// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #define CREATE_TRACE_POINTS #include "trace.h" static DEFINE_IDA(mhi_controller_ida); #undef mhi_ee #undef mhi_ee_end #define mhi_ee(a, b) [MHI_EE_##a] = b, #define mhi_ee_end(a, b) [MHI_EE_##a] = b, const char * const mhi_ee_str[MHI_EE_MAX] = { MHI_EE_LIST }; #undef dev_st_trans #undef dev_st_trans_end #define dev_st_trans(a, b) [DEV_ST_TRANSITION_##a] = b, #define dev_st_trans_end(a, b) [DEV_ST_TRANSITION_##a] = b, const char * const dev_state_tran_str[DEV_ST_TRANSITION_MAX] = { DEV_ST_TRANSITION_LIST }; #undef ch_state_type #undef ch_state_type_end #define ch_state_type(a, b) [MHI_CH_STATE_TYPE_##a] = b, #define ch_state_type_end(a, b) [MHI_CH_STATE_TYPE_##a] = b, const char * const mhi_ch_state_type_str[MHI_CH_STATE_TYPE_MAX] = { MHI_CH_STATE_TYPE_LIST }; #undef mhi_pm_state #undef mhi_pm_state_end #define mhi_pm_state(a, b) [MHI_PM_STATE_##a] = b, #define mhi_pm_state_end(a, b) [MHI_PM_STATE_##a] = b, static const char * const mhi_pm_state_str[] = { MHI_PM_STATE_LIST }; const char *to_mhi_pm_state_str(u32 state) { int index; if (state) index = __fls(state); if (!state || index >= ARRAY_SIZE(mhi_pm_state_str)) return "Invalid State"; return mhi_pm_state_str[index]; } static ssize_t serial_number_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; return sysfs_emit(buf, "Serial Number: %u\n", mhi_cntrl->serial_number); } static DEVICE_ATTR_RO(serial_number); static ssize_t oem_pk_hash_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; u32 hash_segment[MHI_MAX_OEM_PK_HASH_SEGMENTS]; int i, cnt = 0, ret; for (i = 0; i < MHI_MAX_OEM_PK_HASH_SEGMENTS; i++) { ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_OEMPKHASH(i), &hash_segment[i]); if (ret) { dev_err(dev, "Could not capture OEM PK HASH\n"); return ret; } } for (i = 0; i < MHI_MAX_OEM_PK_HASH_SEGMENTS; i++) cnt += sysfs_emit_at(buf, cnt, "OEMPKHASH[%d]: 0x%x\n", i, hash_segment[i]); return cnt; } static DEVICE_ATTR_RO(oem_pk_hash); static ssize_t soc_reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; mhi_soc_reset(mhi_cntrl); return count; } static DEVICE_ATTR_WO(soc_reset); static struct attribute *mhi_dev_attrs[] = { &dev_attr_serial_number.attr, &dev_attr_oem_pk_hash.attr, &dev_attr_soc_reset.attr, NULL, }; ATTRIBUTE_GROUPS(mhi_dev); /* MHI protocol requires the transfer ring to be aligned with ring length */ static int mhi_alloc_aligned_ring(struct mhi_controller *mhi_cntrl, struct mhi_ring *ring, u64 len) { ring->alloc_size = len + (len - 1); ring->pre_aligned = dma_alloc_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size, &ring->dma_handle, GFP_KERNEL); if (!ring->pre_aligned) return -ENOMEM; ring->iommu_base = (ring->dma_handle + (len - 1)) & ~(len - 1); ring->base = ring->pre_aligned + (ring->iommu_base - ring->dma_handle); return 0; } void mhi_deinit_free_irq(struct mhi_controller *mhi_cntrl) { int i; struct mhi_event *mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; free_irq(mhi_cntrl->irq[mhi_event->irq], mhi_event); } free_irq(mhi_cntrl->irq[0], mhi_cntrl); } int mhi_init_irq_setup(struct mhi_controller *mhi_cntrl) { struct mhi_event *mhi_event = mhi_cntrl->mhi_event; struct device *dev = &mhi_cntrl->mhi_dev->dev; unsigned long irq_flags = IRQF_SHARED | IRQF_NO_SUSPEND; int i, ret; /* if controller driver has set irq_flags, use it */ if (mhi_cntrl->irq_flags) irq_flags = mhi_cntrl->irq_flags; /* Setup BHI_INTVEC IRQ */ ret = request_threaded_irq(mhi_cntrl->irq[0], mhi_intvec_handler, mhi_intvec_threaded_handler, irq_flags, "bhi", mhi_cntrl); if (ret) return ret; /* * IRQs should be enabled during mhi_async_power_up(), so disable them explicitly here. * Due to the use of IRQF_SHARED flag as default while requesting IRQs, we assume that * IRQ_NOAUTOEN is not applicable. */ disable_irq(mhi_cntrl->irq[0]); for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; if (mhi_event->irq >= mhi_cntrl->nr_irqs) { dev_err(dev, "irq %d not available for event ring\n", mhi_event->irq); ret = -EINVAL; goto error_request; } ret = request_irq(mhi_cntrl->irq[mhi_event->irq], mhi_irq_handler, irq_flags, "mhi", mhi_event); if (ret) { dev_err(dev, "Error requesting irq:%d for ev:%d\n", mhi_cntrl->irq[mhi_event->irq], i); goto error_request; } disable_irq(mhi_cntrl->irq[mhi_event->irq]); } return 0; error_request: for (--i, --mhi_event; i >= 0; i--, mhi_event--) { if (mhi_event->offload_ev) continue; free_irq(mhi_cntrl->irq[mhi_event->irq], mhi_event); } free_irq(mhi_cntrl->irq[0], mhi_cntrl); return ret; } void mhi_deinit_dev_ctxt(struct mhi_controller *mhi_cntrl) { int i; struct mhi_ctxt *mhi_ctxt = mhi_cntrl->mhi_ctxt; struct mhi_cmd *mhi_cmd; struct mhi_event *mhi_event; struct mhi_ring *ring; mhi_cmd = mhi_cntrl->mhi_cmd; for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++) { ring = &mhi_cmd->ring; dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size, ring->pre_aligned, ring->dma_handle); ring->base = NULL; ring->iommu_base = 0; } dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS, mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr); mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; ring = &mhi_event->ring; dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size, ring->pre_aligned, ring->dma_handle); ring->base = NULL; ring->iommu_base = 0; } dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->er_ctxt) * mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt, mhi_ctxt->er_ctxt_addr); dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->chan_ctxt) * mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt, mhi_ctxt->chan_ctxt_addr); kfree(mhi_ctxt); mhi_cntrl->mhi_ctxt = NULL; } int mhi_init_dev_ctxt(struct mhi_controller *mhi_cntrl) { struct mhi_ctxt *mhi_ctxt; struct mhi_chan_ctxt *chan_ctxt; struct mhi_event_ctxt *er_ctxt; struct mhi_cmd_ctxt *cmd_ctxt; struct mhi_chan *mhi_chan; struct mhi_event *mhi_event; struct mhi_cmd *mhi_cmd; u32 tmp; int ret = -ENOMEM, i; atomic_set(&mhi_cntrl->dev_wake, 0); atomic_set(&mhi_cntrl->pending_pkts, 0); mhi_ctxt = kzalloc(sizeof(*mhi_ctxt), GFP_KERNEL); if (!mhi_ctxt) return -ENOMEM; /* Setup channel ctxt */ mhi_ctxt->chan_ctxt = dma_alloc_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->chan_ctxt) * mhi_cntrl->max_chan, &mhi_ctxt->chan_ctxt_addr, GFP_KERNEL); if (!mhi_ctxt->chan_ctxt) goto error_alloc_chan_ctxt; mhi_chan = mhi_cntrl->mhi_chan; chan_ctxt = mhi_ctxt->chan_ctxt; for (i = 0; i < mhi_cntrl->max_chan; i++, chan_ctxt++, mhi_chan++) { /* Skip if it is an offload channel */ if (mhi_chan->offload_ch) continue; tmp = le32_to_cpu(chan_ctxt->chcfg); tmp &= ~CHAN_CTX_CHSTATE_MASK; tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED); tmp &= ~CHAN_CTX_BRSTMODE_MASK; tmp |= FIELD_PREP(CHAN_CTX_BRSTMODE_MASK, mhi_chan->db_cfg.brstmode); tmp &= ~CHAN_CTX_POLLCFG_MASK; tmp |= FIELD_PREP(CHAN_CTX_POLLCFG_MASK, mhi_chan->db_cfg.pollcfg); chan_ctxt->chcfg = cpu_to_le32(tmp); chan_ctxt->chtype = cpu_to_le32(mhi_chan->type); chan_ctxt->erindex = cpu_to_le32(mhi_chan->er_index); mhi_chan->ch_state = MHI_CH_STATE_DISABLED; mhi_chan->tre_ring.db_addr = (void __iomem *)&chan_ctxt->wp; } /* Setup event context */ mhi_ctxt->er_ctxt = dma_alloc_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->er_ctxt) * mhi_cntrl->total_ev_rings, &mhi_ctxt->er_ctxt_addr, GFP_KERNEL); if (!mhi_ctxt->er_ctxt) goto error_alloc_er_ctxt; er_ctxt = mhi_ctxt->er_ctxt; mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, mhi_event++) { struct mhi_ring *ring = &mhi_event->ring; /* Skip if it is an offload event */ if (mhi_event->offload_ev) continue; tmp = le32_to_cpu(er_ctxt->intmod); tmp &= ~EV_CTX_INTMODC_MASK; tmp &= ~EV_CTX_INTMODT_MASK; tmp |= FIELD_PREP(EV_CTX_INTMODT_MASK, mhi_event->intmod); er_ctxt->intmod = cpu_to_le32(tmp); er_ctxt->ertype = cpu_to_le32(MHI_ER_TYPE_VALID); er_ctxt->msivec = cpu_to_le32(mhi_event->irq); mhi_event->db_cfg.db_mode = true; ring->el_size = sizeof(struct mhi_ring_element); ring->len = ring->el_size * ring->elements; ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len); if (ret) goto error_alloc_er; /* * If the read pointer equals to the write pointer, then the * ring is empty */ ring->rp = ring->wp = ring->base; er_ctxt->rbase = cpu_to_le64(ring->iommu_base); er_ctxt->rp = er_ctxt->wp = er_ctxt->rbase; er_ctxt->rlen = cpu_to_le64(ring->len); ring->ctxt_wp = &er_ctxt->wp; } /* Setup cmd context */ ret = -ENOMEM; mhi_ctxt->cmd_ctxt = dma_alloc_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS, &mhi_ctxt->cmd_ctxt_addr, GFP_KERNEL); if (!mhi_ctxt->cmd_ctxt) goto error_alloc_er; mhi_cmd = mhi_cntrl->mhi_cmd; cmd_ctxt = mhi_ctxt->cmd_ctxt; for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { struct mhi_ring *ring = &mhi_cmd->ring; ring->el_size = sizeof(struct mhi_ring_element); ring->elements = CMD_EL_PER_RING; ring->len = ring->el_size * ring->elements; ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len); if (ret) goto error_alloc_cmd; ring->rp = ring->wp = ring->base; cmd_ctxt->rbase = cpu_to_le64(ring->iommu_base); cmd_ctxt->rp = cmd_ctxt->wp = cmd_ctxt->rbase; cmd_ctxt->rlen = cpu_to_le64(ring->len); ring->ctxt_wp = &cmd_ctxt->wp; } mhi_cntrl->mhi_ctxt = mhi_ctxt; return 0; error_alloc_cmd: for (--i, --mhi_cmd; i >= 0; i--, mhi_cmd--) { struct mhi_ring *ring = &mhi_cmd->ring; dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size, ring->pre_aligned, ring->dma_handle); } dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS, mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr); i = mhi_cntrl->total_ev_rings; mhi_event = mhi_cntrl->mhi_event + i; error_alloc_er: for (--i, --mhi_event; i >= 0; i--, mhi_event--) { struct mhi_ring *ring = &mhi_event->ring; if (mhi_event->offload_ev) continue; dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size, ring->pre_aligned, ring->dma_handle); } dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->er_ctxt) * mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt, mhi_ctxt->er_ctxt_addr); error_alloc_er_ctxt: dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->chan_ctxt) * mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt, mhi_ctxt->chan_ctxt_addr); error_alloc_chan_ctxt: kfree(mhi_ctxt); return ret; } int mhi_init_mmio(struct mhi_controller *mhi_cntrl) { u32 val; int i, ret; struct mhi_chan *mhi_chan; struct mhi_event *mhi_event; void __iomem *base = mhi_cntrl->regs; struct device *dev = &mhi_cntrl->mhi_dev->dev; struct { u32 offset; u32 val; } reg_info[] = { { CCABAP_HIGHER, upper_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr), }, { CCABAP_LOWER, lower_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr), }, { ECABAP_HIGHER, upper_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr), }, { ECABAP_LOWER, lower_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr), }, { CRCBAP_HIGHER, upper_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr), }, { CRCBAP_LOWER, lower_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr), }, { MHICTRLBASE_HIGHER, upper_32_bits(mhi_cntrl->iova_start), }, { MHICTRLBASE_LOWER, lower_32_bits(mhi_cntrl->iova_start), }, { MHIDATABASE_HIGHER, upper_32_bits(mhi_cntrl->iova_start), }, { MHIDATABASE_LOWER, lower_32_bits(mhi_cntrl->iova_start), }, { MHICTRLLIMIT_HIGHER, upper_32_bits(mhi_cntrl->iova_stop), }, { MHICTRLLIMIT_LOWER, lower_32_bits(mhi_cntrl->iova_stop), }, { MHIDATALIMIT_HIGHER, upper_32_bits(mhi_cntrl->iova_stop), }, { MHIDATALIMIT_LOWER, lower_32_bits(mhi_cntrl->iova_stop), }, {0, 0} }; dev_dbg(dev, "Initializing MHI registers\n"); /* Read channel db offset */ ret = mhi_read_reg(mhi_cntrl, base, CHDBOFF, &val); if (ret) { dev_err(dev, "Unable to read CHDBOFF register\n"); return -EIO; } if (val >= mhi_cntrl->reg_len - (8 * MHI_DEV_WAKE_DB)) { dev_err(dev, "CHDB offset: 0x%x is out of range: 0x%zx\n", val, mhi_cntrl->reg_len - (8 * MHI_DEV_WAKE_DB)); return -ERANGE; } /* Setup wake db */ mhi_cntrl->wake_db = base + val + (8 * MHI_DEV_WAKE_DB); mhi_cntrl->wake_set = false; /* Setup channel db address for each channel in tre_ring */ mhi_chan = mhi_cntrl->mhi_chan; for (i = 0; i < mhi_cntrl->max_chan; i++, val += 8, mhi_chan++) mhi_chan->tre_ring.db_addr = base + val; /* Read event ring db offset */ ret = mhi_read_reg(mhi_cntrl, base, ERDBOFF, &val); if (ret) { dev_err(dev, "Unable to read ERDBOFF register\n"); return -EIO; } if (val >= mhi_cntrl->reg_len - (8 * mhi_cntrl->total_ev_rings)) { dev_err(dev, "ERDB offset: 0x%x is out of range: 0x%zx\n", val, mhi_cntrl->reg_len - (8 * mhi_cntrl->total_ev_rings)); return -ERANGE; } /* Setup event db address for each ev_ring */ mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, val += 8, mhi_event++) { if (mhi_event->offload_ev) continue; mhi_event->ring.db_addr = base + val; } /* Setup DB register for primary CMD rings */ mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING].ring.db_addr = base + CRDB_LOWER; /* Write to MMIO registers */ for (i = 0; reg_info[i].offset; i++) mhi_write_reg(mhi_cntrl, base, reg_info[i].offset, reg_info[i].val); ret = mhi_write_reg_field(mhi_cntrl, base, MHICFG, MHICFG_NER_MASK, mhi_cntrl->total_ev_rings); if (ret) { dev_err(dev, "Unable to write MHICFG register\n"); return ret; } ret = mhi_write_reg_field(mhi_cntrl, base, MHICFG, MHICFG_NHWER_MASK, mhi_cntrl->hw_ev_rings); if (ret) { dev_err(dev, "Unable to write MHICFG register\n"); return ret; } return 0; } void mhi_deinit_chan_ctxt(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { struct mhi_ring *buf_ring; struct mhi_ring *tre_ring; struct mhi_chan_ctxt *chan_ctxt; u32 tmp; buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan]; if (!chan_ctxt->rbase) /* Already uninitialized */ return; dma_free_coherent(mhi_cntrl->cntrl_dev, tre_ring->alloc_size, tre_ring->pre_aligned, tre_ring->dma_handle); vfree(buf_ring->base); buf_ring->base = tre_ring->base = NULL; tre_ring->ctxt_wp = NULL; chan_ctxt->rbase = 0; chan_ctxt->rlen = 0; chan_ctxt->rp = 0; chan_ctxt->wp = 0; tmp = le32_to_cpu(chan_ctxt->chcfg); tmp &= ~CHAN_CTX_CHSTATE_MASK; tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED); chan_ctxt->chcfg = cpu_to_le32(tmp); /* Update to all cores */ smp_wmb(); } int mhi_init_chan_ctxt(struct mhi_controller *mhi_cntrl, struct mhi_chan *mhi_chan) { struct mhi_ring *buf_ring; struct mhi_ring *tre_ring; struct mhi_chan_ctxt *chan_ctxt; u32 tmp; int ret; buf_ring = &mhi_chan->buf_ring; tre_ring = &mhi_chan->tre_ring; tre_ring->el_size = sizeof(struct mhi_ring_element); tre_ring->len = tre_ring->el_size * tre_ring->elements; chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan]; ret = mhi_alloc_aligned_ring(mhi_cntrl, tre_ring, tre_ring->len); if (ret) return -ENOMEM; buf_ring->el_size = sizeof(struct mhi_buf_info); buf_ring->len = buf_ring->el_size * buf_ring->elements; buf_ring->base = vzalloc(buf_ring->len); if (!buf_ring->base) { dma_free_coherent(mhi_cntrl->cntrl_dev, tre_ring->alloc_size, tre_ring->pre_aligned, tre_ring->dma_handle); return -ENOMEM; } tmp = le32_to_cpu(chan_ctxt->chcfg); tmp &= ~CHAN_CTX_CHSTATE_MASK; tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_ENABLED); chan_ctxt->chcfg = cpu_to_le32(tmp); chan_ctxt->rbase = cpu_to_le64(tre_ring->iommu_base); chan_ctxt->rp = chan_ctxt->wp = chan_ctxt->rbase; chan_ctxt->rlen = cpu_to_le64(tre_ring->len); tre_ring->ctxt_wp = &chan_ctxt->wp; tre_ring->rp = tre_ring->wp = tre_ring->base; buf_ring->rp = buf_ring->wp = buf_ring->base; mhi_chan->db_cfg.db_mode = 1; /* Update to all cores */ smp_wmb(); return 0; } static int parse_ev_cfg(struct mhi_controller *mhi_cntrl, const struct mhi_controller_config *config) { struct mhi_event *mhi_event; const struct mhi_event_config *event_cfg; struct device *dev = mhi_cntrl->cntrl_dev; int i, num; num = config->num_events; mhi_cntrl->total_ev_rings = num; mhi_cntrl->mhi_event = kcalloc(num, sizeof(*mhi_cntrl->mhi_event), GFP_KERNEL); if (!mhi_cntrl->mhi_event) return -ENOMEM; /* Populate event ring */ mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < num; i++) { event_cfg = &config->event_cfg[i]; mhi_event->er_index = i; mhi_event->ring.elements = event_cfg->num_elements; mhi_event->intmod = event_cfg->irq_moderation_ms; mhi_event->irq = event_cfg->irq; if (event_cfg->channel != U32_MAX) { /* This event ring has a dedicated channel */ mhi_event->chan = event_cfg->channel; if (mhi_event->chan >= mhi_cntrl->max_chan) { dev_err(dev, "Event Ring channel not available\n"); goto error_ev_cfg; } mhi_event->mhi_chan = &mhi_cntrl->mhi_chan[mhi_event->chan]; } /* Priority is fixed to 1 for now */ mhi_event->priority = 1; mhi_event->db_cfg.brstmode = event_cfg->mode; if (MHI_INVALID_BRSTMODE(mhi_event->db_cfg.brstmode)) goto error_ev_cfg; if (mhi_event->db_cfg.brstmode == MHI_DB_BRST_ENABLE) mhi_event->db_cfg.process_db = mhi_db_brstmode; else mhi_event->db_cfg.process_db = mhi_db_brstmode_disable; mhi_event->data_type = event_cfg->data_type; switch (mhi_event->data_type) { case MHI_ER_DATA: mhi_event->process_event = mhi_process_data_event_ring; break; case MHI_ER_CTRL: mhi_event->process_event = mhi_process_ctrl_ev_ring; break; default: dev_err(dev, "Event Ring type not supported\n"); goto error_ev_cfg; } mhi_event->hw_ring = event_cfg->hardware_event; if (mhi_event->hw_ring) mhi_cntrl->hw_ev_rings++; else mhi_cntrl->sw_ev_rings++; mhi_event->cl_manage = event_cfg->client_managed; mhi_event->offload_ev = event_cfg->offload_channel; mhi_event++; } return 0; error_ev_cfg: kfree(mhi_cntrl->mhi_event); return -EINVAL; } static int parse_ch_cfg(struct mhi_controller *mhi_cntrl, const struct mhi_controller_config *config) { const struct mhi_channel_config *ch_cfg; struct device *dev = mhi_cntrl->cntrl_dev; int i; u32 chan; mhi_cntrl->max_chan = config->max_channels; /* * The allocation of MHI channels can exceed 32KB in some scenarios, * so to avoid any memory possible allocation failures, vzalloc is * used here */ mhi_cntrl->mhi_chan = vcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan)); if (!mhi_cntrl->mhi_chan) return -ENOMEM; INIT_LIST_HEAD(&mhi_cntrl->lpm_chans); /* Populate channel configurations */ for (i = 0; i < config->num_channels; i++) { struct mhi_chan *mhi_chan; ch_cfg = &config->ch_cfg[i]; chan = ch_cfg->num; if (chan >= mhi_cntrl->max_chan) { dev_err(dev, "Channel %d not available\n", chan); goto error_chan_cfg; } mhi_chan = &mhi_cntrl->mhi_chan[chan]; mhi_chan->name = ch_cfg->name; mhi_chan->chan = chan; mhi_chan->tre_ring.elements = ch_cfg->num_elements; if (!mhi_chan->tre_ring.elements) goto error_chan_cfg; /* * For some channels, local ring length should be bigger than * the transfer ring length due to internal logical channels * in device. So host can queue much more buffers than transfer * ring length. Example, RSC channels should have a larger local * channel length than transfer ring length. */ mhi_chan->buf_ring.elements = ch_cfg->local_elements; if (!mhi_chan->buf_ring.elements) mhi_chan->buf_ring.elements = mhi_chan->tre_ring.elements; mhi_chan->er_index = ch_cfg->event_ring; mhi_chan->dir = ch_cfg->dir; /* * For most channels, chtype is identical to channel directions. * So, if it is not defined then assign channel direction to * chtype */ mhi_chan->type = ch_cfg->type; if (!mhi_chan->type) mhi_chan->type = (enum mhi_ch_type)mhi_chan->dir; mhi_chan->ee_mask = ch_cfg->ee_mask; mhi_chan->db_cfg.pollcfg = ch_cfg->pollcfg; mhi_chan->lpm_notify = ch_cfg->lpm_notify; mhi_chan->offload_ch = ch_cfg->offload_channel; mhi_chan->db_cfg.reset_req = ch_cfg->doorbell_mode_switch; mhi_chan->pre_alloc = ch_cfg->auto_queue; mhi_chan->wake_capable = ch_cfg->wake_capable; /* * If MHI host allocates buffers, then the channel direction * should be DMA_FROM_DEVICE */ if (mhi_chan->pre_alloc && mhi_chan->dir != DMA_FROM_DEVICE) { dev_err(dev, "Invalid channel configuration\n"); goto error_chan_cfg; } /* * Bi-directional and direction less channel must be an * offload channel */ if ((mhi_chan->dir == DMA_BIDIRECTIONAL || mhi_chan->dir == DMA_NONE) && !mhi_chan->offload_ch) { dev_err(dev, "Invalid channel configuration\n"); goto error_chan_cfg; } if (!mhi_chan->offload_ch) { mhi_chan->db_cfg.brstmode = ch_cfg->doorbell; if (MHI_INVALID_BRSTMODE(mhi_chan->db_cfg.brstmode)) { dev_err(dev, "Invalid Door bell mode\n"); goto error_chan_cfg; } } if (mhi_chan->db_cfg.brstmode == MHI_DB_BRST_ENABLE) mhi_chan->db_cfg.process_db = mhi_db_brstmode; else mhi_chan->db_cfg.process_db = mhi_db_brstmode_disable; mhi_chan->configured = true; if (mhi_chan->lpm_notify) list_add_tail(&mhi_chan->node, &mhi_cntrl->lpm_chans); } return 0; error_chan_cfg: vfree(mhi_cntrl->mhi_chan); return -EINVAL; } static int parse_config(struct mhi_controller *mhi_cntrl, const struct mhi_controller_config *config) { int ret; /* Parse MHI channel configuration */ ret = parse_ch_cfg(mhi_cntrl, config); if (ret) return ret; /* Parse MHI event configuration */ ret = parse_ev_cfg(mhi_cntrl, config); if (ret) goto error_ev_cfg; mhi_cntrl->timeout_ms = config->timeout_ms; if (!mhi_cntrl->timeout_ms) mhi_cntrl->timeout_ms = MHI_TIMEOUT_MS; mhi_cntrl->ready_timeout_ms = config->ready_timeout_ms; mhi_cntrl->bounce_buf = config->use_bounce_buf; mhi_cntrl->buffer_len = config->buf_len; if (!mhi_cntrl->buffer_len) mhi_cntrl->buffer_len = MHI_MAX_MTU; /* By default, host is allowed to ring DB in both M0 and M2 states */ mhi_cntrl->db_access = MHI_PM_M0 | MHI_PM_M2; if (config->m2_no_db) mhi_cntrl->db_access &= ~MHI_PM_M2; return 0; error_ev_cfg: vfree(mhi_cntrl->mhi_chan); return ret; } int mhi_register_controller(struct mhi_controller *mhi_cntrl, const struct mhi_controller_config *config) { struct mhi_event *mhi_event; struct mhi_chan *mhi_chan; struct mhi_cmd *mhi_cmd; struct mhi_device *mhi_dev; int ret, i; if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->regs || !mhi_cntrl->runtime_get || !mhi_cntrl->runtime_put || !mhi_cntrl->status_cb || !mhi_cntrl->read_reg || !mhi_cntrl->write_reg || !mhi_cntrl->nr_irqs || !mhi_cntrl->irq || !mhi_cntrl->reg_len) return -EINVAL; ret = parse_config(mhi_cntrl, config); if (ret) return -EINVAL; mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL); if (!mhi_cntrl->mhi_cmd) { ret = -ENOMEM; goto err_free_event; } INIT_LIST_HEAD(&mhi_cntrl->transition_list); mutex_init(&mhi_cntrl->pm_mutex); rwlock_init(&mhi_cntrl->pm_lock); spin_lock_init(&mhi_cntrl->transition_lock); spin_lock_init(&mhi_cntrl->wlock); INIT_WORK(&mhi_cntrl->st_worker, mhi_pm_st_worker); init_waitqueue_head(&mhi_cntrl->state_event); mhi_cntrl->hiprio_wq = alloc_ordered_workqueue("mhi_hiprio_wq", WQ_HIGHPRI); if (!mhi_cntrl->hiprio_wq) { dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate workqueue\n"); ret = -ENOMEM; goto err_free_cmd; } mhi_cmd = mhi_cntrl->mhi_cmd; for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++) spin_lock_init(&mhi_cmd->lock); mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { /* Skip for offload events */ if (mhi_event->offload_ev) continue; mhi_event->mhi_cntrl = mhi_cntrl; spin_lock_init(&mhi_event->lock); if (mhi_event->data_type == MHI_ER_CTRL) tasklet_init(&mhi_event->task, mhi_ctrl_ev_task, (ulong)mhi_event); else tasklet_init(&mhi_event->task, mhi_ev_task, (ulong)mhi_event); } mhi_chan = mhi_cntrl->mhi_chan; for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { mutex_init(&mhi_chan->mutex); init_completion(&mhi_chan->completion); rwlock_init(&mhi_chan->lock); /* used in setting bei field of TRE */ mhi_event = &mhi_cntrl->mhi_event[mhi_chan->er_index]; mhi_chan->intmod = mhi_event->intmod; } if (mhi_cntrl->bounce_buf) { mhi_cntrl->map_single = mhi_map_single_use_bb; mhi_cntrl->unmap_single = mhi_unmap_single_use_bb; } else { mhi_cntrl->map_single = mhi_map_single_no_bb; mhi_cntrl->unmap_single = mhi_unmap_single_no_bb; } mhi_cntrl->index = ida_alloc(&mhi_controller_ida, GFP_KERNEL); if (mhi_cntrl->index < 0) { ret = mhi_cntrl->index; goto err_destroy_wq; } ret = mhi_init_irq_setup(mhi_cntrl); if (ret) goto err_ida_free; /* Register controller with MHI bus */ mhi_dev = mhi_alloc_device(mhi_cntrl); if (IS_ERR(mhi_dev)) { dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate MHI device\n"); ret = PTR_ERR(mhi_dev); goto error_setup_irq; } mhi_dev->dev_type = MHI_DEVICE_CONTROLLER; mhi_dev->mhi_cntrl = mhi_cntrl; dev_set_name(&mhi_dev->dev, "mhi%d", mhi_cntrl->index); mhi_dev->name = dev_name(&mhi_dev->dev); /* Init wakeup source */ device_init_wakeup(&mhi_dev->dev, true); ret = device_add(&mhi_dev->dev); if (ret) goto err_release_dev; mhi_cntrl->mhi_dev = mhi_dev; mhi_create_debugfs(mhi_cntrl); return 0; err_release_dev: put_device(&mhi_dev->dev); error_setup_irq: mhi_deinit_free_irq(mhi_cntrl); err_ida_free: ida_free(&mhi_controller_ida, mhi_cntrl->index); err_destroy_wq: destroy_workqueue(mhi_cntrl->hiprio_wq); err_free_cmd: kfree(mhi_cntrl->mhi_cmd); err_free_event: kfree(mhi_cntrl->mhi_event); vfree(mhi_cntrl->mhi_chan); return ret; } EXPORT_SYMBOL_GPL(mhi_register_controller); void mhi_unregister_controller(struct mhi_controller *mhi_cntrl) { struct mhi_device *mhi_dev = mhi_cntrl->mhi_dev; struct mhi_chan *mhi_chan = mhi_cntrl->mhi_chan; unsigned int i; mhi_deinit_free_irq(mhi_cntrl); mhi_destroy_debugfs(mhi_cntrl); destroy_workqueue(mhi_cntrl->hiprio_wq); kfree(mhi_cntrl->mhi_cmd); kfree(mhi_cntrl->mhi_event); /* Drop the references to MHI devices created for channels */ for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { if (!mhi_chan->mhi_dev) continue; put_device(&mhi_chan->mhi_dev->dev); } vfree(mhi_cntrl->mhi_chan); device_del(&mhi_dev->dev); put_device(&mhi_dev->dev); ida_free(&mhi_controller_ida, mhi_cntrl->index); } EXPORT_SYMBOL_GPL(mhi_unregister_controller); struct mhi_controller *mhi_alloc_controller(void) { struct mhi_controller *mhi_cntrl; mhi_cntrl = kzalloc(sizeof(*mhi_cntrl), GFP_KERNEL); return mhi_cntrl; } EXPORT_SYMBOL_GPL(mhi_alloc_controller); void mhi_free_controller(struct mhi_controller *mhi_cntrl) { kfree(mhi_cntrl); } EXPORT_SYMBOL_GPL(mhi_free_controller); int mhi_prepare_for_power_up(struct mhi_controller *mhi_cntrl) { struct device *dev = &mhi_cntrl->mhi_dev->dev; u32 bhi_off, bhie_off; int ret; mutex_lock(&mhi_cntrl->pm_mutex); ret = mhi_init_dev_ctxt(mhi_cntrl); if (ret) goto error_dev_ctxt; ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIOFF, &bhi_off); if (ret) { dev_err(dev, "Error getting BHI offset\n"); goto error_reg_offset; } if (bhi_off >= mhi_cntrl->reg_len) { dev_err(dev, "BHI offset: 0x%x is out of range: 0x%zx\n", bhi_off, mhi_cntrl->reg_len); ret = -ERANGE; goto error_reg_offset; } mhi_cntrl->bhi = mhi_cntrl->regs + bhi_off; if (mhi_cntrl->fbc_download || mhi_cntrl->rddm_size) { ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIEOFF, &bhie_off); if (ret) { dev_err(dev, "Error getting BHIE offset\n"); goto error_reg_offset; } if (bhie_off >= mhi_cntrl->reg_len) { dev_err(dev, "BHIe offset: 0x%x is out of range: 0x%zx\n", bhie_off, mhi_cntrl->reg_len); ret = -ERANGE; goto error_reg_offset; } mhi_cntrl->bhie = mhi_cntrl->regs + bhie_off; } if (mhi_cntrl->rddm_size) { /* * This controller supports RDDM, so we need to manually clear * BHIE RX registers since POR values are undefined. */ memset_io(mhi_cntrl->bhie + BHIE_RXVECADDR_LOW_OFFS, 0, BHIE_RXVECSTATUS_OFFS - BHIE_RXVECADDR_LOW_OFFS + 4); /* * Allocate RDDM table for debugging purpose if specified */ mhi_alloc_bhie_table(mhi_cntrl, &mhi_cntrl->rddm_image, mhi_cntrl->rddm_size); if (mhi_cntrl->rddm_image) { ret = mhi_rddm_prepare(mhi_cntrl, mhi_cntrl->rddm_image); if (ret) { mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->rddm_image); goto error_reg_offset; } } } mutex_unlock(&mhi_cntrl->pm_mutex); return 0; error_reg_offset: mhi_deinit_dev_ctxt(mhi_cntrl); error_dev_ctxt: mutex_unlock(&mhi_cntrl->pm_mutex); return ret; } EXPORT_SYMBOL_GPL(mhi_prepare_for_power_up); void mhi_unprepare_after_power_down(struct mhi_controller *mhi_cntrl) { if (mhi_cntrl->fbc_image) { mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->fbc_image); mhi_cntrl->fbc_image = NULL; } if (mhi_cntrl->rddm_image) { mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->rddm_image); mhi_cntrl->rddm_image = NULL; } mhi_cntrl->bhi = NULL; mhi_cntrl->bhie = NULL; mhi_deinit_dev_ctxt(mhi_cntrl); } EXPORT_SYMBOL_GPL(mhi_unprepare_after_power_down); static void mhi_release_device(struct device *dev) { struct mhi_device *mhi_dev = to_mhi_device(dev); /* * We need to set the mhi_chan->mhi_dev to NULL here since the MHI * devices for the channels will only get created if the mhi_dev * associated with it is NULL. This scenario will happen during the * controller suspend and resume. */ if (mhi_dev->ul_chan) mhi_dev->ul_chan->mhi_dev = NULL; if (mhi_dev->dl_chan) mhi_dev->dl_chan->mhi_dev = NULL; kfree(mhi_dev); } struct mhi_device *mhi_alloc_device(struct mhi_controller *mhi_cntrl) { struct mhi_device *mhi_dev; struct device *dev; mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL); if (!mhi_dev) return ERR_PTR(-ENOMEM); dev = &mhi_dev->dev; device_initialize(dev); dev->bus = &mhi_bus_type; dev->release = mhi_release_device; if (mhi_cntrl->mhi_dev) { /* for MHI client devices, parent is the MHI controller device */ dev->parent = &mhi_cntrl->mhi_dev->dev; } else { /* for MHI controller device, parent is the bus device (e.g. pci device) */ dev->parent = mhi_cntrl->cntrl_dev; } mhi_dev->mhi_cntrl = mhi_cntrl; mhi_dev->dev_wake = 0; return mhi_dev; } static int mhi_driver_probe(struct device *dev) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct device_driver *drv = dev->driver; struct mhi_driver *mhi_drv = to_mhi_driver(drv); struct mhi_event *mhi_event; struct mhi_chan *ul_chan = mhi_dev->ul_chan; struct mhi_chan *dl_chan = mhi_dev->dl_chan; int ret; /* Bring device out of LPM */ ret = mhi_device_get_sync(mhi_dev); if (ret) return ret; ret = -EINVAL; if (ul_chan) { /* * If channel supports LPM notifications then status_cb should * be provided */ if (ul_chan->lpm_notify && !mhi_drv->status_cb) goto exit_probe; /* For non-offload channels then xfer_cb should be provided */ if (!ul_chan->offload_ch && !mhi_drv->ul_xfer_cb) goto exit_probe; ul_chan->xfer_cb = mhi_drv->ul_xfer_cb; } ret = -EINVAL; if (dl_chan) { /* * If channel supports LPM notifications then status_cb should * be provided */ if (dl_chan->lpm_notify && !mhi_drv->status_cb) goto exit_probe; /* For non-offload channels then xfer_cb should be provided */ if (!dl_chan->offload_ch && !mhi_drv->dl_xfer_cb) goto exit_probe; mhi_event = &mhi_cntrl->mhi_event[dl_chan->er_index]; /* * If the channel event ring is managed by client, then * status_cb must be provided so that the framework can * notify pending data */ if (mhi_event->cl_manage && !mhi_drv->status_cb) goto exit_probe; dl_chan->xfer_cb = mhi_drv->dl_xfer_cb; } /* Call the user provided probe function */ ret = mhi_drv->probe(mhi_dev, mhi_dev->id); if (ret) goto exit_probe; mhi_device_put(mhi_dev); return ret; exit_probe: mhi_unprepare_from_transfer(mhi_dev); mhi_device_put(mhi_dev); return ret; } static int mhi_driver_remove(struct device *dev) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_driver *mhi_drv = to_mhi_driver(dev->driver); struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; struct mhi_chan *mhi_chan; enum mhi_ch_state ch_state[] = { MHI_CH_STATE_DISABLED, MHI_CH_STATE_DISABLED }; int dir; /* Skip if it is a controller device */ if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) return 0; /* Reset both channels */ for (dir = 0; dir < 2; dir++) { mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; if (!mhi_chan) continue; /* Wake all threads waiting for completion */ write_lock_irq(&mhi_chan->lock); mhi_chan->ccs = MHI_EV_CC_INVALID; complete_all(&mhi_chan->completion); write_unlock_irq(&mhi_chan->lock); /* Set the channel state to disabled */ mutex_lock(&mhi_chan->mutex); write_lock_irq(&mhi_chan->lock); ch_state[dir] = mhi_chan->ch_state; mhi_chan->ch_state = MHI_CH_STATE_SUSPENDED; write_unlock_irq(&mhi_chan->lock); /* Reset the non-offload channel */ if (!mhi_chan->offload_ch) mhi_reset_chan(mhi_cntrl, mhi_chan); mutex_unlock(&mhi_chan->mutex); } mhi_drv->remove(mhi_dev); /* De-init channel if it was enabled */ for (dir = 0; dir < 2; dir++) { mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan; if (!mhi_chan) continue; mutex_lock(&mhi_chan->mutex); if ((ch_state[dir] == MHI_CH_STATE_ENABLED || ch_state[dir] == MHI_CH_STATE_STOP) && !mhi_chan->offload_ch) mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan); mhi_chan->ch_state = MHI_CH_STATE_DISABLED; mutex_unlock(&mhi_chan->mutex); } while (mhi_dev->dev_wake) mhi_device_put(mhi_dev); return 0; } int __mhi_driver_register(struct mhi_driver *mhi_drv, struct module *owner) { struct device_driver *driver = &mhi_drv->driver; if (!mhi_drv->probe || !mhi_drv->remove) return -EINVAL; driver->bus = &mhi_bus_type; driver->owner = owner; driver->probe = mhi_driver_probe; driver->remove = mhi_driver_remove; return driver_register(driver); } EXPORT_SYMBOL_GPL(__mhi_driver_register); void mhi_driver_unregister(struct mhi_driver *mhi_drv) { driver_unregister(&mhi_drv->driver); } EXPORT_SYMBOL_GPL(mhi_driver_unregister); static int mhi_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct mhi_device *mhi_dev = to_mhi_device(dev); return add_uevent_var(env, "MODALIAS=" MHI_DEVICE_MODALIAS_FMT, mhi_dev->name); } static int mhi_match(struct device *dev, struct device_driver *drv) { struct mhi_device *mhi_dev = to_mhi_device(dev); struct mhi_driver *mhi_drv = to_mhi_driver(drv); const struct mhi_device_id *id; /* * If the device is a controller type then there is no client driver * associated with it */ if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER) return 0; for (id = mhi_drv->id_table; id->chan[0]; id++) if (!strcmp(mhi_dev->name, id->chan)) { mhi_dev->id = id; return 1; } return 0; }; struct bus_type mhi_bus_type = { .name = "mhi", .dev_name = "mhi", .match = mhi_match, .uevent = mhi_uevent, .dev_groups = mhi_dev_groups, }; static int __init mhi_init(void) { mhi_debugfs_init(); return bus_register(&mhi_bus_type); } static void __exit mhi_exit(void) { mhi_debugfs_exit(); bus_unregister(&mhi_bus_type); } postcore_initcall(mhi_init); module_exit(mhi_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Modem Host Interface");