// SPDX-License-Identifier: MIT /* * Copyright © 2021-2023 Intel Corporation */ #include #include "xe_mmio.h" #include #include #include "regs/xe_engine_regs.h" #include "regs/xe_gt_regs.h" #include "regs/xe_regs.h" #include "xe_bo.h" #include "xe_device.h" #include "xe_ggtt.h" #include "xe_gt.h" #include "xe_gt_mcr.h" #include "xe_macros.h" #include "xe_module.h" #include "xe_tile.h" #define XEHP_MTCFG_ADDR XE_REG(0x101800) #define TILE_COUNT REG_GENMASK(15, 8) #define BAR_SIZE_SHIFT 20 static void _resize_bar(struct xe_device *xe, int resno, resource_size_t size) { struct pci_dev *pdev = to_pci_dev(xe->drm.dev); int bar_size = pci_rebar_bytes_to_size(size); int ret; if (pci_resource_len(pdev, resno)) pci_release_resource(pdev, resno); ret = pci_resize_resource(pdev, resno, bar_size); if (ret) { drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n", resno, 1 << bar_size, ERR_PTR(ret)); return; } drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size); } /* * if force_vram_bar_size is set, attempt to set to the requested size * else set to maximum possible size */ static void xe_resize_vram_bar(struct xe_device *xe) { u64 force_vram_bar_size = xe_modparam.force_vram_bar_size; struct pci_dev *pdev = to_pci_dev(xe->drm.dev); struct pci_bus *root = pdev->bus; resource_size_t current_size; resource_size_t rebar_size; struct resource *root_res; u32 bar_size_mask; u32 pci_cmd; int i; /* gather some relevant info */ current_size = pci_resource_len(pdev, LMEM_BAR); bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR); if (!bar_size_mask) return; /* set to a specific size? */ if (force_vram_bar_size) { u32 bar_size_bit; rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M; bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size)); if (!bar_size_bit) { drm_info(&xe->drm, "Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n", (u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20); return; } rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT); if (rebar_size == current_size) return; } else { rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT); /* only resize if larger than current */ if (rebar_size <= current_size) return; } drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n", (u64)current_size >> 20, (u64)rebar_size >> 20); while (root->parent) root = root->parent; pci_bus_for_each_resource(root, root_res, i) { if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) && root_res->start > 0x100000000ull) break; } if (!root_res) { drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n"); return; } pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd); pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY); _resize_bar(xe, LMEM_BAR, rebar_size); pci_assign_unassigned_bus_resources(pdev->bus); pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd); } static bool xe_pci_resource_valid(struct pci_dev *pdev, int bar) { if (!pci_resource_flags(pdev, bar)) return false; if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET) return false; if (!pci_resource_len(pdev, bar)) return false; return true; } static int xe_determine_lmem_bar_size(struct xe_device *xe) { struct pci_dev *pdev = to_pci_dev(xe->drm.dev); if (!xe_pci_resource_valid(pdev, LMEM_BAR)) { drm_err(&xe->drm, "pci resource is not valid\n"); return -ENXIO; } xe_resize_vram_bar(xe); xe->mem.vram.io_start = pci_resource_start(pdev, LMEM_BAR); xe->mem.vram.io_size = pci_resource_len(pdev, LMEM_BAR); if (!xe->mem.vram.io_size) return -EIO; /* XXX: Need to change when xe link code is ready */ xe->mem.vram.dpa_base = 0; /* set up a map to the total memory area. */ xe->mem.vram.mapping = ioremap_wc(xe->mem.vram.io_start, xe->mem.vram.io_size); return 0; } /** * xe_mmio_tile_vram_size() - Collect vram size and offset information * @tile: tile to get info for * @vram_size: available vram (size - device reserved portions) * @tile_size: actual vram size * @tile_offset: physical start point in the vram address space * * There are 4 places for size information: * - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1) * - TILEx size (actual vram size) * - GSMBASE offset (TILEx - "stolen") * - CSSBASE offset (TILEx - CSS space necessary) * * CSSBASE is always a lower/smaller offset then GSMBASE. * * The actual available size of memory is to the CCS or GSM base. * NOTE: multi-tile bases will include the tile offset. * */ static int xe_mmio_tile_vram_size(struct xe_tile *tile, u64 *vram_size, u64 *tile_size, u64 *tile_offset) { struct xe_device *xe = tile_to_xe(tile); struct xe_gt *gt = tile->primary_gt; u64 offset; int err; u32 reg; err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (err) return err; /* actual size */ if (unlikely(xe->info.platform == XE_DG1)) { *tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR); *tile_offset = 0; } else { reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id)); *tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G; *tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G; } /* minus device usage */ if (xe->info.has_flat_ccs) { reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR); offset = (u64)REG_FIELD_GET(GENMASK(31, 8), reg) * SZ_64K; } else { offset = xe_mmio_read64_2x32(gt, GSMBASE); } /* remove the tile offset so we have just the available size */ *vram_size = offset - *tile_offset; return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); } int xe_mmio_probe_vram(struct xe_device *xe) { struct xe_tile *tile; resource_size_t io_size; u64 available_size = 0; u64 total_size = 0; u64 tile_offset; u64 tile_size; u64 vram_size; int err; u8 id; if (!IS_DGFX(xe)) return 0; /* Get the size of the root tile's vram for later accessibility comparison */ tile = xe_device_get_root_tile(xe); err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset); if (err) return err; err = xe_determine_lmem_bar_size(xe); if (err) return err; drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &xe->mem.vram.io_start, &xe->mem.vram.io_size); io_size = xe->mem.vram.io_size; /* tile specific ranges */ for_each_tile(tile, xe, id) { err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset); if (err) return err; tile->mem.vram.actual_physical_size = tile_size; tile->mem.vram.io_start = xe->mem.vram.io_start + tile_offset; tile->mem.vram.io_size = min_t(u64, vram_size, io_size); if (!tile->mem.vram.io_size) { drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n"); return -ENODEV; } tile->mem.vram.dpa_base = xe->mem.vram.dpa_base + tile_offset; tile->mem.vram.usable_size = vram_size; tile->mem.vram.mapping = xe->mem.vram.mapping + tile_offset; if (tile->mem.vram.io_size < tile->mem.vram.usable_size) drm_info(&xe->drm, "Small BAR device\n"); drm_info(&xe->drm, "VRAM[%u, %u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n", id, tile->id, &tile->mem.vram.actual_physical_size, &tile->mem.vram.usable_size, &tile->mem.vram.io_size); drm_info(&xe->drm, "VRAM[%u, %u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n", id, tile->id, &tile->mem.vram.dpa_base, tile->mem.vram.dpa_base + (u64)tile->mem.vram.actual_physical_size, &tile->mem.vram.io_start, tile->mem.vram.io_start + (u64)tile->mem.vram.io_size); /* calculate total size using tile size to get the correct HW sizing */ total_size += tile_size; available_size += vram_size; if (total_size > xe->mem.vram.io_size) { drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n", &total_size, &xe->mem.vram.io_size); } io_size -= min_t(u64, tile_size, io_size); } xe->mem.vram.actual_physical_size = total_size; drm_info(&xe->drm, "Total VRAM: %pa, %pa\n", &xe->mem.vram.io_start, &xe->mem.vram.actual_physical_size); drm_info(&xe->drm, "Available VRAM: %pa, %pa\n", &xe->mem.vram.io_start, &available_size); return 0; } void xe_mmio_probe_tiles(struct xe_device *xe) { size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size; u8 id, tile_count = xe->info.tile_count; struct xe_gt *gt = xe_root_mmio_gt(xe); struct xe_tile *tile; void __iomem *regs; u32 mtcfg; if (tile_count == 1) goto add_mmio_ext; if (!xe->info.skip_mtcfg) { mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR); tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1; if (tile_count < xe->info.tile_count) { drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n", xe->info.tile_count, tile_count); xe->info.tile_count = tile_count; /* * FIXME: Needs some work for standalone media, but should be impossible * with multi-tile for now. */ xe->info.gt_count = xe->info.tile_count; } } regs = xe->mmio.regs; for_each_tile(tile, xe, id) { tile->mmio.size = tile_mmio_size; tile->mmio.regs = regs; regs += tile_mmio_size; } add_mmio_ext: /* * By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile). * When supported, there could be an additional contiguous multi-tile MMIO extension * space ON TOP of it, and hence the necessity for distinguished MMIO spaces. */ if (xe->info.has_mmio_ext) { regs = xe->mmio.regs + tile_mmio_size * tile_count; for_each_tile(tile, xe, id) { tile->mmio_ext.size = tile_mmio_ext_size; tile->mmio_ext.regs = regs; regs += tile_mmio_ext_size; } } } static void mmio_fini(struct drm_device *drm, void *arg) { struct xe_device *xe = arg; pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); if (xe->mem.vram.mapping) iounmap(xe->mem.vram.mapping); } static int xe_verify_lmem_ready(struct xe_device *xe) { struct xe_gt *gt = xe_root_mmio_gt(xe); /* * The boot firmware initializes local memory and assesses its health. * If memory training fails, the punit will have been instructed to * keep the GT powered down; we won't be able to communicate with it * and we should not continue with driver initialization. */ if (IS_DGFX(xe) && !(xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT)) { drm_err(&xe->drm, "VRAM not initialized by firmware\n"); return -ENODEV; } return 0; } int xe_mmio_init(struct xe_device *xe) { struct pci_dev *pdev = to_pci_dev(xe->drm.dev); const int mmio_bar = 0; /* * Map the entire BAR. * The first 16MB of the BAR, belong to the root tile, and include: * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB). */ xe->mmio.size = pci_resource_len(pdev, mmio_bar); xe->mmio.regs = pci_iomap(pdev, mmio_bar, 0); if (xe->mmio.regs == NULL) { drm_err(&xe->drm, "failed to map registers\n"); return -EIO; } return drmm_add_action_or_reset(&xe->drm, mmio_fini, xe); } int xe_mmio_root_tile_init(struct xe_device *xe) { struct xe_tile *root_tile = xe_device_get_root_tile(xe); int err; /* Setup first tile; other tiles (if present) will be setup later. */ root_tile->mmio.size = SZ_16M; root_tile->mmio.regs = xe->mmio.regs; err = xe_verify_lmem_ready(xe); if (err) return err; return 0; } /** * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads * @gt: MMIO target GT * @reg: register to read value from * * Although Intel GPUs have some 64-bit registers, the hardware officially * only supports GTTMMADR register reads of 32 bits or smaller. Even if * a readq operation may return a reasonable value, that violation of the * spec shouldn't be relied upon and all 64-bit register reads should be * performed as two 32-bit reads of the upper and lower dwords. * * When reading registers that may be changing (such as * counters), a rollover of the lower dword between the two 32-bit reads * can be problematic. This function attempts to ensure the upper dword has * stabilized before returning the 64-bit value. * * Note that because this function may re-read the register multiple times * while waiting for the value to stabilize it should not be used to read * any registers where read operations have side effects. * * Returns the value of the 64-bit register. */ u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg) { struct xe_reg reg_udw = { .addr = reg.addr + 0x4 }; u32 ldw, udw, oldudw, retries; if (reg.addr < gt->mmio.adj_limit) { reg.addr += gt->mmio.adj_offset; reg_udw.addr += gt->mmio.adj_offset; } oldudw = xe_mmio_read32(gt, reg_udw); for (retries = 5; retries; --retries) { ldw = xe_mmio_read32(gt, reg); udw = xe_mmio_read32(gt, reg_udw); if (udw == oldudw) break; oldudw = udw; } xe_gt_WARN(gt, retries == 0, "64-bit read of %#x did not stabilize\n", reg.addr); return (u64)udw << 32 | ldw; } /** * xe_mmio_wait32() - Wait for a register to match the desired masked value * @gt: MMIO target GT * @reg: register to read value from * @mask: mask to be applied to the value read from the register * @val: desired value after applying the mask * @timeout_us: time out after this period of time. Wait logic tries to be * smart, applying an exponential backoff until @timeout_us is reached. * @out_val: if not NULL, points where to store the last unmasked value * @atomic: needs to be true if calling from an atomic context * * This function polls for the desired masked value and returns zero on success * or -ETIMEDOUT if timed out. * * Note that @timeout_us represents the minimum amount of time to wait before * giving up. The actual time taken by this function can be a little more than * @timeout_us for different reasons, specially in non-atomic contexts. Thus, * it is possible that this function succeeds even after @timeout_us has passed. */ int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, u32 *out_val, bool atomic) { ktime_t cur = ktime_get_raw(); const ktime_t end = ktime_add_us(cur, timeout_us); int ret = -ETIMEDOUT; s64 wait = 10; u32 read; for (;;) { read = xe_mmio_read32(gt, reg); if ((read & mask) == val) { ret = 0; break; } cur = ktime_get_raw(); if (!ktime_before(cur, end)) break; if (ktime_after(ktime_add_us(cur, wait), end)) wait = ktime_us_delta(end, cur); if (atomic) udelay(wait); else usleep_range(wait, wait << 1); wait <<= 1; } if (ret != 0) { read = xe_mmio_read32(gt, reg); if ((read & mask) == val) ret = 0; } if (out_val) *out_val = read; return ret; }