>
+#include <signal.h>
+#include <fcntl.h>
+#include <errno.h>
+#include <sys/time.h>
+#include <linux/hpet.h>
+
+
+extern void hpet_open_close(int, const char **);
+extern void hpet_info(int, const char **);
+extern void hpet_poll(int, const char **);
+extern void hpet_fasync(int, const char **);
+extern void hpet_read(int, const char **);
+
+#include <sys/poll.h>
+#include <sys/ioctl.h>
+#include <signal.h>
+
+struct hpet_command {
+ char *command;
+ void (*func)(int argc, const char ** argv);
+} hpet_command[] = {
+ {
+ "open-close",
+ hpet_open_close
+ },
+ {
+ "info",
+ hpet_info
+ },
+ {
+ "poll",
+ hpet_poll
+ },
+ {
+ "fasync",
+ hpet_fasync
+ },
+};
+
+int
+main(int argc, const char ** argv)
+{
+ int i;
+
+ argc--;
+ argv++;
+
+ if (!argc) {
+ fprintf(stderr, "-hpet: requires command\n");
+ return -1;
+ }
+
+
+ for (i = 0; i < (sizeof (hpet_command) / sizeof (hpet_command[0])); i++)
+ if (!strcmp(argv[0], hpet_command[i].command)) {
+ argc--;
+ argv++;
+ fprintf(stderr, "-hpet: executing %s\n",
+ hpet_command[i].command);
+ hpet_command[i].func(argc, argv);
+ return 0;
+ }
+
+ fprintf(stderr, "do_hpet: command %s not implemented\n", argv[0]);
+
+ return -1;
+}
+
+void
+hpet_open_close(int argc, const char **argv)
+{
+ int fd;
+
+ if (argc != 1) {
+ fprintf(stderr, "hpet_open_close: device-name\n");
+ return;
+ }
+
+ fd = open(argv[0], O_RDWR);
+ if (fd < 0)
+ fprintf(stderr, "hpet_open_close: open failed\n");
+ else
+ close(fd);
+
+ return;
+}
+
+void
+hpet_info(int argc, const char **argv)
+{
+}
+
+void
+hpet_poll(int argc, const char **argv)
+{
+ unsigned long freq;
+ int iterations, i, fd;
+ struct pollfd pfd;
+ struct hpet_info info;
+ struct timeval stv, etv;
+ struct timezone tz;
+ long usec;
+
+ if (argc != 3) {
+ fprintf(stderr, "hpet_poll: device-name freq iterations\n");
+ return;
+ }
+
+ freq = atoi(argv[1]);
+ iterations = atoi(argv[2]);
+
+ fd = open(argv[0], O_RDWR);
+
+ if (fd < 0) {
+ fprintf(stderr, "hpet_poll: open of %s failed\n", argv[0]);
+ return;
+ }
+
+ if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
+ fprintf(stderr, "hpet_poll: HPET_IRQFREQ failed\n");
+ goto out;
+ }
+
+ if (ioctl(fd, HPET_INFO, &info) < 0) {
+ fprintf(stderr, "hpet_poll: failed to get info\n");
+ goto out;
+ }
+
+ fprintf(stderr, "hpet_poll: info.hi_flags 0x%lx\n", info.hi_flags);
+
+ if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
+ fprintf(stderr, "hpet_poll: HPET_EPI failed\n");
+ goto out;
+ }
+
+ if (ioctl(fd, HPET_IE_ON, 0) < 0) {
+ fprintf(stderr, "hpet_poll, HPET_IE_ON failed\n");
+ goto out;
+ }
+
+ pfd.fd = fd;
+ pfd.events = POLLIN;
+
+ for (i = 0; i < iterations; i++) {
+ pfd.revents = 0;
+ gettimeofday(&stv, &tz);
+ if (poll(&pfd, 1, -1) < 0)
+ fprintf(stderr, "hpet_poll: poll failed\n");
+ else {
+ long data;
+
+ gettimeofday(&etv, &tz);
+ usec = stv.tv_sec * 1000000 + stv.tv_usec;
+ usec = (etv.tv_sec * 1000000 + etv.tv_usec) - usec;
+
+ fprintf(stderr,
+ "hpet_poll: expired time = 0x%lx\n", usec);
+
+ fprintf(stderr, "hpet_poll: revents = 0x%x\n",
+ pfd.revents);
+
+ if (read(fd, &data, sizeof(data)) != sizeof(data)) {
+ fprintf(stderr, "hpet_poll: read failed\n");
+ }
+ else
+ fprintf(stderr, "hpet_poll: data 0x%lx\n",
+ data);
+ }
+ }
+
+out:
+ close(fd);
+ return;
+}
+
+static int hpet_sigio_count;
+
+static void
+hpet_sigio(int val)
+{
+ fprintf(stderr, "hpet_sigio: called\n");
+ hpet_sigio_count++;
+}
+
+void
+hpet_fasync(int argc, const char **argv)
+{
+ unsigned long freq;
+ int iterations, i, fd, value;
+ sig_t oldsig;
+ struct hpet_info info;
+
+ hpet_sigio_count = 0;
+ fd = -1;
+
+ if ((oldsig = signal(SIGIO, hpet_sigio)) == SIG_ERR) {
+ fprintf(stderr, "hpet_fasync: failed to set signal handler\n");
+ return;
+ }
+
+ if (argc != 3) {
+ fprintf(stderr, "hpet_fasync: device-name freq iterations\n");
+ goto out;
+ }
+
+ fd = open(argv[0], O_RDWR);
+
+ if (fd < 0) {
+ fprintf(stderr, "hpet_fasync: failed to open %s\n", argv[0]);
+ return;
+ }
+
+
+ if ((fcntl(fd, F_SETOWN, getpid()) == 1) ||
+ ((value = fcntl(fd, F_GETFL)) == 1) ||
+ (fcntl(fd, F_SETFL, value | O_ASYNC) == 1)) {
+ fprintf(stderr, "hpet_fasync: fcntl failed\n");
+ goto out;
+ }
+
+ freq = atoi(argv[1]);
+ iterations = atoi(argv[2]);
+
+ if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
+ fprintf(stderr, "hpet_fasync: HPET_IRQFREQ failed\n");
+ goto out;
+ }
+
+ if (ioctl(fd, HPET_INFO, &info) < 0) {
+ fprintf(stderr, "hpet_fasync: failed to get info\n");
+ goto out;
+ }
+
+ fprintf(stderr, "hpet_fasync: info.hi_flags 0x%lx\n", info.hi_flags);
+
+ if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
+ fprintf(stderr, "hpet_fasync: HPET_EPI failed\n");
+ goto out;
+ }
+
+ if (ioctl(fd, HPET_IE_ON, 0) < 0) {
+ fprintf(stderr, "hpet_fasync, HPET_IE_ON failed\n");
+ goto out;
+ }
+
+ for (i = 0; i < iterations; i++) {
+ (void) pause();
+ fprintf(stderr, "hpet_fasync: count = %d\n", hpet_sigio_count);
+ }
+
+out:
+ signal(SIGIO, oldsig);
+
+ if (fd >= 0)
+ close(fd);
+
+ return;
+}
+
+The kernel API has three interfaces exported from the driver:
+
+ hpet_register(struct hpet_task *tp, int periodic)
+ hpet_unregister(struct hpet_task *tp)
+ hpet_control(struct hpet_task *tp, unsigned int cmd, unsigned long arg)
+
+The kernel module using this interface fills in the ht_func and ht_data members of the
+hpet_task structure before calling hpet_register. hpet_control simply vectors to the hpet_ioctl
+routine and has the same commands and respective arguments as the user API. hpet_unregister
+is used to terminate usage of the HPET timer reserved by hpet_register.
+
+
diff --git a/Documentation/ioctl-number.txt b/Documentation/ioctl-number.txt
index 1af5712b8f9a08..2be1218a6931e6 100644
--- a/Documentation/ioctl-number.txt
+++ b/Documentation/ioctl-number.txt
@@ -189,3 +189,5 @@ Code Seq# Include File Comments
<mailto:michael.klein@puffin.lb.shuttle.de>
0xDD 00-3F ZFCP device driver see drivers/s390/scsi/
<mailto:aherrman@de.ibm.com>
+0xF3 00-3F video/sisfb.h sisfb (in development)
+ <mailto:thomas@winischhofer.net>