/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012 Regents of the University of California */ #ifndef _ASM_RISCV_BITOPS_H #define _ASM_RISCV_BITOPS_H #ifndef _LINUX_BITOPS_H #error "Only can be included directly" #endif /* _LINUX_BITOPS_H */ #include #include #include #include #if !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE) #include #include #include #include #else #include #include #if (BITS_PER_LONG == 64) #define CTZW "ctzw " #define CLZW "clzw " #elif (BITS_PER_LONG == 32) #define CTZW "ctz " #define CLZW "clz " #else #error "Unexpected BITS_PER_LONG" #endif static __always_inline unsigned long variable__ffs(unsigned long word) { int num; asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0, RISCV_ISA_EXT_ZBB, 1) : : : : legacy); asm volatile (".option push\n" ".option arch,+zbb\n" "ctz %0, %1\n" ".option pop\n" : "=r" (word) : "r" (word) :); return word; legacy: num = 0; #if BITS_PER_LONG == 64 if ((word & 0xffffffff) == 0) { num += 32; word >>= 32; } #endif if ((word & 0xffff) == 0) { num += 16; word >>= 16; } if ((word & 0xff) == 0) { num += 8; word >>= 8; } if ((word & 0xf) == 0) { num += 4; word >>= 4; } if ((word & 0x3) == 0) { num += 2; word >>= 2; } if ((word & 0x1) == 0) num += 1; return num; } /** * __ffs - find first set bit in a long word * @word: The word to search * * Undefined if no set bit exists, so code should check against 0 first. */ #define __ffs(word) \ (__builtin_constant_p(word) ? \ (unsigned long)__builtin_ctzl(word) : \ variable__ffs(word)) static __always_inline unsigned long variable__fls(unsigned long word) { int num; asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0, RISCV_ISA_EXT_ZBB, 1) : : : : legacy); asm volatile (".option push\n" ".option arch,+zbb\n" "clz %0, %1\n" ".option pop\n" : "=r" (word) : "r" (word) :); return BITS_PER_LONG - 1 - word; legacy: num = BITS_PER_LONG - 1; #if BITS_PER_LONG == 64 if (!(word & (~0ul << 32))) { num -= 32; word <<= 32; } #endif if (!(word & (~0ul << (BITS_PER_LONG - 16)))) { num -= 16; word <<= 16; } if (!(word & (~0ul << (BITS_PER_LONG - 8)))) { num -= 8; word <<= 8; } if (!(word & (~0ul << (BITS_PER_LONG - 4)))) { num -= 4; word <<= 4; } if (!(word & (~0ul << (BITS_PER_LONG - 2)))) { num -= 2; word <<= 2; } if (!(word & (~0ul << (BITS_PER_LONG - 1)))) num -= 1; return num; } /** * __fls - find last set bit in a long word * @word: the word to search * * Undefined if no set bit exists, so code should check against 0 first. */ #define __fls(word) \ (__builtin_constant_p(word) ? \ (unsigned long)(BITS_PER_LONG - 1 - __builtin_clzl(word)) : \ variable__fls(word)) static __always_inline int variable_ffs(int x) { int r; if (!x) return 0; asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0, RISCV_ISA_EXT_ZBB, 1) : : : : legacy); asm volatile (".option push\n" ".option arch,+zbb\n" CTZW "%0, %1\n" ".option pop\n" : "=r" (r) : "r" (x) :); return r + 1; legacy: r = 1; if (!(x & 0xffff)) { x >>= 16; r += 16; } if (!(x & 0xff)) { x >>= 8; r += 8; } if (!(x & 0xf)) { x >>= 4; r += 4; } if (!(x & 3)) { x >>= 2; r += 2; } if (!(x & 1)) { x >>= 1; r += 1; } return r; } /** * ffs - find first set bit in a word * @x: the word to search * * This is defined the same way as the libc and compiler builtin ffs routines. * * ffs(value) returns 0 if value is 0 or the position of the first set bit if * value is nonzero. The first (least significant) bit is at position 1. */ #define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x)) static __always_inline int variable_fls(unsigned int x) { int r; if (!x) return 0; asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0, RISCV_ISA_EXT_ZBB, 1) : : : : legacy); asm volatile (".option push\n" ".option arch,+zbb\n" CLZW "%0, %1\n" ".option pop\n" : "=r" (r) : "r" (x) :); return 32 - r; legacy: r = 32; if (!(x & 0xffff0000u)) { x <<= 16; r -= 16; } if (!(x & 0xff000000u)) { x <<= 8; r -= 8; } if (!(x & 0xf0000000u)) { x <<= 4; r -= 4; } if (!(x & 0xc0000000u)) { x <<= 2; r -= 2; } if (!(x & 0x80000000u)) { x <<= 1; r -= 1; } return r; } /** * fls - find last set bit in a word * @x: the word to search * * This is defined in a similar way as ffs, but returns the position of the most * significant set bit. * * fls(value) returns 0 if value is 0 or the position of the last set bit if * value is nonzero. The last (most significant) bit is at position 32. */ #define fls(x) \ ({ \ typeof(x) x_ = (x); \ __builtin_constant_p(x_) ? \ (int)((x_ != 0) ? (32 - __builtin_clz(x_)) : 0) \ : \ variable_fls(x_); \ }) #endif /* !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE) */ #include #include #include #include #include #if (BITS_PER_LONG == 64) #define __AMO(op) "amo" #op ".d" #elif (BITS_PER_LONG == 32) #define __AMO(op) "amo" #op ".w" #else #error "Unexpected BITS_PER_LONG" #endif #define __test_and_op_bit_ord(op, mod, nr, addr, ord) \ ({ \ unsigned long __res, __mask; \ __mask = BIT_MASK(nr); \ __asm__ __volatile__ ( \ __AMO(op) #ord " %0, %2, %1" \ : "=r" (__res), "+A" (addr[BIT_WORD(nr)]) \ : "r" (mod(__mask)) \ : "memory"); \ ((__res & __mask) != 0); \ }) #define __op_bit_ord(op, mod, nr, addr, ord) \ __asm__ __volatile__ ( \ __AMO(op) #ord " zero, %1, %0" \ : "+A" (addr[BIT_WORD(nr)]) \ : "r" (mod(BIT_MASK(nr))) \ : "memory"); #define __test_and_op_bit(op, mod, nr, addr) \ __test_and_op_bit_ord(op, mod, nr, addr, .aqrl) #define __op_bit(op, mod, nr, addr) \ __op_bit_ord(op, mod, nr, addr, ) /* Bitmask modifiers */ #define __NOP(x) (x) #define __NOT(x) (~(x)) /** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation may be reordered on other architectures than x86. */ static inline int test_and_set_bit(int nr, volatile unsigned long *addr) { return __test_and_op_bit(or, __NOP, nr, addr); } /** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation can be reordered on other architectures other than x86. */ static inline int test_and_clear_bit(int nr, volatile unsigned long *addr) { return __test_and_op_bit(and, __NOT, nr, addr); } /** * test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_change_bit(int nr, volatile unsigned long *addr) { return __test_and_op_bit(xor, __NOP, nr, addr); } /** * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Note: there are no guarantees that this function will not be reordered * on non x86 architectures, so if you are writing portable code, * make sure not to rely on its reordering guarantees. * * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void set_bit(int nr, volatile unsigned long *addr) { __op_bit(or, __NOP, nr, addr); } /** * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * Note: there are no guarantees that this function will not be reordered * on non x86 architectures, so if you are writing portable code, * make sure not to rely on its reordering guarantees. */ static inline void clear_bit(int nr, volatile unsigned long *addr) { __op_bit(and, __NOT, nr, addr); } /** * change_bit - Toggle a bit in memory * @nr: Bit to change * @addr: Address to start counting from * * change_bit() may be reordered on other architectures than x86. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void change_bit(int nr, volatile unsigned long *addr) { __op_bit(xor, __NOP, nr, addr); } /** * test_and_set_bit_lock - Set a bit and return its old value, for lock * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and provides acquire barrier semantics. * It can be used to implement bit locks. */ static inline int test_and_set_bit_lock( unsigned long nr, volatile unsigned long *addr) { return __test_and_op_bit_ord(or, __NOP, nr, addr, .aq); } /** * clear_bit_unlock - Clear a bit in memory, for unlock * @nr: the bit to set * @addr: the address to start counting from * * This operation is atomic and provides release barrier semantics. */ static inline void clear_bit_unlock( unsigned long nr, volatile unsigned long *addr) { __op_bit_ord(and, __NOT, nr, addr, .rl); } /** * __clear_bit_unlock - Clear a bit in memory, for unlock * @nr: the bit to set * @addr: the address to start counting from * * This operation is like clear_bit_unlock, however it is not atomic. * It does provide release barrier semantics so it can be used to unlock * a bit lock, however it would only be used if no other CPU can modify * any bits in the memory until the lock is released (a good example is * if the bit lock itself protects access to the other bits in the word). * * On RISC-V systems there seems to be no benefit to taking advantage of the * non-atomic property here: it's a lot more instructions and we still have to * provide release semantics anyway. */ static inline void __clear_bit_unlock( unsigned long nr, volatile unsigned long *addr) { clear_bit_unlock(nr, addr); } static inline bool xor_unlock_is_negative_byte(unsigned long mask, volatile unsigned long *addr) { unsigned long res; __asm__ __volatile__ ( __AMO(xor) ".rl %0, %2, %1" : "=r" (res), "+A" (*addr) : "r" (__NOP(mask)) : "memory"); return (res & BIT(7)) != 0; } #undef __test_and_op_bit #undef __op_bit #undef __NOP #undef __NOT #undef __AMO #include #include #include #endif /* _ASM_RISCV_BITOPS_H */