/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012 Regents of the University of California */ #ifndef _ASM_RISCV_PROCESSOR_H #define _ASM_RISCV_PROCESSOR_H #include #include #include #include #include #ifdef CONFIG_64BIT #define DEFAULT_MAP_WINDOW (UL(1) << (MMAP_VA_BITS - 1)) #define STACK_TOP_MAX TASK_SIZE #define arch_get_mmap_end(addr, len, flags) \ ({ \ unsigned long mmap_end; \ typeof(addr) _addr = (addr); \ if ((_addr) == 0 || (IS_ENABLED(CONFIG_COMPAT) && is_compat_task())) \ mmap_end = STACK_TOP_MAX; \ else if ((_addr) >= VA_USER_SV57) \ mmap_end = STACK_TOP_MAX; \ else if ((((_addr) >= VA_USER_SV48)) && (VA_BITS >= VA_BITS_SV48)) \ mmap_end = VA_USER_SV48; \ else \ mmap_end = VA_USER_SV39; \ mmap_end; \ }) #define arch_get_mmap_base(addr, base) \ ({ \ unsigned long mmap_base; \ typeof(addr) _addr = (addr); \ typeof(base) _base = (base); \ unsigned long rnd_gap = DEFAULT_MAP_WINDOW - (_base); \ if ((_addr) == 0 || (IS_ENABLED(CONFIG_COMPAT) && is_compat_task())) \ mmap_base = (_base); \ else if (((_addr) >= VA_USER_SV57) && (VA_BITS >= VA_BITS_SV57)) \ mmap_base = VA_USER_SV57 - rnd_gap; \ else if ((((_addr) >= VA_USER_SV48)) && (VA_BITS >= VA_BITS_SV48)) \ mmap_base = VA_USER_SV48 - rnd_gap; \ else \ mmap_base = VA_USER_SV39 - rnd_gap; \ mmap_base; \ }) #else #define DEFAULT_MAP_WINDOW TASK_SIZE #define STACK_TOP_MAX TASK_SIZE #endif #define STACK_ALIGN 16 #define STACK_TOP DEFAULT_MAP_WINDOW /* * This decides where the kernel will search for a free chunk of vm * space during mmap's. */ #ifdef CONFIG_64BIT #define TASK_UNMAPPED_BASE PAGE_ALIGN((UL(1) << MMAP_MIN_VA_BITS) / 3) #else #define TASK_UNMAPPED_BASE PAGE_ALIGN(TASK_SIZE / 3) #endif #ifndef __ASSEMBLY__ struct task_struct; struct pt_regs; /* * We use a flag to track in-kernel Vector context. Currently the flag has the * following meaning: * * - bit 0: indicates whether the in-kernel Vector context is active. The * activation of this state disables the preemption. On a non-RT kernel, it * also disable bh. * - bits 8: is used for tracking preemptible kernel-mode Vector, when * RISCV_ISA_V_PREEMPTIVE is enabled. Calling kernel_vector_begin() does not * disable the preemption if the thread's kernel_vstate.datap is allocated. * Instead, the kernel set this bit field. Then the trap entry/exit code * knows if we are entering/exiting the context that owns preempt_v. * - 0: the task is not using preempt_v * - 1: the task is actively using preempt_v. But whether does the task own * the preempt_v context is decided by bits in RISCV_V_CTX_DEPTH_MASK. * - bit 16-23 are RISCV_V_CTX_DEPTH_MASK, used by context tracking routine * when preempt_v starts: * - 0: the task is actively using, and own preempt_v context. * - non-zero: the task was using preempt_v, but then took a trap within. * Thus, the task does not own preempt_v. Any use of Vector will have to * save preempt_v, if dirty, and fallback to non-preemptible kernel-mode * Vector. * - bit 30: The in-kernel preempt_v context is saved, and requries to be * restored when returning to the context that owns the preempt_v. * - bit 31: The in-kernel preempt_v context is dirty, as signaled by the * trap entry code. Any context switches out-of current task need to save * it to the task's in-kernel V context. Also, any traps nesting on-top-of * preempt_v requesting to use V needs a save. */ #define RISCV_V_CTX_DEPTH_MASK 0x00ff0000 #define RISCV_V_CTX_UNIT_DEPTH 0x00010000 #define RISCV_KERNEL_MODE_V 0x00000001 #define RISCV_PREEMPT_V 0x00000100 #define RISCV_PREEMPT_V_DIRTY 0x80000000 #define RISCV_PREEMPT_V_NEED_RESTORE 0x40000000 /* CPU-specific state of a task */ struct thread_struct { /* Callee-saved registers */ unsigned long ra; unsigned long sp; /* Kernel mode stack */ unsigned long s[12]; /* s[0]: frame pointer */ struct __riscv_d_ext_state fstate; unsigned long bad_cause; u32 riscv_v_flags; u32 vstate_ctrl; struct __riscv_v_ext_state vstate; unsigned long align_ctl; struct __riscv_v_ext_state kernel_vstate; }; /* Whitelist the fstate from the task_struct for hardened usercopy */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = offsetof(struct thread_struct, fstate); *size = sizeof_field(struct thread_struct, fstate); } #define INIT_THREAD { \ .sp = sizeof(init_stack) + (long)&init_stack, \ .align_ctl = PR_UNALIGN_NOPRINT, \ } #define task_pt_regs(tsk) \ ((struct pt_regs *)(task_stack_page(tsk) + THREAD_SIZE \ - ALIGN(sizeof(struct pt_regs), STACK_ALIGN))) #define KSTK_EIP(tsk) (task_pt_regs(tsk)->epc) #define KSTK_ESP(tsk) (task_pt_regs(tsk)->sp) /* Do necessary setup to start up a newly executed thread. */ extern void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp); extern unsigned long __get_wchan(struct task_struct *p); static inline void wait_for_interrupt(void) { __asm__ __volatile__ ("wfi"); } extern phys_addr_t dma32_phys_limit; struct device_node; int riscv_of_processor_hartid(struct device_node *node, unsigned long *hartid); int riscv_early_of_processor_hartid(struct device_node *node, unsigned long *hartid); int riscv_of_parent_hartid(struct device_node *node, unsigned long *hartid); extern void riscv_fill_hwcap(void); extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src); extern unsigned long signal_minsigstksz __ro_after_init; #ifdef CONFIG_RISCV_ISA_V /* Userspace interface for PR_RISCV_V_{SET,GET}_VS prctl()s: */ #define RISCV_V_SET_CONTROL(arg) riscv_v_vstate_ctrl_set_current(arg) #define RISCV_V_GET_CONTROL() riscv_v_vstate_ctrl_get_current() extern long riscv_v_vstate_ctrl_set_current(unsigned long arg); extern long riscv_v_vstate_ctrl_get_current(void); #endif /* CONFIG_RISCV_ISA_V */ extern int get_unalign_ctl(struct task_struct *tsk, unsigned long addr); extern int set_unalign_ctl(struct task_struct *tsk, unsigned int val); #define GET_UNALIGN_CTL(tsk, addr) get_unalign_ctl((tsk), (addr)) #define SET_UNALIGN_CTL(tsk, val) set_unalign_ctl((tsk), (val)) #endif /* __ASSEMBLY__ */ #endif /* _ASM_RISCV_PROCESSOR_H */