/* * Copyright 2009 Jerome Glisse. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ /* * Authors: * Jerome Glisse * Thomas Hellstrom * Dave Airlie */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "amdgpu.h" #include "amdgpu_object.h" #include "amdgpu_trace.h" #include "amdgpu_amdkfd.h" #include "amdgpu_sdma.h" #include "amdgpu_ras.h" #include "amdgpu_hmm.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_res_cursor.h" #include "bif/bif_4_1_d.h" MODULE_IMPORT_NS(DMA_BUF); #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, struct ttm_tt *ttm, struct ttm_resource *bo_mem); static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, struct ttm_tt *ttm); static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, unsigned int type, uint64_t size_in_page) { return ttm_range_man_init(&adev->mman.bdev, type, false, size_in_page); } /** * amdgpu_evict_flags - Compute placement flags * * @bo: The buffer object to evict * @placement: Possible destination(s) for evicted BO * * Fill in placement data when ttm_bo_evict() is called */ static void amdgpu_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *placement) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); struct amdgpu_bo *abo; static const struct ttm_place placements = { .fpfn = 0, .lpfn = 0, .mem_type = TTM_PL_SYSTEM, .flags = 0 }; /* Don't handle scatter gather BOs */ if (bo->type == ttm_bo_type_sg) { placement->num_placement = 0; return; } /* Object isn't an AMDGPU object so ignore */ if (!amdgpu_bo_is_amdgpu_bo(bo)) { placement->placement = &placements; placement->num_placement = 1; return; } abo = ttm_to_amdgpu_bo(bo); if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { placement->num_placement = 0; return; } switch (bo->resource->mem_type) { case AMDGPU_PL_GDS: case AMDGPU_PL_GWS: case AMDGPU_PL_OA: case AMDGPU_PL_DOORBELL: placement->num_placement = 0; return; case TTM_PL_VRAM: if (!adev->mman.buffer_funcs_enabled) { /* Move to system memory */ amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && amdgpu_bo_in_cpu_visible_vram(abo)) { /* Try evicting to the CPU inaccessible part of VRAM * first, but only set GTT as busy placement, so this * BO will be evicted to GTT rather than causing other * BOs to be evicted from VRAM */ amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT | AMDGPU_GEM_DOMAIN_CPU); abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; abo->placements[0].lpfn = 0; abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; } else { /* Move to GTT memory */ amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | AMDGPU_GEM_DOMAIN_CPU); } break; case TTM_PL_TT: case AMDGPU_PL_PREEMPT: default: amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); break; } *placement = abo->placement; } /** * amdgpu_ttm_map_buffer - Map memory into the GART windows * @bo: buffer object to map * @mem: memory object to map * @mm_cur: range to map * @window: which GART window to use * @ring: DMA ring to use for the copy * @tmz: if we should setup a TMZ enabled mapping * @size: in number of bytes to map, out number of bytes mapped * @addr: resulting address inside the MC address space * * Setup one of the GART windows to access a specific piece of memory or return * the physical address for local memory. */ static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, struct ttm_resource *mem, struct amdgpu_res_cursor *mm_cur, unsigned int window, struct amdgpu_ring *ring, bool tmz, uint64_t *size, uint64_t *addr) { struct amdgpu_device *adev = ring->adev; unsigned int offset, num_pages, num_dw, num_bytes; uint64_t src_addr, dst_addr; struct amdgpu_job *job; void *cpu_addr; uint64_t flags; unsigned int i; int r; BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) return -EINVAL; /* Map only what can't be accessed directly */ if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + mm_cur->start; return 0; } /* * If start begins at an offset inside the page, then adjust the size * and addr accordingly */ offset = mm_cur->start & ~PAGE_MASK; num_pages = PFN_UP(*size + offset); num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); *addr = adev->gmc.gart_start; *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * AMDGPU_GPU_PAGE_SIZE; *addr += offset; num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, AMDGPU_FENCE_OWNER_UNDEFINED, num_dw * 4 + num_bytes, AMDGPU_IB_POOL_DELAYED, &job); if (r) return r; src_addr = num_dw * 4; src_addr += job->ibs[0].gpu_addr; dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, num_bytes, false); amdgpu_ring_pad_ib(ring, &job->ibs[0]); WARN_ON(job->ibs[0].length_dw > num_dw); flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); if (tmz) flags |= AMDGPU_PTE_TMZ; cpu_addr = &job->ibs[0].ptr[num_dw]; if (mem->mem_type == TTM_PL_TT) { dma_addr_t *dma_addr; dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); } else { dma_addr_t dma_address; dma_address = mm_cur->start; dma_address += adev->vm_manager.vram_base_offset; for (i = 0; i < num_pages; ++i) { amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, flags, cpu_addr); dma_address += PAGE_SIZE; } } dma_fence_put(amdgpu_job_submit(job)); return 0; } /** * amdgpu_ttm_copy_mem_to_mem - Helper function for copy * @adev: amdgpu device * @src: buffer/address where to read from * @dst: buffer/address where to write to * @size: number of bytes to copy * @tmz: if a secure copy should be used * @resv: resv object to sync to * @f: Returns the last fence if multiple jobs are submitted. * * The function copies @size bytes from {src->mem + src->offset} to * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a * move and different for a BO to BO copy. * */ int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, const struct amdgpu_copy_mem *src, const struct amdgpu_copy_mem *dst, uint64_t size, bool tmz, struct dma_resv *resv, struct dma_fence **f) { struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; struct amdgpu_res_cursor src_mm, dst_mm; struct dma_fence *fence = NULL; int r = 0; if (!adev->mman.buffer_funcs_enabled) { DRM_ERROR("Trying to move memory with ring turned off.\n"); return -EINVAL; } amdgpu_res_first(src->mem, src->offset, size, &src_mm); amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); mutex_lock(&adev->mman.gtt_window_lock); while (src_mm.remaining) { uint64_t from, to, cur_size; struct dma_fence *next; /* Never copy more than 256MiB at once to avoid a timeout */ cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); /* Map src to window 0 and dst to window 1. */ r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 0, ring, tmz, &cur_size, &from); if (r) goto error; r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 1, ring, tmz, &cur_size, &to); if (r) goto error; r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, &next, false, true, tmz); if (r) goto error; dma_fence_put(fence); fence = next; amdgpu_res_next(&src_mm, cur_size); amdgpu_res_next(&dst_mm, cur_size); } error: mutex_unlock(&adev->mman.gtt_window_lock); if (f) *f = dma_fence_get(fence); dma_fence_put(fence); return r; } /* * amdgpu_move_blit - Copy an entire buffer to another buffer * * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to * help move buffers to and from VRAM. */ static int amdgpu_move_blit(struct ttm_buffer_object *bo, bool evict, struct ttm_resource *new_mem, struct ttm_resource *old_mem) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); struct amdgpu_copy_mem src, dst; struct dma_fence *fence = NULL; int r; src.bo = bo; dst.bo = bo; src.mem = old_mem; dst.mem = new_mem; src.offset = 0; dst.offset = 0; r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, new_mem->size, amdgpu_bo_encrypted(abo), bo->base.resv, &fence); if (r) goto error; /* clear the space being freed */ if (old_mem->mem_type == TTM_PL_VRAM && (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { struct dma_fence *wipe_fence = NULL; r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, false); if (r) { goto error; } else if (wipe_fence) { dma_fence_put(fence); fence = wipe_fence; } } /* Always block for VM page tables before committing the new location */ if (bo->type == ttm_bo_type_kernel) r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); else r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); dma_fence_put(fence); return r; error: if (fence) dma_fence_wait(fence, false); dma_fence_put(fence); return r; } /* * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy * * Called by amdgpu_bo_move() */ static bool amdgpu_mem_visible(struct amdgpu_device *adev, struct ttm_resource *mem) { u64 mem_size = (u64)mem->size; struct amdgpu_res_cursor cursor; u64 end; if (mem->mem_type == TTM_PL_SYSTEM || mem->mem_type == TTM_PL_TT) return true; if (mem->mem_type != TTM_PL_VRAM) return false; amdgpu_res_first(mem, 0, mem_size, &cursor); end = cursor.start + cursor.size; while (cursor.remaining) { amdgpu_res_next(&cursor, cursor.size); if (!cursor.remaining) break; /* ttm_resource_ioremap only supports contiguous memory */ if (end != cursor.start) return false; end = cursor.start + cursor.size; } return end <= adev->gmc.visible_vram_size; } /* * amdgpu_bo_move - Move a buffer object to a new memory location * * Called by ttm_bo_handle_move_mem() */ static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, struct ttm_operation_ctx *ctx, struct ttm_resource *new_mem, struct ttm_place *hop) { struct amdgpu_device *adev; struct amdgpu_bo *abo; struct ttm_resource *old_mem = bo->resource; int r; if (new_mem->mem_type == TTM_PL_TT || new_mem->mem_type == AMDGPU_PL_PREEMPT) { r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); if (r) return r; } abo = ttm_to_amdgpu_bo(bo); adev = amdgpu_ttm_adev(bo->bdev); if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL)) { ttm_bo_move_null(bo, new_mem); goto out; } if (old_mem->mem_type == TTM_PL_SYSTEM && (new_mem->mem_type == TTM_PL_TT || new_mem->mem_type == AMDGPU_PL_PREEMPT)) { ttm_bo_move_null(bo, new_mem); goto out; } if ((old_mem->mem_type == TTM_PL_TT || old_mem->mem_type == AMDGPU_PL_PREEMPT) && new_mem->mem_type == TTM_PL_SYSTEM) { r = ttm_bo_wait_ctx(bo, ctx); if (r) return r; amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); ttm_resource_free(bo, &bo->resource); ttm_bo_assign_mem(bo, new_mem); goto out; } if (old_mem->mem_type == AMDGPU_PL_GDS || old_mem->mem_type == AMDGPU_PL_GWS || old_mem->mem_type == AMDGPU_PL_OA || old_mem->mem_type == AMDGPU_PL_DOORBELL || new_mem->mem_type == AMDGPU_PL_GDS || new_mem->mem_type == AMDGPU_PL_GWS || new_mem->mem_type == AMDGPU_PL_OA || new_mem->mem_type == AMDGPU_PL_DOORBELL) { /* Nothing to save here */ ttm_bo_move_null(bo, new_mem); goto out; } if (bo->type == ttm_bo_type_device && new_mem->mem_type == TTM_PL_VRAM && old_mem->mem_type != TTM_PL_VRAM) { /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU * accesses the BO after it's moved. */ abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; } if (adev->mman.buffer_funcs_enabled) { if (((old_mem->mem_type == TTM_PL_SYSTEM && new_mem->mem_type == TTM_PL_VRAM) || (old_mem->mem_type == TTM_PL_VRAM && new_mem->mem_type == TTM_PL_SYSTEM))) { hop->fpfn = 0; hop->lpfn = 0; hop->mem_type = TTM_PL_TT; hop->flags = TTM_PL_FLAG_TEMPORARY; return -EMULTIHOP; } r = amdgpu_move_blit(bo, evict, new_mem, old_mem); } else { r = -ENODEV; } if (r) { /* Check that all memory is CPU accessible */ if (!amdgpu_mem_visible(adev, old_mem) || !amdgpu_mem_visible(adev, new_mem)) { pr_err("Move buffer fallback to memcpy unavailable\n"); return r; } r = ttm_bo_move_memcpy(bo, ctx, new_mem); if (r) return r; } trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type); out: /* update statistics */ atomic64_add(bo->base.size, &adev->num_bytes_moved); amdgpu_bo_move_notify(bo, evict); return 0; } /* * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault * * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() */ static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) { struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); size_t bus_size = (size_t)mem->size; switch (mem->mem_type) { case TTM_PL_SYSTEM: /* system memory */ return 0; case TTM_PL_TT: case AMDGPU_PL_PREEMPT: break; case TTM_PL_VRAM: mem->bus.offset = mem->start << PAGE_SHIFT; /* check if it's visible */ if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) return -EINVAL; if (adev->mman.aper_base_kaddr && mem->placement & TTM_PL_FLAG_CONTIGUOUS) mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + mem->bus.offset; mem->bus.offset += adev->gmc.aper_base; mem->bus.is_iomem = true; break; case AMDGPU_PL_DOORBELL: mem->bus.offset = mem->start << PAGE_SHIFT; mem->bus.offset += adev->doorbell.base; mem->bus.is_iomem = true; mem->bus.caching = ttm_uncached; break; default: return -EINVAL; } return 0; } static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, unsigned long page_offset) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); struct amdgpu_res_cursor cursor; amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; } /** * amdgpu_ttm_domain_start - Returns GPU start address * @adev: amdgpu device object * @type: type of the memory * * Returns: * GPU start address of a memory domain */ uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) { switch (type) { case TTM_PL_TT: return adev->gmc.gart_start; case TTM_PL_VRAM: return adev->gmc.vram_start; } return 0; } /* * TTM backend functions. */ struct amdgpu_ttm_tt { struct ttm_tt ttm; struct drm_gem_object *gobj; u64 offset; uint64_t userptr; struct task_struct *usertask; uint32_t userflags; bool bound; int32_t pool_id; }; #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) #ifdef CONFIG_DRM_AMDGPU_USERPTR /* * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user * memory and start HMM tracking CPU page table update * * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only * once afterwards to stop HMM tracking */ int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, struct hmm_range **range) { struct ttm_tt *ttm = bo->tbo.ttm; struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); unsigned long start = gtt->userptr; struct vm_area_struct *vma; struct mm_struct *mm; bool readonly; int r = 0; /* Make sure get_user_pages_done() can cleanup gracefully */ *range = NULL; mm = bo->notifier.mm; if (unlikely(!mm)) { DRM_DEBUG_DRIVER("BO is not registered?\n"); return -EFAULT; } if (!mmget_not_zero(mm)) /* Happens during process shutdown */ return -ESRCH; mmap_read_lock(mm); vma = vma_lookup(mm, start); if (unlikely(!vma)) { r = -EFAULT; goto out_unlock; } if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && vma->vm_file)) { r = -EPERM; goto out_unlock; } readonly = amdgpu_ttm_tt_is_readonly(ttm); r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, readonly, NULL, pages, range); out_unlock: mmap_read_unlock(mm); if (r) pr_debug("failed %d to get user pages 0x%lx\n", r, start); mmput(mm); return r; } /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations */ void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, struct hmm_range *range) { struct amdgpu_ttm_tt *gtt = (void *)ttm; if (gtt && gtt->userptr && range) amdgpu_hmm_range_get_pages_done(range); } /* * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change * Check if the pages backing this ttm range have been invalidated * * Returns: true if pages are still valid */ bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, struct hmm_range *range) { struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); if (!gtt || !gtt->userptr || !range) return false; DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", gtt->userptr, ttm->num_pages); WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); return !amdgpu_hmm_range_get_pages_done(range); } #endif /* * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. * * Called by amdgpu_cs_list_validate(). This creates the page list * that backs user memory and will ultimately be mapped into the device * address space. */ void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) { unsigned long i; for (i = 0; i < ttm->num_pages; ++i) ttm->pages[i] = pages ? pages[i] : NULL; } /* * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages * * Called by amdgpu_ttm_backend_bind() **/ static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, struct ttm_tt *ttm) { struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); enum dma_data_direction direction = write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE; int r; /* Allocate an SG array and squash pages into it */ r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, (u64)ttm->num_pages << PAGE_SHIFT, GFP_KERNEL); if (r) goto release_sg; /* Map SG to device */ r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); if (r) goto release_sg; /* convert SG to linear array of pages and dma addresses */ drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, ttm->num_pages); return 0; release_sg: kfree(ttm->sg); ttm->sg = NULL; return r; } /* * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages */ static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, struct ttm_tt *ttm) { struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); enum dma_data_direction direction = write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE; /* double check that we don't free the table twice */ if (!ttm->sg || !ttm->sg->sgl) return; /* unmap the pages mapped to the device */ dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); sg_free_table(ttm->sg); } /* * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... * MQDn+CtrlStackn where n is the number of XCCs per partition. * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD * and uses memory type default, UC. The rest of pages_per_xcc are * Ctrl stack and modify their memory type to NC. */ static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, struct ttm_tt *ttm, uint64_t flags) { struct amdgpu_ttm_tt *gtt = (void *)ttm; uint64_t total_pages = ttm->num_pages; int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); uint64_t page_idx, pages_per_xcc; int i; uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); pages_per_xcc = total_pages; do_div(pages_per_xcc, num_xcc); for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { /* MQD page: use default flags */ amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT), 1, >t->ttm.dma_address[page_idx], flags); /* * Ctrl pages - modify the memory type to NC (ctrl_flags) from * the second page of the BO onward. */ amdgpu_gart_bind(adev, gtt->offset + ((page_idx + 1) << PAGE_SHIFT), pages_per_xcc - 1, >t->ttm.dma_address[page_idx + 1], ctrl_flags); } } static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, struct ttm_buffer_object *tbo, uint64_t flags) { struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); struct ttm_tt *ttm = tbo->ttm; struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); if (amdgpu_bo_encrypted(abo)) flags |= AMDGPU_PTE_TMZ; if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); } else { amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, gtt->ttm.dma_address, flags); } gtt->bound = true; } /* * amdgpu_ttm_backend_bind - Bind GTT memory * * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). * This handles binding GTT memory to the device address space. */ static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, struct ttm_tt *ttm, struct ttm_resource *bo_mem) { struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); uint64_t flags; int r; if (!bo_mem) return -EINVAL; if (gtt->bound) return 0; if (gtt->userptr) { r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); if (r) { DRM_ERROR("failed to pin userptr\n"); return r; } } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { if (!ttm->sg) { struct dma_buf_attachment *attach; struct sg_table *sgt; attach = gtt->gobj->import_attach; sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); if (IS_ERR(sgt)) return PTR_ERR(sgt); ttm->sg = sgt; } drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, ttm->num_pages); } if (!ttm->num_pages) { WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", ttm->num_pages, bo_mem, ttm); } if (bo_mem->mem_type != TTM_PL_TT || !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { gtt->offset = AMDGPU_BO_INVALID_OFFSET; return 0; } /* compute PTE flags relevant to this BO memory */ flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); /* bind pages into GART page tables */ gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, gtt->ttm.dma_address, flags); gtt->bound = true; return 0; } /* * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either * through AGP or GART aperture. * * If bo is accessible through AGP aperture, then use AGP aperture * to access bo; otherwise allocate logical space in GART aperture * and map bo to GART aperture. */ int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); struct ttm_operation_ctx ctx = { false, false }; struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); struct ttm_placement placement; struct ttm_place placements; struct ttm_resource *tmp; uint64_t addr, flags; int r; if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) return 0; addr = amdgpu_gmc_agp_addr(bo); if (addr != AMDGPU_BO_INVALID_OFFSET) return 0; /* allocate GART space */ placement.num_placement = 1; placement.placement = &placements; placements.fpfn = 0; placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; placements.mem_type = TTM_PL_TT; placements.flags = bo->resource->placement; r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); if (unlikely(r)) return r; /* compute PTE flags for this buffer object */ flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); /* Bind pages */ gtt->offset = (u64)tmp->start << PAGE_SHIFT; amdgpu_ttm_gart_bind(adev, bo, flags); amdgpu_gart_invalidate_tlb(adev); ttm_resource_free(bo, &bo->resource); ttm_bo_assign_mem(bo, tmp); return 0; } /* * amdgpu_ttm_recover_gart - Rebind GTT pages * * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to * rebind GTT pages during a GPU reset. */ void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) { struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); uint64_t flags; if (!tbo->ttm) return; flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); amdgpu_ttm_gart_bind(adev, tbo, flags); } /* * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages * * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and * ttm_tt_destroy(). */ static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, struct ttm_tt *ttm) { struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); /* if the pages have userptr pinning then clear that first */ if (gtt->userptr) { amdgpu_ttm_tt_unpin_userptr(bdev, ttm); } else if (ttm->sg && gtt->gobj->import_attach) { struct dma_buf_attachment *attach; attach = gtt->gobj->import_attach; dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); ttm->sg = NULL; } if (!gtt->bound) return; if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) return; /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); gtt->bound = false; } static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); if (gtt->usertask) put_task_struct(gtt->usertask); ttm_tt_fini(>t->ttm); kfree(gtt); } /** * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO * * @bo: The buffer object to create a GTT ttm_tt object around * @page_flags: Page flags to be added to the ttm_tt object * * Called by ttm_tt_create(). */ static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); struct amdgpu_ttm_tt *gtt; enum ttm_caching caching; gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); if (!gtt) return NULL; gtt->gobj = &bo->base; if (adev->gmc.mem_partitions && abo->xcp_id >= 0) gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); else gtt->pool_id = abo->xcp_id; if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) caching = ttm_write_combined; else caching = ttm_cached; /* allocate space for the uninitialized page entries */ if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { kfree(gtt); return NULL; } return >t->ttm; } /* * amdgpu_ttm_tt_populate - Map GTT pages visible to the device * * Map the pages of a ttm_tt object to an address space visible * to the underlying device. */ static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) { struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); struct ttm_pool *pool; pgoff_t i; int ret; /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ if (gtt->userptr) { ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); if (!ttm->sg) return -ENOMEM; return 0; } if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) return 0; if (adev->mman.ttm_pools && gtt->pool_id >= 0) pool = &adev->mman.ttm_pools[gtt->pool_id]; else pool = &adev->mman.bdev.pool; ret = ttm_pool_alloc(pool, ttm, ctx); if (ret) return ret; for (i = 0; i < ttm->num_pages; ++i) ttm->pages[i]->mapping = bdev->dev_mapping; return 0; } /* * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays * * Unmaps pages of a ttm_tt object from the device address space and * unpopulates the page array backing it. */ static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); struct amdgpu_device *adev; struct ttm_pool *pool; pgoff_t i; amdgpu_ttm_backend_unbind(bdev, ttm); if (gtt->userptr) { amdgpu_ttm_tt_set_user_pages(ttm, NULL); kfree(ttm->sg); ttm->sg = NULL; return; } if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) return; for (i = 0; i < ttm->num_pages; ++i) ttm->pages[i]->mapping = NULL; adev = amdgpu_ttm_adev(bdev); if (adev->mman.ttm_pools && gtt->pool_id >= 0) pool = &adev->mman.ttm_pools[gtt->pool_id]; else pool = &adev->mman.bdev.pool; return ttm_pool_free(pool, ttm); } /** * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current * task * * @tbo: The ttm_buffer_object that contains the userptr * @user_addr: The returned value */ int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, uint64_t *user_addr) { struct amdgpu_ttm_tt *gtt; if (!tbo->ttm) return -EINVAL; gtt = (void *)tbo->ttm; *user_addr = gtt->userptr; return 0; } /** * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current * task * * @bo: The ttm_buffer_object to bind this userptr to * @addr: The address in the current tasks VM space to use * @flags: Requirements of userptr object. * * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to * initialize GPU VM for a KFD process. */ int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, uint64_t addr, uint32_t flags) { struct amdgpu_ttm_tt *gtt; if (!bo->ttm) { /* TODO: We want a separate TTM object type for userptrs */ bo->ttm = amdgpu_ttm_tt_create(bo, 0); if (bo->ttm == NULL) return -ENOMEM; } /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); gtt->userptr = addr; gtt->userflags = flags; if (gtt->usertask) put_task_struct(gtt->usertask); gtt->usertask = current->group_leader; get_task_struct(gtt->usertask); return 0; } /* * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object */ struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); if (gtt == NULL) return NULL; if (gtt->usertask == NULL) return NULL; return gtt->usertask->mm; } /* * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an * address range for the current task. * */ bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, unsigned long end, unsigned long *userptr) { struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); unsigned long size; if (gtt == NULL || !gtt->userptr) return false; /* Return false if no part of the ttm_tt object lies within * the range */ size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; if (gtt->userptr > end || gtt->userptr + size <= start) return false; if (userptr) *userptr = gtt->userptr; return true; } /* * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? */ bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); if (gtt == NULL || !gtt->userptr) return false; return true; } /* * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? */ bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); if (gtt == NULL) return false; return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); } /** * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object * * @ttm: The ttm_tt object to compute the flags for * @mem: The memory registry backing this ttm_tt object * * Figure out the flags to use for a VM PDE (Page Directory Entry). */ uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) { uint64_t flags = 0; if (mem && mem->mem_type != TTM_PL_SYSTEM) flags |= AMDGPU_PTE_VALID; if (mem && (mem->mem_type == TTM_PL_TT || mem->mem_type == AMDGPU_PL_DOORBELL || mem->mem_type == AMDGPU_PL_PREEMPT)) { flags |= AMDGPU_PTE_SYSTEM; if (ttm->caching == ttm_cached) flags |= AMDGPU_PTE_SNOOPED; } if (mem && mem->mem_type == TTM_PL_VRAM && mem->bus.caching == ttm_cached) flags |= AMDGPU_PTE_SNOOPED; return flags; } /** * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object * * @adev: amdgpu_device pointer * @ttm: The ttm_tt object to compute the flags for * @mem: The memory registry backing this ttm_tt object * * Figure out the flags to use for a VM PTE (Page Table Entry). */ uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, struct ttm_resource *mem) { uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); flags |= adev->gart.gart_pte_flags; flags |= AMDGPU_PTE_READABLE; if (!amdgpu_ttm_tt_is_readonly(ttm)) flags |= AMDGPU_PTE_WRITEABLE; return flags; } /* * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer * object. * * Return true if eviction is sensible. Called by ttm_mem_evict_first() on * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until * it can find space for a new object and by ttm_bo_force_list_clean() which is * used to clean out a memory space. */ static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place) { struct dma_resv_iter resv_cursor; struct dma_fence *f; if (!amdgpu_bo_is_amdgpu_bo(bo)) return ttm_bo_eviction_valuable(bo, place); /* Swapout? */ if (bo->resource->mem_type == TTM_PL_SYSTEM) return true; if (bo->type == ttm_bo_type_kernel && !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) return false; /* If bo is a KFD BO, check if the bo belongs to the current process. * If true, then return false as any KFD process needs all its BOs to * be resident to run successfully */ dma_resv_for_each_fence(&resv_cursor, bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, f) { if (amdkfd_fence_check_mm(f, current->mm)) return false; } /* Preemptible BOs don't own system resources managed by the * driver (pages, VRAM, GART space). They point to resources * owned by someone else (e.g. pageable memory in user mode * or a DMABuf). They are used in a preemptible context so we * can guarantee no deadlocks and good QoS in case of MMU * notifiers or DMABuf move notifiers from the resource owner. */ if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) return false; if (bo->resource->mem_type == TTM_PL_TT && amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) return false; return ttm_bo_eviction_valuable(bo, place); } static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, void *buf, size_t size, bool write) { while (size) { uint64_t aligned_pos = ALIGN_DOWN(pos, 4); uint64_t bytes = 4 - (pos & 0x3); uint32_t shift = (pos & 0x3) * 8; uint32_t mask = 0xffffffff << shift; uint32_t value = 0; if (size < bytes) { mask &= 0xffffffff >> (bytes - size) * 8; bytes = size; } if (mask != 0xffffffff) { amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); if (write) { value &= ~mask; value |= (*(uint32_t *)buf << shift) & mask; amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); } else { value = (value & mask) >> shift; memcpy(buf, &value, bytes); } } else { amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); } pos += bytes; buf += bytes; size -= bytes; } } static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, unsigned long offset, void *buf, int len, int write) { struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); struct amdgpu_res_cursor src_mm; struct amdgpu_job *job; struct dma_fence *fence; uint64_t src_addr, dst_addr; unsigned int num_dw; int r, idx; if (len != PAGE_SIZE) return -EINVAL; if (!adev->mman.sdma_access_ptr) return -EACCES; if (!drm_dev_enter(adev_to_drm(adev), &idx)) return -ENODEV; if (write) memcpy(adev->mman.sdma_access_ptr, buf, len); num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, AMDGPU_FENCE_OWNER_UNDEFINED, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job); if (r) goto out; amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start; dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); if (write) swap(src_addr, dst_addr); amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false); amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); WARN_ON(job->ibs[0].length_dw > num_dw); fence = amdgpu_job_submit(job); if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) r = -ETIMEDOUT; dma_fence_put(fence); if (!(r || write)) memcpy(buf, adev->mman.sdma_access_ptr, len); out: drm_dev_exit(idx); return r; } /** * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. * * @bo: The buffer object to read/write * @offset: Offset into buffer object * @buf: Secondary buffer to write/read from * @len: Length in bytes of access * @write: true if writing * * This is used to access VRAM that backs a buffer object via MMIO * access for debugging purposes. */ static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, unsigned long offset, void *buf, int len, int write) { struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); struct amdgpu_res_cursor cursor; int ret = 0; if (bo->resource->mem_type != TTM_PL_VRAM) return -EIO; if (amdgpu_device_has_timeouts_enabled(adev) && !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) return len; amdgpu_res_first(bo->resource, offset, len, &cursor); while (cursor.remaining) { size_t count, size = cursor.size; loff_t pos = cursor.start; count = amdgpu_device_aper_access(adev, pos, buf, size, write); size -= count; if (size) { /* using MM to access rest vram and handle un-aligned address */ pos += count; buf += count; amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); } ret += cursor.size; buf += cursor.size; amdgpu_res_next(&cursor, cursor.size); } return ret; } static void amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) { amdgpu_bo_move_notify(bo, false); } static struct ttm_device_funcs amdgpu_bo_driver = { .ttm_tt_create = &amdgpu_ttm_tt_create, .ttm_tt_populate = &amdgpu_ttm_tt_populate, .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, .evict_flags = &amdgpu_evict_flags, .move = &amdgpu_bo_move, .delete_mem_notify = &amdgpu_bo_delete_mem_notify, .release_notify = &amdgpu_bo_release_notify, .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, .io_mem_pfn = amdgpu_ttm_io_mem_pfn, .access_memory = &amdgpu_ttm_access_memory, }; /* * Firmware Reservation functions */ /** * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram * * @adev: amdgpu_device pointer * * free fw reserved vram if it has been reserved. */ static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, NULL, &adev->mman.fw_vram_usage_va); } /* * Driver Reservation functions */ /** * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram * * @adev: amdgpu_device pointer * * free drv reserved vram if it has been reserved. */ static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, NULL, &adev->mman.drv_vram_usage_va); } /** * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw * * @adev: amdgpu_device pointer * * create bo vram reservation from fw. */ static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) { uint64_t vram_size = adev->gmc.visible_vram_size; adev->mman.fw_vram_usage_va = NULL; adev->mman.fw_vram_usage_reserved_bo = NULL; if (adev->mman.fw_vram_usage_size == 0 || adev->mman.fw_vram_usage_size > vram_size) return 0; return amdgpu_bo_create_kernel_at(adev, adev->mman.fw_vram_usage_start_offset, adev->mman.fw_vram_usage_size, &adev->mman.fw_vram_usage_reserved_bo, &adev->mman.fw_vram_usage_va); } /** * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver * * @adev: amdgpu_device pointer * * create bo vram reservation from drv. */ static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) { u64 vram_size = adev->gmc.visible_vram_size; adev->mman.drv_vram_usage_va = NULL; adev->mman.drv_vram_usage_reserved_bo = NULL; if (adev->mman.drv_vram_usage_size == 0 || adev->mman.drv_vram_usage_size > vram_size) return 0; return amdgpu_bo_create_kernel_at(adev, adev->mman.drv_vram_usage_start_offset, adev->mman.drv_vram_usage_size, &adev->mman.drv_vram_usage_reserved_bo, &adev->mman.drv_vram_usage_va); } /* * Memoy training reservation functions */ /** * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram * * @adev: amdgpu_device pointer * * free memory training reserved vram if it has been reserved. */ static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) { struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); ctx->c2p_bo = NULL; return 0; } static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, uint32_t reserve_size) { struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; memset(ctx, 0, sizeof(*ctx)); ctx->c2p_train_data_offset = ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", ctx->train_data_size, ctx->p2c_train_data_offset, ctx->c2p_train_data_offset); } /* * reserve TMR memory at the top of VRAM which holds * IP Discovery data and is protected by PSP. */ static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) { struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; bool mem_train_support = false; uint32_t reserve_size = 0; int ret; if (adev->bios && !amdgpu_sriov_vf(adev)) { if (amdgpu_atomfirmware_mem_training_supported(adev)) mem_train_support = true; else DRM_DEBUG("memory training does not support!\n"); } /* * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) * * Otherwise, fallback to legacy approach to check and reserve tmr block for ip * discovery data and G6 memory training data respectively */ if (adev->bios) reserve_size = amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); if (!adev->bios && amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3)) reserve_size = max(reserve_size, (uint32_t)280 << 20); else if (!reserve_size) reserve_size = DISCOVERY_TMR_OFFSET; if (mem_train_support) { /* reserve vram for mem train according to TMR location */ amdgpu_ttm_training_data_block_init(adev, reserve_size); ret = amdgpu_bo_create_kernel_at(adev, ctx->c2p_train_data_offset, ctx->train_data_size, &ctx->c2p_bo, NULL); if (ret) { DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); amdgpu_ttm_training_reserve_vram_fini(adev); return ret; } ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; } if (!adev->gmc.is_app_apu) { ret = amdgpu_bo_create_kernel_at( adev, adev->gmc.real_vram_size - reserve_size, reserve_size, &adev->mman.fw_reserved_memory, NULL); if (ret) { DRM_ERROR("alloc tmr failed(%d)!\n", ret); amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, NULL); return ret; } } else { DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); } return 0; } static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) { int i; if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) return 0; adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, sizeof(*adev->mman.ttm_pools), GFP_KERNEL); if (!adev->mman.ttm_pools) return -ENOMEM; for (i = 0; i < adev->gmc.num_mem_partitions; i++) { ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, adev->gmc.mem_partitions[i].numa.node, false, false); } return 0; } static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) { int i; if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) return; for (i = 0; i < adev->gmc.num_mem_partitions; i++) ttm_pool_fini(&adev->mman.ttm_pools[i]); kfree(adev->mman.ttm_pools); adev->mman.ttm_pools = NULL; } /* * amdgpu_ttm_init - Init the memory management (ttm) as well as various * gtt/vram related fields. * * This initializes all of the memory space pools that the TTM layer * will need such as the GTT space (system memory mapped to the device), * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which * can be mapped per VMID. */ int amdgpu_ttm_init(struct amdgpu_device *adev) { uint64_t gtt_size; int r; mutex_init(&adev->mman.gtt_window_lock); /* No others user of address space so set it to 0 */ r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, adev_to_drm(adev)->anon_inode->i_mapping, adev_to_drm(adev)->vma_offset_manager, adev->need_swiotlb, dma_addressing_limited(adev->dev)); if (r) { DRM_ERROR("failed initializing buffer object driver(%d).\n", r); return r; } r = amdgpu_ttm_pools_init(adev); if (r) { DRM_ERROR("failed to init ttm pools(%d).\n", r); return r; } adev->mman.initialized = true; /* Initialize VRAM pool with all of VRAM divided into pages */ r = amdgpu_vram_mgr_init(adev); if (r) { DRM_ERROR("Failed initializing VRAM heap.\n"); return r; } /* Change the size here instead of the init above so only lpfn is affected */ amdgpu_ttm_set_buffer_funcs_status(adev, false); #ifdef CONFIG_64BIT #ifdef CONFIG_X86 if (adev->gmc.xgmi.connected_to_cpu) adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, adev->gmc.visible_vram_size); else if (adev->gmc.is_app_apu) DRM_DEBUG_DRIVER( "No need to ioremap when real vram size is 0\n"); else #endif adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, adev->gmc.visible_vram_size); #endif /* *The reserved vram for firmware must be pinned to the specified *place on the VRAM, so reserve it early. */ r = amdgpu_ttm_fw_reserve_vram_init(adev); if (r) return r; /* *The reserved vram for driver must be pinned to the specified *place on the VRAM, so reserve it early. */ r = amdgpu_ttm_drv_reserve_vram_init(adev); if (r) return r; /* * only NAVI10 and onwards ASIC support for IP discovery. * If IP discovery enabled, a block of memory should be * reserved for IP discovey. */ if (adev->mman.discovery_bin) { r = amdgpu_ttm_reserve_tmr(adev); if (r) return r; } /* allocate memory as required for VGA * This is used for VGA emulation and pre-OS scanout buffers to * avoid display artifacts while transitioning between pre-OS * and driver. */ if (!adev->gmc.is_app_apu) { r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, &adev->mman.stolen_vga_memory, NULL); if (r) return r; r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, adev->mman.stolen_extended_size, &adev->mman.stolen_extended_memory, NULL); if (r) return r; r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset, adev->mman.stolen_reserved_size, &adev->mman.stolen_reserved_memory, NULL); if (r) return r; } else { DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); } DRM_INFO("amdgpu: %uM of VRAM memory ready\n", (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); /* Compute GTT size, either based on TTM limit * or whatever the user passed on module init. */ if (amdgpu_gtt_size == -1) gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; else gtt_size = (uint64_t)amdgpu_gtt_size << 20; /* Initialize GTT memory pool */ r = amdgpu_gtt_mgr_init(adev, gtt_size); if (r) { DRM_ERROR("Failed initializing GTT heap.\n"); return r; } DRM_INFO("amdgpu: %uM of GTT memory ready.\n", (unsigned int)(gtt_size / (1024 * 1024))); /* Initiailize doorbell pool on PCI BAR */ r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); if (r) { DRM_ERROR("Failed initializing doorbell heap.\n"); return r; } /* Create a boorbell page for kernel usages */ r = amdgpu_doorbell_create_kernel_doorbells(adev); if (r) { DRM_ERROR("Failed to initialize kernel doorbells.\n"); return r; } /* Initialize preemptible memory pool */ r = amdgpu_preempt_mgr_init(adev); if (r) { DRM_ERROR("Failed initializing PREEMPT heap.\n"); return r; } /* Initialize various on-chip memory pools */ r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); if (r) { DRM_ERROR("Failed initializing GDS heap.\n"); return r; } r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); if (r) { DRM_ERROR("Failed initializing gws heap.\n"); return r; } r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); if (r) { DRM_ERROR("Failed initializing oa heap.\n"); return r; } if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->mman.sdma_access_bo, NULL, &adev->mman.sdma_access_ptr)) DRM_WARN("Debug VRAM access will use slowpath MM access\n"); return 0; } /* * amdgpu_ttm_fini - De-initialize the TTM memory pools */ void amdgpu_ttm_fini(struct amdgpu_device *adev) { int idx; if (!adev->mman.initialized) return; amdgpu_ttm_pools_fini(adev); amdgpu_ttm_training_reserve_vram_fini(adev); /* return the stolen vga memory back to VRAM */ if (!adev->gmc.is_app_apu) { amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); /* return the FW reserved memory back to VRAM */ amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, NULL); if (adev->mman.stolen_reserved_size) amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, NULL, NULL); } amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, &adev->mman.sdma_access_ptr); amdgpu_ttm_fw_reserve_vram_fini(adev); amdgpu_ttm_drv_reserve_vram_fini(adev); if (drm_dev_enter(adev_to_drm(adev), &idx)) { if (adev->mman.aper_base_kaddr) iounmap(adev->mman.aper_base_kaddr); adev->mman.aper_base_kaddr = NULL; drm_dev_exit(idx); } amdgpu_vram_mgr_fini(adev); amdgpu_gtt_mgr_fini(adev); amdgpu_preempt_mgr_fini(adev); ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); ttm_device_fini(&adev->mman.bdev); adev->mman.initialized = false; DRM_INFO("amdgpu: ttm finalized\n"); } /** * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions * * @adev: amdgpu_device pointer * @enable: true when we can use buffer functions. * * Enable/disable use of buffer functions during suspend/resume. This should * only be called at bootup or when userspace isn't running. */ void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) { struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); uint64_t size; int r; if (!adev->mman.initialized || amdgpu_in_reset(adev) || adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) return; if (enable) { struct amdgpu_ring *ring; struct drm_gpu_scheduler *sched; ring = adev->mman.buffer_funcs_ring; sched = &ring->sched; r = drm_sched_entity_init(&adev->mman.high_pr, DRM_SCHED_PRIORITY_KERNEL, &sched, 1, NULL); if (r) { DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", r); return; } r = drm_sched_entity_init(&adev->mman.low_pr, DRM_SCHED_PRIORITY_NORMAL, &sched, 1, NULL); if (r) { DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", r); goto error_free_entity; } } else { drm_sched_entity_destroy(&adev->mman.high_pr); drm_sched_entity_destroy(&adev->mman.low_pr); dma_fence_put(man->move); man->move = NULL; } /* this just adjusts TTM size idea, which sets lpfn to the correct value */ if (enable) size = adev->gmc.real_vram_size; else size = adev->gmc.visible_vram_size; man->size = size; adev->mman.buffer_funcs_enabled = enable; return; error_free_entity: drm_sched_entity_destroy(&adev->mman.high_pr); } static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, bool direct_submit, unsigned int num_dw, struct dma_resv *resv, bool vm_needs_flush, struct amdgpu_job **job, bool delayed) { enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT : AMDGPU_IB_POOL_DELAYED; int r; struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : &adev->mman.high_pr; r = amdgpu_job_alloc_with_ib(adev, entity, AMDGPU_FENCE_OWNER_UNDEFINED, num_dw * 4, pool, job); if (r) return r; if (vm_needs_flush) { (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? adev->gmc.pdb0_bo : adev->gart.bo); (*job)->vm_needs_flush = true; } if (!resv) return 0; return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, DMA_RESV_USAGE_BOOKKEEP); } int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, uint64_t dst_offset, uint32_t byte_count, struct dma_resv *resv, struct dma_fence **fence, bool direct_submit, bool vm_needs_flush, bool tmz) { struct amdgpu_device *adev = ring->adev; unsigned int num_loops, num_dw; struct amdgpu_job *job; uint32_t max_bytes; unsigned int i; int r; if (!direct_submit && !ring->sched.ready) { DRM_ERROR("Trying to move memory with ring turned off.\n"); return -EINVAL; } max_bytes = adev->mman.buffer_funcs->copy_max_bytes; num_loops = DIV_ROUND_UP(byte_count, max_bytes); num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, resv, vm_needs_flush, &job, false); if (r) return r; for (i = 0; i < num_loops; i++) { uint32_t cur_size_in_bytes = min(byte_count, max_bytes); amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, dst_offset, cur_size_in_bytes, tmz); src_offset += cur_size_in_bytes; dst_offset += cur_size_in_bytes; byte_count -= cur_size_in_bytes; } amdgpu_ring_pad_ib(ring, &job->ibs[0]); WARN_ON(job->ibs[0].length_dw > num_dw); if (direct_submit) r = amdgpu_job_submit_direct(job, ring, fence); else *fence = amdgpu_job_submit(job); if (r) goto error_free; return r; error_free: amdgpu_job_free(job); DRM_ERROR("Error scheduling IBs (%d)\n", r); return r; } static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, uint64_t dst_addr, uint32_t byte_count, struct dma_resv *resv, struct dma_fence **fence, bool vm_needs_flush, bool delayed) { struct amdgpu_device *adev = ring->adev; unsigned int num_loops, num_dw; struct amdgpu_job *job; uint32_t max_bytes; unsigned int i; int r; max_bytes = adev->mman.buffer_funcs->fill_max_bytes; num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, &job, delayed); if (r) return r; for (i = 0; i < num_loops; i++) { uint32_t cur_size = min(byte_count, max_bytes); amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, cur_size); dst_addr += cur_size; byte_count -= cur_size; } amdgpu_ring_pad_ib(ring, &job->ibs[0]); WARN_ON(job->ibs[0].length_dw > num_dw); *fence = amdgpu_job_submit(job); return 0; } int amdgpu_fill_buffer(struct amdgpu_bo *bo, uint32_t src_data, struct dma_resv *resv, struct dma_fence **f, bool delayed) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; struct dma_fence *fence = NULL; struct amdgpu_res_cursor dst; int r; if (!adev->mman.buffer_funcs_enabled) { DRM_ERROR("Trying to clear memory with ring turned off.\n"); return -EINVAL; } amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); mutex_lock(&adev->mman.gtt_window_lock); while (dst.remaining) { struct dma_fence *next; uint64_t cur_size, to; /* Never fill more than 256MiB at once to avoid timeouts */ cur_size = min(dst.size, 256ULL << 20); r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 1, ring, false, &cur_size, &to); if (r) goto error; r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, &next, true, delayed); if (r) goto error; dma_fence_put(fence); fence = next; amdgpu_res_next(&dst, cur_size); } error: mutex_unlock(&adev->mman.gtt_window_lock); if (f) *f = dma_fence_get(fence); dma_fence_put(fence); return r; } /** * amdgpu_ttm_evict_resources - evict memory buffers * @adev: amdgpu device object * @mem_type: evicted BO's memory type * * Evicts all @mem_type buffers on the lru list of the memory type. * * Returns: * 0 for success or a negative error code on failure. */ int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) { struct ttm_resource_manager *man; switch (mem_type) { case TTM_PL_VRAM: case TTM_PL_TT: case AMDGPU_PL_GWS: case AMDGPU_PL_GDS: case AMDGPU_PL_OA: man = ttm_manager_type(&adev->mman.bdev, mem_type); break; default: DRM_ERROR("Trying to evict invalid memory type\n"); return -EINVAL; } return ttm_resource_manager_evict_all(&adev->mman.bdev, man); } #if defined(CONFIG_DEBUG_FS) static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) { struct amdgpu_device *adev = m->private; return ttm_pool_debugfs(&adev->mman.bdev.pool, m); } DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); /* * amdgpu_ttm_vram_read - Linear read access to VRAM * * Accesses VRAM via MMIO for debugging purposes. */ static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; if (size & 0x3 || *pos & 0x3) return -EINVAL; if (*pos >= adev->gmc.mc_vram_size) return -ENXIO; size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); while (size) { size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; amdgpu_device_vram_access(adev, *pos, value, bytes, false); if (copy_to_user(buf, value, bytes)) return -EFAULT; result += bytes; buf += bytes; *pos += bytes; size -= bytes; } return result; } /* * amdgpu_ttm_vram_write - Linear write access to VRAM * * Accesses VRAM via MMIO for debugging purposes. */ static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; if (*pos >= adev->gmc.mc_vram_size) return -ENXIO; while (size) { uint32_t value; if (*pos >= adev->gmc.mc_vram_size) return result; r = get_user(value, (uint32_t *)buf); if (r) return r; amdgpu_device_mm_access(adev, *pos, &value, 4, true); result += 4; buf += 4; *pos += 4; size -= 4; } return result; } static const struct file_operations amdgpu_ttm_vram_fops = { .owner = THIS_MODULE, .read = amdgpu_ttm_vram_read, .write = amdgpu_ttm_vram_write, .llseek = default_llseek, }; /* * amdgpu_iomem_read - Virtual read access to GPU mapped memory * * This function is used to read memory that has been mapped to the * GPU and the known addresses are not physical addresses but instead * bus addresses (e.g., what you'd put in an IB or ring buffer). */ static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; struct iommu_domain *dom; ssize_t result = 0; int r; /* retrieve the IOMMU domain if any for this device */ dom = iommu_get_domain_for_dev(adev->dev); while (size) { phys_addr_t addr = *pos & PAGE_MASK; loff_t off = *pos & ~PAGE_MASK; size_t bytes = PAGE_SIZE - off; unsigned long pfn; struct page *p; void *ptr; bytes = min(bytes, size); /* Translate the bus address to a physical address. If * the domain is NULL it means there is no IOMMU active * and the address translation is the identity */ addr = dom ? iommu_iova_to_phys(dom, addr) : addr; pfn = addr >> PAGE_SHIFT; if (!pfn_valid(pfn)) return -EPERM; p = pfn_to_page(pfn); if (p->mapping != adev->mman.bdev.dev_mapping) return -EPERM; ptr = kmap_local_page(p); r = copy_to_user(buf, ptr + off, bytes); kunmap_local(ptr); if (r) return -EFAULT; size -= bytes; *pos += bytes; result += bytes; } return result; } /* * amdgpu_iomem_write - Virtual write access to GPU mapped memory * * This function is used to write memory that has been mapped to the * GPU and the known addresses are not physical addresses but instead * bus addresses (e.g., what you'd put in an IB or ring buffer). */ static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; struct iommu_domain *dom; ssize_t result = 0; int r; dom = iommu_get_domain_for_dev(adev->dev); while (size) { phys_addr_t addr = *pos & PAGE_MASK; loff_t off = *pos & ~PAGE_MASK; size_t bytes = PAGE_SIZE - off; unsigned long pfn; struct page *p; void *ptr; bytes = min(bytes, size); addr = dom ? iommu_iova_to_phys(dom, addr) : addr; pfn = addr >> PAGE_SHIFT; if (!pfn_valid(pfn)) return -EPERM; p = pfn_to_page(pfn); if (p->mapping != adev->mman.bdev.dev_mapping) return -EPERM; ptr = kmap_local_page(p); r = copy_from_user(ptr + off, buf, bytes); kunmap_local(ptr); if (r) return -EFAULT; size -= bytes; *pos += bytes; result += bytes; } return result; } static const struct file_operations amdgpu_ttm_iomem_fops = { .owner = THIS_MODULE, .read = amdgpu_iomem_read, .write = amdgpu_iomem_write, .llseek = default_llseek }; #endif void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) struct drm_minor *minor = adev_to_drm(adev)->primary; struct dentry *root = minor->debugfs_root; debugfs_create_file_size("amdgpu_vram", 0444, root, adev, &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); debugfs_create_file("amdgpu_iomem", 0444, root, adev, &amdgpu_ttm_iomem_fops); debugfs_create_file("ttm_page_pool", 0444, root, adev, &amdgpu_ttm_page_pool_fops); ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM), root, "amdgpu_vram_mm"); ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, TTM_PL_TT), root, "amdgpu_gtt_mm"); ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, AMDGPU_PL_GDS), root, "amdgpu_gds_mm"); ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, AMDGPU_PL_GWS), root, "amdgpu_gws_mm"); ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, AMDGPU_PL_OA), root, "amdgpu_oa_mm"); #endif }