// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2022 Analog Devices, Inc. * Author: Cosmin Tanislav */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define AD4130_NAME "ad4130" #define AD4130_COMMS_READ_MASK BIT(6) #define AD4130_STATUS_REG 0x00 #define AD4130_ADC_CONTROL_REG 0x01 #define AD4130_ADC_CONTROL_BIPOLAR_MASK BIT(14) #define AD4130_ADC_CONTROL_INT_REF_VAL_MASK BIT(13) #define AD4130_INT_REF_2_5V 2500000 #define AD4130_INT_REF_1_25V 1250000 #define AD4130_ADC_CONTROL_CSB_EN_MASK BIT(9) #define AD4130_ADC_CONTROL_INT_REF_EN_MASK BIT(8) #define AD4130_ADC_CONTROL_MODE_MASK GENMASK(5, 2) #define AD4130_ADC_CONTROL_MCLK_SEL_MASK GENMASK(1, 0) #define AD4130_MCLK_FREQ_76_8KHZ 76800 #define AD4130_MCLK_FREQ_153_6KHZ 153600 #define AD4130_DATA_REG 0x02 #define AD4130_IO_CONTROL_REG 0x03 #define AD4130_IO_CONTROL_INT_PIN_SEL_MASK GENMASK(9, 8) #define AD4130_IO_CONTROL_GPIO_DATA_MASK GENMASK(7, 4) #define AD4130_IO_CONTROL_GPIO_CTRL_MASK GENMASK(3, 0) #define AD4130_VBIAS_REG 0x04 #define AD4130_ID_REG 0x05 #define AD4130_ERROR_REG 0x06 #define AD4130_ERROR_EN_REG 0x07 #define AD4130_MCLK_COUNT_REG 0x08 #define AD4130_CHANNEL_X_REG(x) (0x09 + (x)) #define AD4130_CHANNEL_EN_MASK BIT(23) #define AD4130_CHANNEL_SETUP_MASK GENMASK(22, 20) #define AD4130_CHANNEL_AINP_MASK GENMASK(17, 13) #define AD4130_CHANNEL_AINM_MASK GENMASK(12, 8) #define AD4130_CHANNEL_IOUT1_MASK GENMASK(7, 4) #define AD4130_CHANNEL_IOUT2_MASK GENMASK(3, 0) #define AD4130_CONFIG_X_REG(x) (0x19 + (x)) #define AD4130_CONFIG_IOUT1_VAL_MASK GENMASK(15, 13) #define AD4130_CONFIG_IOUT2_VAL_MASK GENMASK(12, 10) #define AD4130_CONFIG_BURNOUT_MASK GENMASK(9, 8) #define AD4130_CONFIG_REF_BUFP_MASK BIT(7) #define AD4130_CONFIG_REF_BUFM_MASK BIT(6) #define AD4130_CONFIG_REF_SEL_MASK GENMASK(5, 4) #define AD4130_CONFIG_PGA_MASK GENMASK(3, 1) #define AD4130_FILTER_X_REG(x) (0x21 + (x)) #define AD4130_FILTER_MODE_MASK GENMASK(15, 12) #define AD4130_FILTER_SELECT_MASK GENMASK(10, 0) #define AD4130_FILTER_SELECT_MIN 1 #define AD4130_OFFSET_X_REG(x) (0x29 + (x)) #define AD4130_GAIN_X_REG(x) (0x31 + (x)) #define AD4130_MISC_REG 0x39 #define AD4130_FIFO_CONTROL_REG 0x3a #define AD4130_FIFO_CONTROL_HEADER_MASK BIT(18) #define AD4130_FIFO_CONTROL_MODE_MASK GENMASK(17, 16) #define AD4130_FIFO_CONTROL_WM_INT_EN_MASK BIT(9) #define AD4130_FIFO_CONTROL_WM_MASK GENMASK(7, 0) #define AD4130_WATERMARK_256 0 #define AD4130_FIFO_STATUS_REG 0x3b #define AD4130_FIFO_THRESHOLD_REG 0x3c #define AD4130_FIFO_DATA_REG 0x3d #define AD4130_FIFO_SIZE 256 #define AD4130_FIFO_MAX_SAMPLE_SIZE 3 #define AD4130_MAX_ANALOG_PINS 16 #define AD4130_MAX_CHANNELS 16 #define AD4130_MAX_DIFF_INPUTS 30 #define AD4130_MAX_GPIOS 4 #define AD4130_MAX_ODR 2400 #define AD4130_MAX_PGA 8 #define AD4130_MAX_SETUPS 8 #define AD4130_AIN2_P1 0x2 #define AD4130_AIN3_P2 0x3 #define AD4130_RESET_BUF_SIZE 8 #define AD4130_RESET_SLEEP_US (160 * MICRO / AD4130_MCLK_FREQ_76_8KHZ) #define AD4130_INVALID_SLOT -1 static const unsigned int ad4130_reg_size[] = { [AD4130_STATUS_REG] = 1, [AD4130_ADC_CONTROL_REG] = 2, [AD4130_DATA_REG] = 3, [AD4130_IO_CONTROL_REG] = 2, [AD4130_VBIAS_REG] = 2, [AD4130_ID_REG] = 1, [AD4130_ERROR_REG] = 2, [AD4130_ERROR_EN_REG] = 2, [AD4130_MCLK_COUNT_REG] = 1, [AD4130_CHANNEL_X_REG(0) ... AD4130_CHANNEL_X_REG(AD4130_MAX_CHANNELS - 1)] = 3, [AD4130_CONFIG_X_REG(0) ... AD4130_CONFIG_X_REG(AD4130_MAX_SETUPS - 1)] = 2, [AD4130_FILTER_X_REG(0) ... AD4130_FILTER_X_REG(AD4130_MAX_SETUPS - 1)] = 3, [AD4130_OFFSET_X_REG(0) ... AD4130_OFFSET_X_REG(AD4130_MAX_SETUPS - 1)] = 3, [AD4130_GAIN_X_REG(0) ... AD4130_GAIN_X_REG(AD4130_MAX_SETUPS - 1)] = 3, [AD4130_MISC_REG] = 2, [AD4130_FIFO_CONTROL_REG] = 3, [AD4130_FIFO_STATUS_REG] = 1, [AD4130_FIFO_THRESHOLD_REG] = 3, [AD4130_FIFO_DATA_REG] = 3, }; enum ad4130_int_ref_val { AD4130_INT_REF_VAL_2_5V, AD4130_INT_REF_VAL_1_25V, }; enum ad4130_mclk_sel { AD4130_MCLK_76_8KHZ, AD4130_MCLK_76_8KHZ_OUT, AD4130_MCLK_76_8KHZ_EXT, AD4130_MCLK_153_6KHZ_EXT, }; enum ad4130_int_pin_sel { AD4130_INT_PIN_INT, AD4130_INT_PIN_CLK, AD4130_INT_PIN_P2, AD4130_INT_PIN_DOUT, }; enum ad4130_iout { AD4130_IOUT_OFF, AD4130_IOUT_10000NA, AD4130_IOUT_20000NA, AD4130_IOUT_50000NA, AD4130_IOUT_100000NA, AD4130_IOUT_150000NA, AD4130_IOUT_200000NA, AD4130_IOUT_100NA, AD4130_IOUT_MAX }; enum ad4130_burnout { AD4130_BURNOUT_OFF, AD4130_BURNOUT_500NA, AD4130_BURNOUT_2000NA, AD4130_BURNOUT_4000NA, AD4130_BURNOUT_MAX }; enum ad4130_ref_sel { AD4130_REF_REFIN1, AD4130_REF_REFIN2, AD4130_REF_REFOUT_AVSS, AD4130_REF_AVDD_AVSS, AD4130_REF_SEL_MAX }; enum ad4130_fifo_mode { AD4130_FIFO_MODE_DISABLED = 0b00, AD4130_FIFO_MODE_WM = 0b01, }; enum ad4130_mode { AD4130_MODE_CONTINUOUS = 0b0000, AD4130_MODE_IDLE = 0b0100, }; enum ad4130_filter_mode { AD4130_FILTER_SINC4, AD4130_FILTER_SINC4_SINC1, AD4130_FILTER_SINC3, AD4130_FILTER_SINC3_REJ60, AD4130_FILTER_SINC3_SINC1, AD4130_FILTER_SINC3_PF1, AD4130_FILTER_SINC3_PF2, AD4130_FILTER_SINC3_PF3, AD4130_FILTER_SINC3_PF4, }; enum ad4130_pin_function { AD4130_PIN_FN_NONE, AD4130_PIN_FN_SPECIAL = BIT(0), AD4130_PIN_FN_DIFF = BIT(1), AD4130_PIN_FN_EXCITATION = BIT(2), AD4130_PIN_FN_VBIAS = BIT(3), }; struct ad4130_setup_info { unsigned int iout0_val; unsigned int iout1_val; unsigned int burnout; unsigned int pga; unsigned int fs; u32 ref_sel; enum ad4130_filter_mode filter_mode; bool ref_bufp; bool ref_bufm; }; struct ad4130_slot_info { struct ad4130_setup_info setup; unsigned int enabled_channels; unsigned int channels; }; struct ad4130_chan_info { struct ad4130_setup_info setup; u32 iout0; u32 iout1; int slot; bool enabled; bool initialized; }; struct ad4130_filter_config { enum ad4130_filter_mode filter_mode; unsigned int odr_div; unsigned int fs_max; enum iio_available_type samp_freq_avail_type; int samp_freq_avail_len; int samp_freq_avail[3][2]; }; struct ad4130_state { struct regmap *regmap; struct spi_device *spi; struct clk *mclk; struct regulator_bulk_data regulators[4]; u32 irq_trigger; u32 inv_irq_trigger; /* * Synchronize access to members the of driver state, and ensure * atomicity of consecutive regmap operations. */ struct mutex lock; struct completion completion; struct iio_chan_spec chans[AD4130_MAX_CHANNELS]; struct ad4130_chan_info chans_info[AD4130_MAX_CHANNELS]; struct ad4130_slot_info slots_info[AD4130_MAX_SETUPS]; enum ad4130_pin_function pins_fn[AD4130_MAX_ANALOG_PINS]; u32 vbias_pins[AD4130_MAX_ANALOG_PINS]; u32 num_vbias_pins; int scale_tbls[AD4130_REF_SEL_MAX][AD4130_MAX_PGA][2]; struct gpio_chip gc; struct clk_hw int_clk_hw; u32 int_pin_sel; u32 int_ref_uv; u32 mclk_sel; bool int_ref_en; bool bipolar; unsigned int num_enabled_channels; unsigned int effective_watermark; unsigned int watermark; struct spi_message fifo_msg; struct spi_transfer fifo_xfer[2]; /* * DMA (thus cache coherency maintenance) requires any transfer * buffers to live in their own cache lines. As the use of these * buffers is synchronous, all of the buffers used for DMA in this * driver may share a cache line. */ u8 reset_buf[AD4130_RESET_BUF_SIZE] __aligned(IIO_DMA_MINALIGN); u8 reg_write_tx_buf[4]; u8 reg_read_tx_buf[1]; u8 reg_read_rx_buf[3]; u8 fifo_tx_buf[2]; u8 fifo_rx_buf[AD4130_FIFO_SIZE * AD4130_FIFO_MAX_SAMPLE_SIZE]; }; static const char * const ad4130_int_pin_names[] = { [AD4130_INT_PIN_INT] = "int", [AD4130_INT_PIN_CLK] = "clk", [AD4130_INT_PIN_P2] = "p2", [AD4130_INT_PIN_DOUT] = "dout", }; static const unsigned int ad4130_iout_current_na_tbl[AD4130_IOUT_MAX] = { [AD4130_IOUT_OFF] = 0, [AD4130_IOUT_100NA] = 100, [AD4130_IOUT_10000NA] = 10000, [AD4130_IOUT_20000NA] = 20000, [AD4130_IOUT_50000NA] = 50000, [AD4130_IOUT_100000NA] = 100000, [AD4130_IOUT_150000NA] = 150000, [AD4130_IOUT_200000NA] = 200000, }; static const unsigned int ad4130_burnout_current_na_tbl[AD4130_BURNOUT_MAX] = { [AD4130_BURNOUT_OFF] = 0, [AD4130_BURNOUT_500NA] = 500, [AD4130_BURNOUT_2000NA] = 2000, [AD4130_BURNOUT_4000NA] = 4000, }; #define AD4130_VARIABLE_ODR_CONFIG(_filter_mode, _odr_div, _fs_max) \ { \ .filter_mode = (_filter_mode), \ .odr_div = (_odr_div), \ .fs_max = (_fs_max), \ .samp_freq_avail_type = IIO_AVAIL_RANGE, \ .samp_freq_avail = { \ { AD4130_MAX_ODR, (_odr_div) * (_fs_max) }, \ { AD4130_MAX_ODR, (_odr_div) * (_fs_max) }, \ { AD4130_MAX_ODR, (_odr_div) }, \ }, \ } #define AD4130_FIXED_ODR_CONFIG(_filter_mode, _odr_div) \ { \ .filter_mode = (_filter_mode), \ .odr_div = (_odr_div), \ .fs_max = AD4130_FILTER_SELECT_MIN, \ .samp_freq_avail_type = IIO_AVAIL_LIST, \ .samp_freq_avail_len = 1, \ .samp_freq_avail = { \ { AD4130_MAX_ODR, (_odr_div) }, \ }, \ } static const struct ad4130_filter_config ad4130_filter_configs[] = { AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC4, 1, 10), AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC4_SINC1, 11, 10), AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3, 1, 2047), AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3_REJ60, 1, 2047), AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3_SINC1, 10, 2047), AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF1, 92), AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF2, 100), AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF3, 124), AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF4, 148), }; static const char * const ad4130_filter_modes_str[] = { [AD4130_FILTER_SINC4] = "sinc4", [AD4130_FILTER_SINC4_SINC1] = "sinc4+sinc1", [AD4130_FILTER_SINC3] = "sinc3", [AD4130_FILTER_SINC3_REJ60] = "sinc3+rej60", [AD4130_FILTER_SINC3_SINC1] = "sinc3+sinc1", [AD4130_FILTER_SINC3_PF1] = "sinc3+pf1", [AD4130_FILTER_SINC3_PF2] = "sinc3+pf2", [AD4130_FILTER_SINC3_PF3] = "sinc3+pf3", [AD4130_FILTER_SINC3_PF4] = "sinc3+pf4", }; static int ad4130_get_reg_size(struct ad4130_state *st, unsigned int reg, unsigned int *size) { if (reg >= ARRAY_SIZE(ad4130_reg_size)) return -EINVAL; *size = ad4130_reg_size[reg]; return 0; } static unsigned int ad4130_data_reg_size(struct ad4130_state *st) { unsigned int data_reg_size; int ret; ret = ad4130_get_reg_size(st, AD4130_DATA_REG, &data_reg_size); if (ret) return 0; return data_reg_size; } static unsigned int ad4130_resolution(struct ad4130_state *st) { return ad4130_data_reg_size(st) * BITS_PER_BYTE; } static int ad4130_reg_write(void *context, unsigned int reg, unsigned int val) { struct ad4130_state *st = context; unsigned int size; int ret; ret = ad4130_get_reg_size(st, reg, &size); if (ret) return ret; st->reg_write_tx_buf[0] = reg; switch (size) { case 3: put_unaligned_be24(val, &st->reg_write_tx_buf[1]); break; case 2: put_unaligned_be16(val, &st->reg_write_tx_buf[1]); break; case 1: st->reg_write_tx_buf[1] = val; break; default: return -EINVAL; } return spi_write(st->spi, st->reg_write_tx_buf, size + 1); } static int ad4130_reg_read(void *context, unsigned int reg, unsigned int *val) { struct ad4130_state *st = context; struct spi_transfer t[] = { { .tx_buf = st->reg_read_tx_buf, .len = sizeof(st->reg_read_tx_buf), }, { .rx_buf = st->reg_read_rx_buf, }, }; unsigned int size; int ret; ret = ad4130_get_reg_size(st, reg, &size); if (ret) return ret; st->reg_read_tx_buf[0] = AD4130_COMMS_READ_MASK | reg; t[1].len = size; ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t)); if (ret) return ret; switch (size) { case 3: *val = get_unaligned_be24(st->reg_read_rx_buf); break; case 2: *val = get_unaligned_be16(st->reg_read_rx_buf); break; case 1: *val = st->reg_read_rx_buf[0]; break; default: return -EINVAL; } return 0; } static const struct regmap_config ad4130_regmap_config = { .reg_read = ad4130_reg_read, .reg_write = ad4130_reg_write, }; static int ad4130_gpio_init_valid_mask(struct gpio_chip *gc, unsigned long *valid_mask, unsigned int ngpios) { struct ad4130_state *st = gpiochip_get_data(gc); unsigned int i; /* * Output-only GPIO functionality is available on pins AIN2 through * AIN5. If these pins are used for anything else, do not expose them. */ for (i = 0; i < ngpios; i++) { unsigned int pin = i + AD4130_AIN2_P1; bool valid = st->pins_fn[pin] == AD4130_PIN_FN_NONE; __assign_bit(i, valid_mask, valid); } return 0; } static int ad4130_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) { return GPIO_LINE_DIRECTION_OUT; } static void ad4130_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) { struct ad4130_state *st = gpiochip_get_data(gc); unsigned int mask = FIELD_PREP(AD4130_IO_CONTROL_GPIO_DATA_MASK, BIT(offset)); regmap_update_bits(st->regmap, AD4130_IO_CONTROL_REG, mask, value ? mask : 0); } static int ad4130_set_mode(struct ad4130_state *st, enum ad4130_mode mode) { return regmap_update_bits(st->regmap, AD4130_ADC_CONTROL_REG, AD4130_ADC_CONTROL_MODE_MASK, FIELD_PREP(AD4130_ADC_CONTROL_MODE_MASK, mode)); } static int ad4130_set_watermark_interrupt_en(struct ad4130_state *st, bool en) { return regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG, AD4130_FIFO_CONTROL_WM_INT_EN_MASK, FIELD_PREP(AD4130_FIFO_CONTROL_WM_INT_EN_MASK, en)); } static unsigned int ad4130_watermark_reg_val(unsigned int val) { if (val == AD4130_FIFO_SIZE) val = AD4130_WATERMARK_256; return val; } static int ad4130_set_fifo_mode(struct ad4130_state *st, enum ad4130_fifo_mode mode) { return regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG, AD4130_FIFO_CONTROL_MODE_MASK, FIELD_PREP(AD4130_FIFO_CONTROL_MODE_MASK, mode)); } static void ad4130_push_fifo_data(struct iio_dev *indio_dev) { struct ad4130_state *st = iio_priv(indio_dev); unsigned int data_reg_size = ad4130_data_reg_size(st); unsigned int transfer_len = st->effective_watermark * data_reg_size; unsigned int set_size = st->num_enabled_channels * data_reg_size; unsigned int i; int ret; st->fifo_tx_buf[1] = ad4130_watermark_reg_val(st->effective_watermark); st->fifo_xfer[1].len = transfer_len; ret = spi_sync(st->spi, &st->fifo_msg); if (ret) return; for (i = 0; i < transfer_len; i += set_size) iio_push_to_buffers(indio_dev, &st->fifo_rx_buf[i]); } static irqreturn_t ad4130_irq_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct ad4130_state *st = iio_priv(indio_dev); if (iio_buffer_enabled(indio_dev)) ad4130_push_fifo_data(indio_dev); else complete(&st->completion); return IRQ_HANDLED; } static int ad4130_find_slot(struct ad4130_state *st, struct ad4130_setup_info *target_setup_info, unsigned int *slot, bool *overwrite) { unsigned int i; *slot = AD4130_INVALID_SLOT; *overwrite = false; for (i = 0; i < AD4130_MAX_SETUPS; i++) { struct ad4130_slot_info *slot_info = &st->slots_info[i]; /* Immediately accept a matching setup info. */ if (!memcmp(target_setup_info, &slot_info->setup, sizeof(*target_setup_info))) { *slot = i; return 0; } /* Ignore all setups which are used by enabled channels. */ if (slot_info->enabled_channels) continue; /* Find the least used slot. */ if (*slot == AD4130_INVALID_SLOT || slot_info->channels < st->slots_info[*slot].channels) *slot = i; } if (*slot == AD4130_INVALID_SLOT) return -EINVAL; *overwrite = true; return 0; } static void ad4130_unlink_channel(struct ad4130_state *st, unsigned int channel) { struct ad4130_chan_info *chan_info = &st->chans_info[channel]; struct ad4130_slot_info *slot_info = &st->slots_info[chan_info->slot]; chan_info->slot = AD4130_INVALID_SLOT; slot_info->channels--; } static int ad4130_unlink_slot(struct ad4130_state *st, unsigned int slot) { unsigned int i; for (i = 0; i < AD4130_MAX_CHANNELS; i++) { struct ad4130_chan_info *chan_info = &st->chans_info[i]; if (!chan_info->initialized || chan_info->slot != slot) continue; ad4130_unlink_channel(st, i); } return 0; } static int ad4130_link_channel_slot(struct ad4130_state *st, unsigned int channel, unsigned int slot) { struct ad4130_slot_info *slot_info = &st->slots_info[slot]; struct ad4130_chan_info *chan_info = &st->chans_info[channel]; int ret; ret = regmap_update_bits(st->regmap, AD4130_CHANNEL_X_REG(channel), AD4130_CHANNEL_SETUP_MASK, FIELD_PREP(AD4130_CHANNEL_SETUP_MASK, slot)); if (ret) return ret; chan_info->slot = slot; slot_info->channels++; return 0; } static int ad4130_write_slot_setup(struct ad4130_state *st, unsigned int slot, struct ad4130_setup_info *setup_info) { unsigned int val; int ret; val = FIELD_PREP(AD4130_CONFIG_IOUT1_VAL_MASK, setup_info->iout0_val) | FIELD_PREP(AD4130_CONFIG_IOUT1_VAL_MASK, setup_info->iout1_val) | FIELD_PREP(AD4130_CONFIG_BURNOUT_MASK, setup_info->burnout) | FIELD_PREP(AD4130_CONFIG_REF_BUFP_MASK, setup_info->ref_bufp) | FIELD_PREP(AD4130_CONFIG_REF_BUFM_MASK, setup_info->ref_bufm) | FIELD_PREP(AD4130_CONFIG_REF_SEL_MASK, setup_info->ref_sel) | FIELD_PREP(AD4130_CONFIG_PGA_MASK, setup_info->pga); ret = regmap_write(st->regmap, AD4130_CONFIG_X_REG(slot), val); if (ret) return ret; val = FIELD_PREP(AD4130_FILTER_MODE_MASK, setup_info->filter_mode) | FIELD_PREP(AD4130_FILTER_SELECT_MASK, setup_info->fs); ret = regmap_write(st->regmap, AD4130_FILTER_X_REG(slot), val); if (ret) return ret; memcpy(&st->slots_info[slot].setup, setup_info, sizeof(*setup_info)); return 0; } static int ad4130_write_channel_setup(struct ad4130_state *st, unsigned int channel, bool on_enable) { struct ad4130_chan_info *chan_info = &st->chans_info[channel]; struct ad4130_setup_info *setup_info = &chan_info->setup; bool overwrite; int slot; int ret; /* * The following cases need to be handled. * * 1. Enabled and linked channel with setup changes: * - Find a slot. If not possible, return error. * - Unlink channel from current slot. * - If the slot has channels linked to it, unlink all channels, and * write the new setup to it. * - Link channel to new slot. * * 2. Soon to be enabled and unlinked channel: * - Find a slot. If not possible, return error. * - If the slot has channels linked to it, unlink all channels, and * write the new setup to it. * - Link channel to the slot. * * 3. Disabled and linked channel with setup changes: * - Unlink channel from current slot. * * 4. Soon to be enabled and linked channel: * 5. Disabled and unlinked channel with setup changes: * - Do nothing. */ /* Case 4 */ if (on_enable && chan_info->slot != AD4130_INVALID_SLOT) return 0; if (!on_enable && !chan_info->enabled) { if (chan_info->slot != AD4130_INVALID_SLOT) /* Case 3 */ ad4130_unlink_channel(st, channel); /* Cases 3 & 5 */ return 0; } /* Cases 1 & 2 */ ret = ad4130_find_slot(st, setup_info, &slot, &overwrite); if (ret) return ret; if (chan_info->slot != AD4130_INVALID_SLOT) /* Case 1 */ ad4130_unlink_channel(st, channel); if (overwrite) { ret = ad4130_unlink_slot(st, slot); if (ret) return ret; ret = ad4130_write_slot_setup(st, slot, setup_info); if (ret) return ret; } return ad4130_link_channel_slot(st, channel, slot); } static int ad4130_set_channel_enable(struct ad4130_state *st, unsigned int channel, bool status) { struct ad4130_chan_info *chan_info = &st->chans_info[channel]; struct ad4130_slot_info *slot_info; int ret; if (chan_info->enabled == status) return 0; if (status) { ret = ad4130_write_channel_setup(st, channel, true); if (ret) return ret; } slot_info = &st->slots_info[chan_info->slot]; ret = regmap_update_bits(st->regmap, AD4130_CHANNEL_X_REG(channel), AD4130_CHANNEL_EN_MASK, FIELD_PREP(AD4130_CHANNEL_EN_MASK, status)); if (ret) return ret; slot_info->enabled_channels += status ? 1 : -1; chan_info->enabled = status; return 0; } /* * Table 58. FILTER_MODE_n bits and Filter Types of the datasheet describes * the relation between filter mode, ODR and FS. * * Notice that the max ODR of each filter mode is not necessarily the * absolute max ODR supported by the chip. * * The ODR divider is not explicitly specified, but it can be deduced based * on the ODR range of each filter mode. * * For example, for Sinc4+Sinc1, max ODR is 218.18. That means that the * absolute max ODR is divided by 11 to achieve the max ODR of this filter * mode. * * The formulas for converting between ODR and FS for a specific filter * mode can be deduced from the same table. * * Notice that FS = 1 actually means max ODR, and that ODR decreases by * (maximum ODR / maximum FS) for each increment of FS. * * odr = MAX_ODR / odr_div * (1 - (fs - 1) / fs_max) <=> * odr = MAX_ODR * (1 - (fs - 1) / fs_max) / odr_div <=> * odr = MAX_ODR * (1 - (fs - 1) / fs_max) / odr_div <=> * odr = MAX_ODR * (fs_max - fs + 1) / (fs_max * odr_div) * (used in ad4130_fs_to_freq) * * For the opposite formula, FS can be extracted from the last one. * * MAX_ODR * (fs_max - fs + 1) = fs_max * odr_div * odr <=> * fs_max - fs + 1 = fs_max * odr_div * odr / MAX_ODR <=> * fs = 1 + fs_max - fs_max * odr_div * odr / MAX_ODR * (used in ad4130_fs_to_freq) */ static void ad4130_freq_to_fs(enum ad4130_filter_mode filter_mode, int val, int val2, unsigned int *fs) { const struct ad4130_filter_config *filter_config = &ad4130_filter_configs[filter_mode]; u64 dividend, divisor; int temp; dividend = filter_config->fs_max * filter_config->odr_div * ((u64)val * NANO + val2); divisor = (u64)AD4130_MAX_ODR * NANO; temp = AD4130_FILTER_SELECT_MIN + filter_config->fs_max - DIV64_U64_ROUND_CLOSEST(dividend, divisor); if (temp < AD4130_FILTER_SELECT_MIN) temp = AD4130_FILTER_SELECT_MIN; else if (temp > filter_config->fs_max) temp = filter_config->fs_max; *fs = temp; } static void ad4130_fs_to_freq(enum ad4130_filter_mode filter_mode, unsigned int fs, int *val, int *val2) { const struct ad4130_filter_config *filter_config = &ad4130_filter_configs[filter_mode]; unsigned int dividend, divisor; u64 temp; dividend = (filter_config->fs_max - fs + AD4130_FILTER_SELECT_MIN) * AD4130_MAX_ODR; divisor = filter_config->fs_max * filter_config->odr_div; temp = div_u64((u64)dividend * NANO, divisor); *val = div_u64_rem(temp, NANO, val2); } static int ad4130_set_filter_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, unsigned int val) { struct ad4130_state *st = iio_priv(indio_dev); unsigned int channel = chan->scan_index; struct ad4130_chan_info *chan_info = &st->chans_info[channel]; struct ad4130_setup_info *setup_info = &chan_info->setup; enum ad4130_filter_mode old_filter_mode; int freq_val, freq_val2; unsigned int old_fs; int ret = 0; mutex_lock(&st->lock); if (setup_info->filter_mode == val) goto out; old_fs = setup_info->fs; old_filter_mode = setup_info->filter_mode; /* * When switching between filter modes, try to match the ODR as * close as possible. To do this, convert the current FS into ODR * using the old filter mode, then convert it back into FS using * the new filter mode. */ ad4130_fs_to_freq(setup_info->filter_mode, setup_info->fs, &freq_val, &freq_val2); ad4130_freq_to_fs(val, freq_val, freq_val2, &setup_info->fs); setup_info->filter_mode = val; ret = ad4130_write_channel_setup(st, channel, false); if (ret) { setup_info->fs = old_fs; setup_info->filter_mode = old_filter_mode; } out: mutex_unlock(&st->lock); return ret; } static int ad4130_get_filter_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct ad4130_state *st = iio_priv(indio_dev); unsigned int channel = chan->scan_index; struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup; enum ad4130_filter_mode filter_mode; mutex_lock(&st->lock); filter_mode = setup_info->filter_mode; mutex_unlock(&st->lock); return filter_mode; } static const struct iio_enum ad4130_filter_mode_enum = { .items = ad4130_filter_modes_str, .num_items = ARRAY_SIZE(ad4130_filter_modes_str), .set = ad4130_set_filter_mode, .get = ad4130_get_filter_mode, }; static const struct iio_chan_spec_ext_info ad4130_filter_mode_ext_info[] = { IIO_ENUM("filter_mode", IIO_SEPARATE, &ad4130_filter_mode_enum), IIO_ENUM_AVAILABLE("filter_mode", IIO_SHARED_BY_TYPE, &ad4130_filter_mode_enum), { } }; static const struct iio_chan_spec ad4130_channel_template = { .type = IIO_VOLTAGE, .indexed = 1, .differential = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .ext_info = ad4130_filter_mode_ext_info, .scan_type = { .sign = 'u', .endianness = IIO_BE, }, }; static int ad4130_set_channel_pga(struct ad4130_state *st, unsigned int channel, int val, int val2) { struct ad4130_chan_info *chan_info = &st->chans_info[channel]; struct ad4130_setup_info *setup_info = &chan_info->setup; unsigned int pga, old_pga; int ret = 0; for (pga = 0; pga < AD4130_MAX_PGA; pga++) if (val == st->scale_tbls[setup_info->ref_sel][pga][0] && val2 == st->scale_tbls[setup_info->ref_sel][pga][1]) break; if (pga == AD4130_MAX_PGA) return -EINVAL; mutex_lock(&st->lock); if (pga == setup_info->pga) goto out; old_pga = setup_info->pga; setup_info->pga = pga; ret = ad4130_write_channel_setup(st, channel, false); if (ret) setup_info->pga = old_pga; out: mutex_unlock(&st->lock); return ret; } static int ad4130_set_channel_freq(struct ad4130_state *st, unsigned int channel, int val, int val2) { struct ad4130_chan_info *chan_info = &st->chans_info[channel]; struct ad4130_setup_info *setup_info = &chan_info->setup; unsigned int fs, old_fs; int ret = 0; mutex_lock(&st->lock); old_fs = setup_info->fs; ad4130_freq_to_fs(setup_info->filter_mode, val, val2, &fs); if (fs == setup_info->fs) goto out; setup_info->fs = fs; ret = ad4130_write_channel_setup(st, channel, false); if (ret) setup_info->fs = old_fs; out: mutex_unlock(&st->lock); return ret; } static int _ad4130_read_sample(struct iio_dev *indio_dev, unsigned int channel, int *val) { struct ad4130_state *st = iio_priv(indio_dev); int ret; ret = ad4130_set_channel_enable(st, channel, true); if (ret) return ret; reinit_completion(&st->completion); ret = ad4130_set_mode(st, AD4130_MODE_CONTINUOUS); if (ret) return ret; ret = wait_for_completion_timeout(&st->completion, msecs_to_jiffies(1000)); if (!ret) return -ETIMEDOUT; ret = ad4130_set_mode(st, AD4130_MODE_IDLE); if (ret) return ret; ret = regmap_read(st->regmap, AD4130_DATA_REG, val); if (ret) return ret; ret = ad4130_set_channel_enable(st, channel, false); if (ret) return ret; return IIO_VAL_INT; } static int ad4130_read_sample(struct iio_dev *indio_dev, unsigned int channel, int *val) { struct ad4130_state *st = iio_priv(indio_dev); int ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; mutex_lock(&st->lock); ret = _ad4130_read_sample(indio_dev, channel, val); mutex_unlock(&st->lock); iio_device_release_direct_mode(indio_dev); return ret; } static int ad4130_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long info) { struct ad4130_state *st = iio_priv(indio_dev); unsigned int channel = chan->scan_index; struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup; switch (info) { case IIO_CHAN_INFO_RAW: return ad4130_read_sample(indio_dev, channel, val); case IIO_CHAN_INFO_SCALE: mutex_lock(&st->lock); *val = st->scale_tbls[setup_info->ref_sel][setup_info->pga][0]; *val2 = st->scale_tbls[setup_info->ref_sel][setup_info->pga][1]; mutex_unlock(&st->lock); return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_OFFSET: *val = st->bipolar ? -BIT(chan->scan_type.realbits - 1) : 0; return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&st->lock); ad4130_fs_to_freq(setup_info->filter_mode, setup_info->fs, val, val2); mutex_unlock(&st->lock); return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } } static int ad4130_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long info) { struct ad4130_state *st = iio_priv(indio_dev); unsigned int channel = chan->scan_index; struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup; const struct ad4130_filter_config *filter_config; switch (info) { case IIO_CHAN_INFO_SCALE: *vals = (int *)st->scale_tbls[setup_info->ref_sel]; *length = ARRAY_SIZE(st->scale_tbls[setup_info->ref_sel]) * 2; *type = IIO_VAL_INT_PLUS_NANO; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&st->lock); filter_config = &ad4130_filter_configs[setup_info->filter_mode]; mutex_unlock(&st->lock); *vals = (int *)filter_config->samp_freq_avail; *length = filter_config->samp_freq_avail_len * 2; *type = IIO_VAL_FRACTIONAL; return filter_config->samp_freq_avail_type; default: return -EINVAL; } } static int ad4130_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long info) { switch (info) { case IIO_CHAN_INFO_SCALE: case IIO_CHAN_INFO_SAMP_FREQ: return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } } static int ad4130_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long info) { struct ad4130_state *st = iio_priv(indio_dev); unsigned int channel = chan->scan_index; switch (info) { case IIO_CHAN_INFO_SCALE: return ad4130_set_channel_pga(st, channel, val, val2); case IIO_CHAN_INFO_SAMP_FREQ: return ad4130_set_channel_freq(st, channel, val, val2); default: return -EINVAL; } } static int ad4130_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct ad4130_state *st = iio_priv(indio_dev); if (readval) return regmap_read(st->regmap, reg, readval); return regmap_write(st->regmap, reg, writeval); } static int ad4130_update_scan_mode(struct iio_dev *indio_dev, const unsigned long *scan_mask) { struct ad4130_state *st = iio_priv(indio_dev); unsigned int channel; unsigned int val = 0; int ret; mutex_lock(&st->lock); for_each_set_bit(channel, scan_mask, indio_dev->num_channels) { ret = ad4130_set_channel_enable(st, channel, true); if (ret) goto out; val++; } st->num_enabled_channels = val; out: mutex_unlock(&st->lock); return 0; } static int ad4130_set_fifo_watermark(struct iio_dev *indio_dev, unsigned int val) { struct ad4130_state *st = iio_priv(indio_dev); unsigned int eff; int ret; if (val > AD4130_FIFO_SIZE) return -EINVAL; eff = val * st->num_enabled_channels; if (eff > AD4130_FIFO_SIZE) /* * Always set watermark to a multiple of the number of * enabled channels to avoid making the FIFO unaligned. */ eff = rounddown(AD4130_FIFO_SIZE, st->num_enabled_channels); mutex_lock(&st->lock); ret = regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG, AD4130_FIFO_CONTROL_WM_MASK, FIELD_PREP(AD4130_FIFO_CONTROL_WM_MASK, ad4130_watermark_reg_val(eff))); if (ret) goto out; st->effective_watermark = eff; st->watermark = val; out: mutex_unlock(&st->lock); return ret; } static const struct iio_info ad4130_info = { .read_raw = ad4130_read_raw, .read_avail = ad4130_read_avail, .write_raw_get_fmt = ad4130_write_raw_get_fmt, .write_raw = ad4130_write_raw, .update_scan_mode = ad4130_update_scan_mode, .hwfifo_set_watermark = ad4130_set_fifo_watermark, .debugfs_reg_access = ad4130_reg_access, }; static int ad4130_buffer_postenable(struct iio_dev *indio_dev) { struct ad4130_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->lock); ret = ad4130_set_watermark_interrupt_en(st, true); if (ret) goto out; ret = irq_set_irq_type(st->spi->irq, st->inv_irq_trigger); if (ret) goto out; ret = ad4130_set_fifo_mode(st, AD4130_FIFO_MODE_WM); if (ret) goto out; ret = ad4130_set_mode(st, AD4130_MODE_CONTINUOUS); out: mutex_unlock(&st->lock); return ret; } static int ad4130_buffer_predisable(struct iio_dev *indio_dev) { struct ad4130_state *st = iio_priv(indio_dev); unsigned int i; int ret; mutex_lock(&st->lock); ret = ad4130_set_mode(st, AD4130_MODE_IDLE); if (ret) goto out; ret = irq_set_irq_type(st->spi->irq, st->irq_trigger); if (ret) goto out; ret = ad4130_set_fifo_mode(st, AD4130_FIFO_MODE_DISABLED); if (ret) goto out; ret = ad4130_set_watermark_interrupt_en(st, false); if (ret) goto out; /* * update_scan_mode() is not called in the disable path, disable all * channels here. */ for (i = 0; i < indio_dev->num_channels; i++) { ret = ad4130_set_channel_enable(st, i, false); if (ret) goto out; } out: mutex_unlock(&st->lock); return ret; } static const struct iio_buffer_setup_ops ad4130_buffer_ops = { .postenable = ad4130_buffer_postenable, .predisable = ad4130_buffer_predisable, }; static ssize_t hwfifo_watermark_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ad4130_state *st = iio_priv(dev_to_iio_dev(dev)); unsigned int val; mutex_lock(&st->lock); val = st->watermark; mutex_unlock(&st->lock); return sysfs_emit(buf, "%d\n", val); } static ssize_t hwfifo_enabled_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ad4130_state *st = iio_priv(dev_to_iio_dev(dev)); unsigned int val; int ret; ret = regmap_read(st->regmap, AD4130_FIFO_CONTROL_REG, &val); if (ret) return ret; val = FIELD_GET(AD4130_FIFO_CONTROL_MODE_MASK, val); return sysfs_emit(buf, "%d\n", val != AD4130_FIFO_MODE_DISABLED); } static ssize_t hwfifo_watermark_min_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%s\n", "1"); } static ssize_t hwfifo_watermark_max_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%s\n", __stringify(AD4130_FIFO_SIZE)); } static IIO_DEVICE_ATTR_RO(hwfifo_watermark_min, 0); static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0); static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0); static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0); static const struct iio_dev_attr *ad4130_fifo_attributes[] = { &iio_dev_attr_hwfifo_watermark_min, &iio_dev_attr_hwfifo_watermark_max, &iio_dev_attr_hwfifo_watermark, &iio_dev_attr_hwfifo_enabled, NULL }; static int _ad4130_find_table_index(const unsigned int *tbl, size_t len, unsigned int val) { unsigned int i; for (i = 0; i < len; i++) if (tbl[i] == val) return i; return -EINVAL; } #define ad4130_find_table_index(table, val) \ _ad4130_find_table_index(table, ARRAY_SIZE(table), val) static int ad4130_get_ref_voltage(struct ad4130_state *st, enum ad4130_ref_sel ref_sel) { switch (ref_sel) { case AD4130_REF_REFIN1: return regulator_get_voltage(st->regulators[2].consumer); case AD4130_REF_REFIN2: return regulator_get_voltage(st->regulators[3].consumer); case AD4130_REF_AVDD_AVSS: return regulator_get_voltage(st->regulators[0].consumer); case AD4130_REF_REFOUT_AVSS: return st->int_ref_uv; default: return -EINVAL; } } static int ad4130_parse_fw_setup(struct ad4130_state *st, struct fwnode_handle *child, struct ad4130_setup_info *setup_info) { struct device *dev = &st->spi->dev; u32 tmp; int ret; tmp = 0; fwnode_property_read_u32(child, "adi,excitation-current-0-nanoamp", &tmp); ret = ad4130_find_table_index(ad4130_iout_current_na_tbl, tmp); if (ret < 0) return dev_err_probe(dev, ret, "Invalid excitation current %unA\n", tmp); setup_info->iout0_val = ret; tmp = 0; fwnode_property_read_u32(child, "adi,excitation-current-1-nanoamp", &tmp); ret = ad4130_find_table_index(ad4130_iout_current_na_tbl, tmp); if (ret < 0) return dev_err_probe(dev, ret, "Invalid excitation current %unA\n", tmp); setup_info->iout1_val = ret; tmp = 0; fwnode_property_read_u32(child, "adi,burnout-current-nanoamp", &tmp); ret = ad4130_find_table_index(ad4130_burnout_current_na_tbl, tmp); if (ret < 0) return dev_err_probe(dev, ret, "Invalid burnout current %unA\n", tmp); setup_info->burnout = ret; setup_info->ref_bufp = fwnode_property_read_bool(child, "adi,buffered-positive"); setup_info->ref_bufm = fwnode_property_read_bool(child, "adi,buffered-negative"); setup_info->ref_sel = AD4130_REF_REFIN1; fwnode_property_read_u32(child, "adi,reference-select", &setup_info->ref_sel); if (setup_info->ref_sel >= AD4130_REF_SEL_MAX) return dev_err_probe(dev, -EINVAL, "Invalid reference selected %u\n", setup_info->ref_sel); if (setup_info->ref_sel == AD4130_REF_REFOUT_AVSS) st->int_ref_en = true; ret = ad4130_get_ref_voltage(st, setup_info->ref_sel); if (ret < 0) return dev_err_probe(dev, ret, "Cannot use reference %u\n", setup_info->ref_sel); return 0; } static int ad4130_validate_diff_channel(struct ad4130_state *st, u32 pin) { struct device *dev = &st->spi->dev; if (pin >= AD4130_MAX_DIFF_INPUTS) return dev_err_probe(dev, -EINVAL, "Invalid differential channel %u\n", pin); if (pin >= AD4130_MAX_ANALOG_PINS) return 0; if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL) return dev_err_probe(dev, -EINVAL, "Pin %u already used with fn %u\n", pin, st->pins_fn[pin]); st->pins_fn[pin] |= AD4130_PIN_FN_DIFF; return 0; } static int ad4130_validate_diff_channels(struct ad4130_state *st, u32 *pins, unsigned int len) { unsigned int i; int ret; for (i = 0; i < len; i++) { ret = ad4130_validate_diff_channel(st, pins[i]); if (ret) return ret; } return 0; } static int ad4130_validate_excitation_pin(struct ad4130_state *st, u32 pin) { struct device *dev = &st->spi->dev; if (pin >= AD4130_MAX_ANALOG_PINS) return dev_err_probe(dev, -EINVAL, "Invalid excitation pin %u\n", pin); if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL) return dev_err_probe(dev, -EINVAL, "Pin %u already used with fn %u\n", pin, st->pins_fn[pin]); st->pins_fn[pin] |= AD4130_PIN_FN_EXCITATION; return 0; } static int ad4130_validate_vbias_pin(struct ad4130_state *st, u32 pin) { struct device *dev = &st->spi->dev; if (pin >= AD4130_MAX_ANALOG_PINS) return dev_err_probe(dev, -EINVAL, "Invalid vbias pin %u\n", pin); if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL) return dev_err_probe(dev, -EINVAL, "Pin %u already used with fn %u\n", pin, st->pins_fn[pin]); st->pins_fn[pin] |= AD4130_PIN_FN_VBIAS; return 0; } static int ad4130_validate_vbias_pins(struct ad4130_state *st, u32 *pins, unsigned int len) { unsigned int i; int ret; for (i = 0; i < st->num_vbias_pins; i++) { ret = ad4130_validate_vbias_pin(st, pins[i]); if (ret) return ret; } return 0; } static int ad4130_parse_fw_channel(struct iio_dev *indio_dev, struct fwnode_handle *child) { struct ad4130_state *st = iio_priv(indio_dev); unsigned int resolution = ad4130_resolution(st); unsigned int index = indio_dev->num_channels++; struct device *dev = &st->spi->dev; struct ad4130_chan_info *chan_info; struct iio_chan_spec *chan; u32 pins[2]; int ret; if (index >= AD4130_MAX_CHANNELS) return dev_err_probe(dev, -EINVAL, "Too many channels\n"); chan = &st->chans[index]; chan_info = &st->chans_info[index]; *chan = ad4130_channel_template; chan->scan_type.realbits = resolution; chan->scan_type.storagebits = resolution; chan->scan_index = index; chan_info->slot = AD4130_INVALID_SLOT; chan_info->setup.fs = AD4130_FILTER_SELECT_MIN; chan_info->initialized = true; ret = fwnode_property_read_u32_array(child, "diff-channels", pins, ARRAY_SIZE(pins)); if (ret) return ret; ret = ad4130_validate_diff_channels(st, pins, ARRAY_SIZE(pins)); if (ret) return ret; chan->channel = pins[0]; chan->channel2 = pins[1]; ret = ad4130_parse_fw_setup(st, child, &chan_info->setup); if (ret) return ret; fwnode_property_read_u32(child, "adi,excitation-pin-0", &chan_info->iout0); if (chan_info->setup.iout0_val != AD4130_IOUT_OFF) { ret = ad4130_validate_excitation_pin(st, chan_info->iout0); if (ret) return ret; } fwnode_property_read_u32(child, "adi,excitation-pin-1", &chan_info->iout1); if (chan_info->setup.iout1_val != AD4130_IOUT_OFF) { ret = ad4130_validate_excitation_pin(st, chan_info->iout1); if (ret) return ret; } return 0; } static int ad4130_parse_fw_children(struct iio_dev *indio_dev) { struct ad4130_state *st = iio_priv(indio_dev); struct device *dev = &st->spi->dev; struct fwnode_handle *child; int ret; indio_dev->channels = st->chans; device_for_each_child_node(dev, child) { ret = ad4130_parse_fw_channel(indio_dev, child); if (ret) { fwnode_handle_put(child); return ret; } } return 0; } static int ad4310_parse_fw(struct iio_dev *indio_dev) { struct ad4130_state *st = iio_priv(indio_dev); struct device *dev = &st->spi->dev; u32 ext_clk_freq = AD4130_MCLK_FREQ_76_8KHZ; unsigned int i; int avdd_uv; int irq; int ret; st->mclk = devm_clk_get_optional(dev, "mclk"); if (IS_ERR(st->mclk)) return dev_err_probe(dev, PTR_ERR(st->mclk), "Failed to get mclk\n"); st->int_pin_sel = AD4130_INT_PIN_INT; for (i = 0; i < ARRAY_SIZE(ad4130_int_pin_names); i++) { irq = fwnode_irq_get_byname(dev_fwnode(dev), ad4130_int_pin_names[i]); if (irq > 0) { st->int_pin_sel = i; break; } } if (st->int_pin_sel == AD4130_INT_PIN_DOUT) return dev_err_probe(dev, -EINVAL, "Cannot use DOUT as interrupt pin\n"); if (st->int_pin_sel == AD4130_INT_PIN_P2) st->pins_fn[AD4130_AIN3_P2] = AD4130_PIN_FN_SPECIAL; device_property_read_u32(dev, "adi,ext-clk-freq-hz", &ext_clk_freq); if (ext_clk_freq != AD4130_MCLK_FREQ_153_6KHZ && ext_clk_freq != AD4130_MCLK_FREQ_76_8KHZ) return dev_err_probe(dev, -EINVAL, "Invalid external clock frequency %u\n", ext_clk_freq); if (st->mclk && ext_clk_freq == AD4130_MCLK_FREQ_153_6KHZ) st->mclk_sel = AD4130_MCLK_153_6KHZ_EXT; else if (st->mclk) st->mclk_sel = AD4130_MCLK_76_8KHZ_EXT; else st->mclk_sel = AD4130_MCLK_76_8KHZ; if (st->int_pin_sel == AD4130_INT_PIN_CLK && st->mclk_sel != AD4130_MCLK_76_8KHZ) return dev_err_probe(dev, -EINVAL, "Invalid clock %u for interrupt pin %u\n", st->mclk_sel, st->int_pin_sel); st->int_ref_uv = AD4130_INT_REF_2_5V; /* * When the AVDD supply is set to below 2.5V the internal reference of * 1.25V should be selected. * See datasheet page 37, section ADC REFERENCE. */ avdd_uv = regulator_get_voltage(st->regulators[0].consumer); if (avdd_uv > 0 && avdd_uv < AD4130_INT_REF_2_5V) st->int_ref_uv = AD4130_INT_REF_1_25V; st->bipolar = device_property_read_bool(dev, "adi,bipolar"); ret = device_property_count_u32(dev, "adi,vbias-pins"); if (ret > 0) { if (ret > AD4130_MAX_ANALOG_PINS) return dev_err_probe(dev, -EINVAL, "Too many vbias pins %u\n", ret); st->num_vbias_pins = ret; ret = device_property_read_u32_array(dev, "adi,vbias-pins", st->vbias_pins, st->num_vbias_pins); if (ret) return dev_err_probe(dev, ret, "Failed to read vbias pins\n"); ret = ad4130_validate_vbias_pins(st, st->vbias_pins, st->num_vbias_pins); if (ret) return ret; } ret = ad4130_parse_fw_children(indio_dev); if (ret) return ret; return 0; } static void ad4130_fill_scale_tbls(struct ad4130_state *st) { unsigned int pow = ad4130_resolution(st) - st->bipolar; unsigned int i, j; for (i = 0; i < AD4130_REF_SEL_MAX; i++) { int ret; u64 nv; ret = ad4130_get_ref_voltage(st, i); if (ret < 0) continue; nv = (u64)ret * NANO; for (j = 0; j < AD4130_MAX_PGA; j++) st->scale_tbls[i][j][1] = div_u64(nv >> (pow + j), MILLI); } } static void ad4130_clk_disable_unprepare(void *clk) { clk_disable_unprepare(clk); } static int ad4130_set_mclk_sel(struct ad4130_state *st, enum ad4130_mclk_sel mclk_sel) { return regmap_update_bits(st->regmap, AD4130_ADC_CONTROL_REG, AD4130_ADC_CONTROL_MCLK_SEL_MASK, FIELD_PREP(AD4130_ADC_CONTROL_MCLK_SEL_MASK, mclk_sel)); } static unsigned long ad4130_int_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { return AD4130_MCLK_FREQ_76_8KHZ; } static int ad4130_int_clk_is_enabled(struct clk_hw *hw) { struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw); return st->mclk_sel == AD4130_MCLK_76_8KHZ_OUT; } static int ad4130_int_clk_prepare(struct clk_hw *hw) { struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw); int ret; ret = ad4130_set_mclk_sel(st, AD4130_MCLK_76_8KHZ_OUT); if (ret) return ret; st->mclk_sel = AD4130_MCLK_76_8KHZ_OUT; return 0; } static void ad4130_int_clk_unprepare(struct clk_hw *hw) { struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw); int ret; ret = ad4130_set_mclk_sel(st, AD4130_MCLK_76_8KHZ); if (ret) return; st->mclk_sel = AD4130_MCLK_76_8KHZ; } static const struct clk_ops ad4130_int_clk_ops = { .recalc_rate = ad4130_int_clk_recalc_rate, .is_enabled = ad4130_int_clk_is_enabled, .prepare = ad4130_int_clk_prepare, .unprepare = ad4130_int_clk_unprepare, }; static int ad4130_setup_int_clk(struct ad4130_state *st) { struct device *dev = &st->spi->dev; struct device_node *of_node = dev_of_node(dev); struct clk_init_data init = {}; const char *clk_name; int ret; if (st->int_pin_sel == AD4130_INT_PIN_CLK || st->mclk_sel != AD4130_MCLK_76_8KHZ) return 0; if (!of_node) return 0; clk_name = of_node->name; of_property_read_string(of_node, "clock-output-names", &clk_name); init.name = clk_name; init.ops = &ad4130_int_clk_ops; st->int_clk_hw.init = &init; ret = devm_clk_hw_register(dev, &st->int_clk_hw); if (ret) return ret; return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, &st->int_clk_hw); } static int ad4130_setup(struct iio_dev *indio_dev) { struct ad4130_state *st = iio_priv(indio_dev); struct device *dev = &st->spi->dev; unsigned int int_ref_val; unsigned long rate = AD4130_MCLK_FREQ_76_8KHZ; unsigned int val; unsigned int i; int ret; if (st->mclk_sel == AD4130_MCLK_153_6KHZ_EXT) rate = AD4130_MCLK_FREQ_153_6KHZ; ret = clk_set_rate(st->mclk, rate); if (ret) return ret; ret = clk_prepare_enable(st->mclk); if (ret) return ret; ret = devm_add_action_or_reset(dev, ad4130_clk_disable_unprepare, st->mclk); if (ret) return ret; if (st->int_ref_uv == AD4130_INT_REF_2_5V) int_ref_val = AD4130_INT_REF_VAL_2_5V; else int_ref_val = AD4130_INT_REF_VAL_1_25V; /* Switch to SPI 4-wire mode. */ val = FIELD_PREP(AD4130_ADC_CONTROL_CSB_EN_MASK, 1); val |= FIELD_PREP(AD4130_ADC_CONTROL_BIPOLAR_MASK, st->bipolar); val |= FIELD_PREP(AD4130_ADC_CONTROL_INT_REF_EN_MASK, st->int_ref_en); val |= FIELD_PREP(AD4130_ADC_CONTROL_MODE_MASK, AD4130_MODE_IDLE); val |= FIELD_PREP(AD4130_ADC_CONTROL_MCLK_SEL_MASK, st->mclk_sel); val |= FIELD_PREP(AD4130_ADC_CONTROL_INT_REF_VAL_MASK, int_ref_val); ret = regmap_write(st->regmap, AD4130_ADC_CONTROL_REG, val); if (ret) return ret; /* * Configure unused GPIOs for output. If configured, the interrupt * function of P2 takes priority over the GPIO out function. */ val = 0; for (i = 0; i < AD4130_MAX_GPIOS; i++) if (st->pins_fn[i + AD4130_AIN2_P1] == AD4130_PIN_FN_NONE) val |= FIELD_PREP(AD4130_IO_CONTROL_GPIO_CTRL_MASK, BIT(i)); val |= FIELD_PREP(AD4130_IO_CONTROL_INT_PIN_SEL_MASK, st->int_pin_sel); ret = regmap_write(st->regmap, AD4130_IO_CONTROL_REG, val); if (ret) return ret; val = 0; for (i = 0; i < st->num_vbias_pins; i++) val |= BIT(st->vbias_pins[i]); ret = regmap_write(st->regmap, AD4130_VBIAS_REG, val); if (ret) return ret; ret = regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG, AD4130_FIFO_CONTROL_HEADER_MASK, 0); if (ret) return ret; /* FIFO watermark interrupt starts out as enabled, disable it. */ ret = ad4130_set_watermark_interrupt_en(st, false); if (ret) return ret; /* Setup channels. */ for (i = 0; i < indio_dev->num_channels; i++) { struct ad4130_chan_info *chan_info = &st->chans_info[i]; struct iio_chan_spec *chan = &st->chans[i]; unsigned int val; val = FIELD_PREP(AD4130_CHANNEL_AINP_MASK, chan->channel) | FIELD_PREP(AD4130_CHANNEL_AINM_MASK, chan->channel2) | FIELD_PREP(AD4130_CHANNEL_IOUT1_MASK, chan_info->iout0) | FIELD_PREP(AD4130_CHANNEL_IOUT2_MASK, chan_info->iout1); ret = regmap_write(st->regmap, AD4130_CHANNEL_X_REG(i), val); if (ret) return ret; } return 0; } static int ad4130_soft_reset(struct ad4130_state *st) { int ret; ret = spi_write(st->spi, st->reset_buf, sizeof(st->reset_buf)); if (ret) return ret; fsleep(AD4130_RESET_SLEEP_US); return 0; } static void ad4130_disable_regulators(void *data) { struct ad4130_state *st = data; regulator_bulk_disable(ARRAY_SIZE(st->regulators), st->regulators); } static int ad4130_probe(struct spi_device *spi) { struct device *dev = &spi->dev; struct iio_dev *indio_dev; struct ad4130_state *st; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); memset(st->reset_buf, 0xff, sizeof(st->reset_buf)); init_completion(&st->completion); mutex_init(&st->lock); st->spi = spi; /* * Xfer: [ XFR1 ] [ XFR2 ] * Master: 0x7D N ...................... * Slave: ...... DATA1 DATA2 ... DATAN */ st->fifo_tx_buf[0] = AD4130_COMMS_READ_MASK | AD4130_FIFO_DATA_REG; st->fifo_xfer[0].tx_buf = st->fifo_tx_buf; st->fifo_xfer[0].len = sizeof(st->fifo_tx_buf); st->fifo_xfer[1].rx_buf = st->fifo_rx_buf; spi_message_init_with_transfers(&st->fifo_msg, st->fifo_xfer, ARRAY_SIZE(st->fifo_xfer)); indio_dev->name = AD4130_NAME; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &ad4130_info; st->regmap = devm_regmap_init(dev, NULL, st, &ad4130_regmap_config); if (IS_ERR(st->regmap)) return PTR_ERR(st->regmap); st->regulators[0].supply = "avdd"; st->regulators[1].supply = "iovdd"; st->regulators[2].supply = "refin1"; st->regulators[3].supply = "refin2"; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(st->regulators), st->regulators); if (ret) return dev_err_probe(dev, ret, "Failed to get regulators\n"); ret = regulator_bulk_enable(ARRAY_SIZE(st->regulators), st->regulators); if (ret) return dev_err_probe(dev, ret, "Failed to enable regulators\n"); ret = devm_add_action_or_reset(dev, ad4130_disable_regulators, st); if (ret) return dev_err_probe(dev, ret, "Failed to add regulators disable action\n"); ret = ad4130_soft_reset(st); if (ret) return ret; ret = ad4310_parse_fw(indio_dev); if (ret) return ret; ret = ad4130_setup(indio_dev); if (ret) return ret; ret = ad4130_setup_int_clk(st); if (ret) return ret; ad4130_fill_scale_tbls(st); st->gc.owner = THIS_MODULE; st->gc.label = AD4130_NAME; st->gc.base = -1; st->gc.ngpio = AD4130_MAX_GPIOS; st->gc.parent = dev; st->gc.can_sleep = true; st->gc.init_valid_mask = ad4130_gpio_init_valid_mask; st->gc.get_direction = ad4130_gpio_get_direction; st->gc.set = ad4130_gpio_set; ret = devm_gpiochip_add_data(dev, &st->gc, st); if (ret) return ret; ret = devm_iio_kfifo_buffer_setup_ext(dev, indio_dev, &ad4130_buffer_ops, ad4130_fifo_attributes); if (ret) return ret; ret = devm_request_threaded_irq(dev, spi->irq, NULL, ad4130_irq_handler, IRQF_ONESHOT, indio_dev->name, indio_dev); if (ret) return dev_err_probe(dev, ret, "Failed to request irq\n"); /* * When the chip enters FIFO mode, IRQ polarity is inverted. * When the chip exits FIFO mode, IRQ polarity returns to normal. * See datasheet pages: 65, FIFO Watermark Interrupt section, * and 71, Bit Descriptions for STATUS Register, RDYB. * Cache the normal and inverted IRQ triggers to set them when * entering and exiting FIFO mode. */ st->irq_trigger = irq_get_trigger_type(spi->irq); if (st->irq_trigger & IRQF_TRIGGER_RISING) st->inv_irq_trigger = IRQF_TRIGGER_FALLING; else if (st->irq_trigger & IRQF_TRIGGER_FALLING) st->inv_irq_trigger = IRQF_TRIGGER_RISING; else return dev_err_probe(dev, -EINVAL, "Invalid irq flags: %u\n", st->irq_trigger); return devm_iio_device_register(dev, indio_dev); } static const struct of_device_id ad4130_of_match[] = { { .compatible = "adi,ad4130", }, { } }; MODULE_DEVICE_TABLE(of, ad4130_of_match); static struct spi_driver ad4130_driver = { .driver = { .name = AD4130_NAME, .of_match_table = ad4130_of_match, }, .probe = ad4130_probe, }; module_spi_driver(ad4130_driver); MODULE_AUTHOR("Cosmin Tanislav "); MODULE_DESCRIPTION("Analog Devices AD4130 SPI driver"); MODULE_LICENSE("GPL");