/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */ // // This file is dual-licensed, meaning that you can use it under your // choice of either of the following two licenses: // // Copyright 2023 The OpenSSL Project Authors. All Rights Reserved. // // Licensed under the Apache License 2.0 (the "License"). You can obtain // a copy in the file LICENSE in the source distribution or at // https://www.openssl.org/source/license.html // // or // // Copyright (c) 2023, Christoph Müllner // Copyright (c) 2023, Phoebe Chen // Copyright (c) 2023, Jerry Shih // Copyright 2024 Google LLC // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The generated code of this file depends on the following RISC-V extensions: // - RV64I // - RISC-V Vector ('V') with VLEN >= 128 // - RISC-V Vector AES block cipher extension ('Zvkned') #include .text .option arch, +zvkned #include "aes-macros.S" #define KEYP a0 #define INP a1 #define OUTP a2 #define LEN a3 #define IVP a4 .macro __aes_crypt_zvkned enc, keylen vle32.v v16, (INP) aes_crypt v16, \enc, \keylen vse32.v v16, (OUTP) ret .endm .macro aes_crypt_zvkned enc aes_begin KEYP, 128f, 192f __aes_crypt_zvkned \enc, 256 128: __aes_crypt_zvkned \enc, 128 192: __aes_crypt_zvkned \enc, 192 .endm // void aes_encrypt_zvkned(const struct crypto_aes_ctx *key, // const u8 in[16], u8 out[16]); SYM_FUNC_START(aes_encrypt_zvkned) aes_crypt_zvkned 1 SYM_FUNC_END(aes_encrypt_zvkned) // Same prototype and calling convention as the encryption function SYM_FUNC_START(aes_decrypt_zvkned) aes_crypt_zvkned 0 SYM_FUNC_END(aes_decrypt_zvkned) .macro __aes_ecb_crypt enc, keylen srli t0, LEN, 2 // t0 is the remaining length in 32-bit words. It's a multiple of 4. 1: vsetvli t1, t0, e32, m8, ta, ma sub t0, t0, t1 // Subtract number of words processed slli t1, t1, 2 // Words to bytes vle32.v v16, (INP) aes_crypt v16, \enc, \keylen vse32.v v16, (OUTP) add INP, INP, t1 add OUTP, OUTP, t1 bnez t0, 1b ret .endm .macro aes_ecb_crypt enc aes_begin KEYP, 128f, 192f __aes_ecb_crypt \enc, 256 128: __aes_ecb_crypt \enc, 128 192: __aes_ecb_crypt \enc, 192 .endm // void aes_ecb_encrypt_zvkned(const struct crypto_aes_ctx *key, // const u8 *in, u8 *out, size_t len); // // |len| must be nonzero and a multiple of 16 (AES_BLOCK_SIZE). SYM_FUNC_START(aes_ecb_encrypt_zvkned) aes_ecb_crypt 1 SYM_FUNC_END(aes_ecb_encrypt_zvkned) // Same prototype and calling convention as the encryption function SYM_FUNC_START(aes_ecb_decrypt_zvkned) aes_ecb_crypt 0 SYM_FUNC_END(aes_ecb_decrypt_zvkned) .macro aes_cbc_encrypt keylen vle32.v v16, (IVP) // Load IV 1: vle32.v v17, (INP) // Load plaintext block vxor.vv v16, v16, v17 // XOR with IV or prev ciphertext block aes_encrypt v16, \keylen // Encrypt vse32.v v16, (OUTP) // Store ciphertext block addi INP, INP, 16 addi OUTP, OUTP, 16 addi LEN, LEN, -16 bnez LEN, 1b vse32.v v16, (IVP) // Store next IV ret .endm .macro aes_cbc_decrypt keylen srli LEN, LEN, 2 // Convert LEN from bytes to words vle32.v v16, (IVP) // Load IV 1: vsetvli t0, LEN, e32, m4, ta, ma vle32.v v20, (INP) // Load ciphertext blocks vslideup.vi v16, v20, 4 // Setup prev ciphertext blocks addi t1, t0, -4 vslidedown.vx v24, v20, t1 // Save last ciphertext block aes_decrypt v20, \keylen // Decrypt the blocks vxor.vv v20, v20, v16 // XOR with prev ciphertext blocks vse32.v v20, (OUTP) // Store plaintext blocks vmv.v.v v16, v24 // Next "IV" is last ciphertext block slli t1, t0, 2 // Words to bytes add INP, INP, t1 add OUTP, OUTP, t1 sub LEN, LEN, t0 bnez LEN, 1b vsetivli zero, 4, e32, m1, ta, ma vse32.v v16, (IVP) // Store next IV ret .endm // void aes_cbc_encrypt_zvkned(const struct crypto_aes_ctx *key, // const u8 *in, u8 *out, size_t len, u8 iv[16]); // // |len| must be nonzero and a multiple of 16 (AES_BLOCK_SIZE). SYM_FUNC_START(aes_cbc_encrypt_zvkned) aes_begin KEYP, 128f, 192f aes_cbc_encrypt 256 128: aes_cbc_encrypt 128 192: aes_cbc_encrypt 192 SYM_FUNC_END(aes_cbc_encrypt_zvkned) // Same prototype and calling convention as the encryption function SYM_FUNC_START(aes_cbc_decrypt_zvkned) aes_begin KEYP, 128f, 192f aes_cbc_decrypt 256 128: aes_cbc_decrypt 128 192: aes_cbc_decrypt 192 SYM_FUNC_END(aes_cbc_decrypt_zvkned) .macro aes_cbc_cts_encrypt keylen // CBC-encrypt all blocks except the last. But don't store the // second-to-last block to the output buffer yet, since it will be // handled specially in the ciphertext stealing step. Exception: if the // message is single-block, still encrypt the last (and only) block. li t0, 16 j 2f 1: vse32.v v16, (OUTP) // Store ciphertext block addi OUTP, OUTP, 16 2: vle32.v v17, (INP) // Load plaintext block vxor.vv v16, v16, v17 // XOR with IV or prev ciphertext block aes_encrypt v16, \keylen // Encrypt addi INP, INP, 16 addi LEN, LEN, -16 bgt LEN, t0, 1b // Repeat if more than one block remains // Special case: if the message is a single block, just do CBC. beqz LEN, .Lcts_encrypt_done\@ // Encrypt the last two blocks using ciphertext stealing as follows: // C[n-1] = Encrypt(Encrypt(P[n-1] ^ C[n-2]) ^ P[n]) // C[n] = Encrypt(P[n-1] ^ C[n-2])[0..LEN] // // C[i] denotes the i'th ciphertext block, and likewise P[i] the i'th // plaintext block. Block n, the last block, may be partial; its length // is 1 <= LEN <= 16. If there are only 2 blocks, C[n-2] means the IV. // // v16 already contains Encrypt(P[n-1] ^ C[n-2]). // INP points to P[n]. OUTP points to where C[n-1] should go. // To support in-place encryption, load P[n] before storing C[n]. addi t0, OUTP, 16 // Get pointer to where C[n] should go vsetvli zero, LEN, e8, m1, tu, ma vle8.v v17, (INP) // Load P[n] vse8.v v16, (t0) // Store C[n] vxor.vv v16, v16, v17 // v16 = Encrypt(P[n-1] ^ C[n-2]) ^ P[n] vsetivli zero, 4, e32, m1, ta, ma aes_encrypt v16, \keylen .Lcts_encrypt_done\@: vse32.v v16, (OUTP) // Store C[n-1] (or C[n] in single-block case) ret .endm #define LEN32 t4 // Length of remaining full blocks in 32-bit words #define LEN_MOD16 t5 // Length of message in bytes mod 16 .macro aes_cbc_cts_decrypt keylen andi LEN32, LEN, ~15 srli LEN32, LEN32, 2 andi LEN_MOD16, LEN, 15 // Save C[n-2] in v28 so that it's available later during the ciphertext // stealing step. If there are fewer than three blocks, C[n-2] means // the IV, otherwise it means the third-to-last ciphertext block. vmv.v.v v28, v16 // IV add t0, LEN, -33 bltz t0, .Lcts_decrypt_loop\@ andi t0, t0, ~15 add t0, t0, INP vle32.v v28, (t0) // CBC-decrypt all full blocks. For the last full block, or the last 2 // full blocks if the message is block-aligned, this doesn't write the // correct output blocks (unless the message is only a single block), // because it XORs the wrong values with the raw AES plaintexts. But we // fix this after this loop without redoing the AES decryptions. This // approach allows more of the AES decryptions to be parallelized. .Lcts_decrypt_loop\@: vsetvli t0, LEN32, e32, m4, ta, ma addi t1, t0, -4 vle32.v v20, (INP) // Load next set of ciphertext blocks vmv.v.v v24, v16 // Get IV or last ciphertext block of prev set vslideup.vi v24, v20, 4 // Setup prev ciphertext blocks vslidedown.vx v16, v20, t1 // Save last ciphertext block of this set aes_decrypt v20, \keylen // Decrypt this set of blocks vxor.vv v24, v24, v20 // XOR prev ciphertext blocks with decrypted blocks vse32.v v24, (OUTP) // Store this set of plaintext blocks sub LEN32, LEN32, t0 slli t0, t0, 2 // Words to bytes add INP, INP, t0 add OUTP, OUTP, t0 bnez LEN32, .Lcts_decrypt_loop\@ vsetivli zero, 4, e32, m4, ta, ma vslidedown.vx v20, v20, t1 // Extract raw plaintext of last full block addi t0, OUTP, -16 // Get pointer to last full plaintext block bnez LEN_MOD16, .Lcts_decrypt_non_block_aligned\@ // Special case: if the message is a single block, just do CBC. li t1, 16 beq LEN, t1, .Lcts_decrypt_done\@ // Block-aligned message. Just fix up the last 2 blocks. We need: // // P[n-1] = Decrypt(C[n]) ^ C[n-2] // P[n] = Decrypt(C[n-1]) ^ C[n] // // We have C[n] in v16, Decrypt(C[n]) in v20, and C[n-2] in v28. // Together with Decrypt(C[n-1]) ^ C[n-2] from the output buffer, this // is everything needed to fix the output without re-decrypting blocks. addi t1, OUTP, -32 // Get pointer to where P[n-1] should go vxor.vv v20, v20, v28 // Decrypt(C[n]) ^ C[n-2] == P[n-1] vle32.v v24, (t1) // Decrypt(C[n-1]) ^ C[n-2] vse32.v v20, (t1) // Store P[n-1] vxor.vv v20, v24, v16 // Decrypt(C[n-1]) ^ C[n-2] ^ C[n] == P[n] ^ C[n-2] j .Lcts_decrypt_finish\@ .Lcts_decrypt_non_block_aligned\@: // Decrypt the last two blocks using ciphertext stealing as follows: // // P[n-1] = Decrypt(C[n] || Decrypt(C[n-1])[LEN_MOD16..16]) ^ C[n-2] // P[n] = (Decrypt(C[n-1]) ^ C[n])[0..LEN_MOD16] // // We already have Decrypt(C[n-1]) in v20 and C[n-2] in v28. vmv.v.v v16, v20 // v16 = Decrypt(C[n-1]) vsetvli zero, LEN_MOD16, e8, m1, tu, ma vle8.v v20, (INP) // v20 = C[n] || Decrypt(C[n-1])[LEN_MOD16..16] vxor.vv v16, v16, v20 // v16 = Decrypt(C[n-1]) ^ C[n] vse8.v v16, (OUTP) // Store P[n] vsetivli zero, 4, e32, m1, ta, ma aes_decrypt v20, \keylen // v20 = Decrypt(C[n] || Decrypt(C[n-1])[LEN_MOD16..16]) .Lcts_decrypt_finish\@: vxor.vv v20, v20, v28 // XOR with C[n-2] vse32.v v20, (t0) // Store last full plaintext block .Lcts_decrypt_done\@: ret .endm .macro aes_cbc_cts_crypt keylen vle32.v v16, (IVP) // Load IV beqz a5, .Lcts_decrypt\@ aes_cbc_cts_encrypt \keylen .Lcts_decrypt\@: aes_cbc_cts_decrypt \keylen .endm // void aes_cbc_cts_crypt_zvkned(const struct crypto_aes_ctx *key, // const u8 *in, u8 *out, size_t len, // const u8 iv[16], bool enc); // // Encrypts or decrypts a message with the CS3 variant of AES-CBC-CTS. // This is the variant that unconditionally swaps the last two blocks. SYM_FUNC_START(aes_cbc_cts_crypt_zvkned) aes_begin KEYP, 128f, 192f aes_cbc_cts_crypt 256 128: aes_cbc_cts_crypt 128 192: aes_cbc_cts_crypt 192 SYM_FUNC_END(aes_cbc_cts_crypt_zvkned)