/* * linux/net/sunrpc/xprt.c * * This is a generic RPC call interface supporting congestion avoidance, * and asynchronous calls. * * The interface works like this: * * - When a process places a call, it allocates a request slot if * one is available. Otherwise, it sleeps on the backlog queue * (xprt_reserve). * - Next, the caller puts together the RPC message, stuffs it into * the request struct, and calls xprt_call(). * - xprt_call transmits the message and installs the caller on the * socket's wait list. At the same time, it installs a timer that * is run after the packet's timeout has expired. * - When a packet arrives, the data_ready handler walks the list of * pending requests for that socket. If a matching XID is found, the * caller is woken up, and the timer removed. * - When no reply arrives within the timeout interval, the timer is * fired by the kernel and runs xprt_timer(). It either adjusts the * timeout values (minor timeout) or wakes up the caller with a status * of -ETIMEDOUT. * - When the caller receives a notification from RPC that a reply arrived, * it should release the RPC slot, and process the reply. * If the call timed out, it may choose to retry the operation by * adjusting the initial timeout value, and simply calling rpc_call * again. * * Support for async RPC is done through a set of RPC-specific scheduling * primitives that `transparently' work for processes as well as async * tasks that rely on callbacks. * * Copyright (C) 1995-1997, Olaf Kirch * * TCP callback races fixes (C) 1998 Red Hat Software * TCP send fixes (C) 1998 Red Hat Software * TCP NFS related read + write fixes * (C) 1999 Dave Airlie, University of Limerick, Ireland * * Rewrite of larges part of the code in order to stabilize TCP stuff. * Fix behaviour when socket buffer is full. * (C) 1999 Trond Myklebust */ #define __KERNEL_SYSCALLS__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Following value should be > 32k + RPC overhead */ #define XPRT_MIN_WRITE_SPACE (35000 + SOCK_MIN_WRITE_SPACE) extern spinlock_t rpc_queue_lock; /* * Local variables */ #ifdef RPC_DEBUG # undef RPC_DEBUG_DATA # define RPCDBG_FACILITY RPCDBG_XPRT #endif /* * Local functions */ static void xprt_request_init(struct rpc_task *, struct rpc_xprt *); static void do_xprt_transmit(struct rpc_task *); static void xprt_reserve_status(struct rpc_task *task); static void xprt_disconnect(struct rpc_xprt *); static void xprt_reconn_status(struct rpc_task *task); static struct socket *xprt_create_socket(int, struct rpc_timeout *); static int xprt_bind_socket(struct rpc_xprt *, struct socket *); static void xprt_remove_pending(struct rpc_xprt *); #ifdef RPC_DEBUG_DATA /* * Print the buffer contents (first 128 bytes only--just enough for * diropres return). */ static void xprt_pktdump(char *msg, u32 *packet, unsigned int count) { u8 *buf = (u8 *) packet; int j; dprintk("RPC: %s\n", msg); for (j = 0; j < count && j < 128; j += 4) { if (!(j & 31)) { if (j) dprintk("\n"); dprintk("0x%04x ", j); } dprintk("%02x%02x%02x%02x ", buf[j], buf[j+1], buf[j+2], buf[j+3]); } dprintk("\n"); } #else static inline void xprt_pktdump(char *msg, u32 *packet, unsigned int count) { /* NOP */ } #endif /* * Look up RPC transport given an INET socket */ static inline struct rpc_xprt * xprt_from_sock(struct sock *sk) { return (struct rpc_xprt *) sk->user_data; } /* * Adjust the iovec to move on 'n' bytes */ extern inline void xprt_move_iov(struct msghdr *msg, struct iovec *niv, unsigned amount) { struct iovec *iv=msg->msg_iov; int i; /* * Eat any sent iovecs */ while (iv->iov_len <= amount) { amount -= iv->iov_len; iv++; msg->msg_iovlen--; } /* * And chew down the partial one */ niv[0].iov_len = iv->iov_len-amount; niv[0].iov_base =((unsigned char *)iv->iov_base)+amount; iv++; /* * And copy any others */ for(i = 1; i < msg->msg_iovlen; i++) niv[i]=*iv++; msg->msg_iov=niv; } /* * Serialize write access to sockets, in order to prevent different * requests from interfering with each other. * Also prevents TCP socket reconnections from colliding with writes. */ static int xprt_lock_write(struct rpc_xprt *xprt, struct rpc_task *task) { int retval; spin_lock_bh(&xprt->sock_lock); if (!xprt->snd_task) xprt->snd_task = task; else if (xprt->snd_task != task) { dprintk("RPC: %4d TCP write queue full (task %d)\n", task->tk_pid, xprt->snd_task->tk_pid); task->tk_timeout = 0; task->tk_status = -EAGAIN; rpc_sleep_on(&xprt->sending, task, NULL, NULL); } retval = xprt->snd_task == task; spin_unlock_bh(&xprt->sock_lock); return retval; } /* * Releases the socket for use by other requests. */ static void xprt_release_write(struct rpc_xprt *xprt, struct rpc_task *task) { spin_lock_bh(&xprt->sock_lock); if (xprt->snd_task == task) { xprt->snd_task = NULL; rpc_wake_up_next(&xprt->sending); } spin_unlock_bh(&xprt->sock_lock); } /* * Write data to socket. */ static inline int xprt_sendmsg(struct rpc_xprt *xprt, struct rpc_rqst *req) { struct socket *sock = xprt->sock; struct msghdr msg; mm_segment_t oldfs; int result; int slen = req->rq_slen - req->rq_bytes_sent; struct iovec niv[MAX_IOVEC]; if (slen <= 0) return 0; if (!sock) return -ENOTCONN; xprt_pktdump("packet data:", req->rq_svec->iov_base, req->rq_svec->iov_len); msg.msg_flags = MSG_DONTWAIT|MSG_NOSIGNAL; msg.msg_iov = req->rq_svec; msg.msg_iovlen = req->rq_snr; msg.msg_name = (struct sockaddr *) &xprt->addr; msg.msg_namelen = sizeof(xprt->addr); msg.msg_control = NULL; msg.msg_controllen = 0; /* Dont repeat bytes */ if (req->rq_bytes_sent) xprt_move_iov(&msg, niv, req->rq_bytes_sent); oldfs = get_fs(); set_fs(get_ds()); result = sock_sendmsg(sock, &msg, slen); set_fs(oldfs); dprintk("RPC: xprt_sendmsg(%d) = %d\n", slen, result); if (result >= 0) return result; switch (result) { case -ECONNREFUSED: /* When the server has died, an ICMP port unreachable message * prompts ECONNREFUSED. */ break; case -EAGAIN: if (test_bit(SOCK_NOSPACE, &sock->flags)) result = -ENOMEM; break; case -ENOTCONN: case -EPIPE: /* connection broken */ if (xprt->stream) result = -ENOTCONN; break; default: printk(KERN_NOTICE "RPC: sendmsg returned error %d\n", -result); } return result; } /* * Read data from socket */ static int xprt_recvmsg(struct rpc_xprt *xprt, struct iovec *iov, int nr, unsigned len, unsigned shift) { struct socket *sock = xprt->sock; struct msghdr msg; mm_segment_t oldfs; struct iovec niv[MAX_IOVEC]; int result; if (!sock) return -ENOTCONN; msg.msg_flags = MSG_DONTWAIT|MSG_NOSIGNAL; msg.msg_iov = iov; msg.msg_iovlen = nr; msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_control = NULL; msg.msg_controllen = 0; /* Adjust the iovec if we've already filled it */ if (shift) xprt_move_iov(&msg, niv, shift); oldfs = get_fs(); set_fs(get_ds()); result = sock_recvmsg(sock, &msg, len, MSG_DONTWAIT); set_fs(oldfs); dprintk("RPC: xprt_recvmsg(iov %p, len %d) = %d\n", iov, len, result); return result; } /* * Adjust RPC congestion window * We use a time-smoothed congestion estimator to avoid heavy oscillation. */ static void xprt_adjust_cwnd(struct rpc_xprt *xprt, int result) { unsigned long cwnd; if (xprt->nocong) return; /* * Note: we're in a BH context */ spin_lock(&xprt->xprt_lock); cwnd = xprt->cwnd; if (result >= 0) { if (xprt->cong < cwnd || time_before(jiffies, xprt->congtime)) goto out; /* The (cwnd >> 1) term makes sure * the result gets rounded properly. */ cwnd += (RPC_CWNDSCALE * RPC_CWNDSCALE + (cwnd >> 1)) / cwnd; if (cwnd > RPC_MAXCWND) cwnd = RPC_MAXCWND; else pprintk("RPC: %lu %ld cwnd\n", jiffies, cwnd); xprt->congtime = jiffies + ((cwnd * HZ) << 2) / RPC_CWNDSCALE; dprintk("RPC: cong %08lx, cwnd was %08lx, now %08lx, " "time %ld ms\n", xprt->cong, xprt->cwnd, cwnd, (xprt->congtime-jiffies)*1000/HZ); } else if (result == -ETIMEDOUT) { if ((cwnd >>= 1) < RPC_CWNDSCALE) cwnd = RPC_CWNDSCALE; xprt->congtime = jiffies + ((cwnd * HZ) << 3) / RPC_CWNDSCALE; dprintk("RPC: cong %ld, cwnd was %ld, now %ld, " "time %ld ms\n", xprt->cong, xprt->cwnd, cwnd, (xprt->congtime-jiffies)*1000/HZ); pprintk("RPC: %lu %ld cwnd\n", jiffies, cwnd); } xprt->cwnd = cwnd; out: spin_unlock(&xprt->xprt_lock); } /* * Adjust timeout values etc for next retransmit */ int xprt_adjust_timeout(struct rpc_timeout *to) { if (to->to_retries > 0) { if (to->to_exponential) to->to_current <<= 1; else to->to_current += to->to_increment; if (to->to_maxval && to->to_current >= to->to_maxval) to->to_current = to->to_maxval; } else { if (to->to_exponential) to->to_initval <<= 1; else to->to_initval += to->to_increment; if (to->to_maxval && to->to_initval >= to->to_maxval) to->to_initval = to->to_maxval; to->to_current = to->to_initval; } if (!to->to_current) { printk(KERN_WARNING "xprt_adjust_timeout: to_current = 0!\n"); to->to_current = 5 * HZ; } pprintk("RPC: %lu %s\n", jiffies, to->to_retries? "retrans" : "timeout"); return to->to_retries-- > 0; } /* * Close down a transport socket */ static void xprt_close(struct rpc_xprt *xprt) { struct socket *sock = xprt->sock; struct sock *sk = xprt->inet; if (!sk) return; xprt->inet = NULL; xprt->sock = NULL; sk->user_data = NULL; sk->data_ready = xprt->old_data_ready; sk->state_change = xprt->old_state_change; sk->write_space = xprt->old_write_space; xprt_disconnect(xprt); sk->no_check = 0; sock_release(sock); /* * TCP doesnt require the rpciod now - other things may * but rpciod handles that not us. */ if(xprt->stream) rpciod_down(); } /* * Mark a transport as disconnected */ static void xprt_disconnect(struct rpc_xprt *xprt) { dprintk("RPC: disconnected transport %p\n", xprt); xprt_clear_connected(xprt); xprt_remove_pending(xprt); rpc_wake_up_status(&xprt->pending, -ENOTCONN); } /* * Reconnect a broken TCP connection. * * Note: This cannot collide with the TCP reads, as both run from rpciod */ void xprt_reconnect(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; struct socket *sock = xprt->sock; struct sock *inet = xprt->inet; int status; dprintk("RPC: %4d xprt_reconnect %p connected %d\n", task->tk_pid, xprt, xprt_connected(xprt)); if (xprt->shutdown) return; if (!xprt->stream) return; if (!xprt->addr.sin_port) { task->tk_status = -EIO; return; } if (!xprt_lock_write(xprt, task)) return; if (xprt_connected(xprt)) goto out_write; status = -ENOTCONN; if (!inet) { /* Create an unconnected socket */ if (!(sock = xprt_create_socket(xprt->prot, &xprt->timeout))) goto defer; xprt_bind_socket(xprt, sock); inet = sock->sk; } xprt_disconnect(xprt); /* Reset TCP record info */ xprt->tcp_offset = 0; xprt->tcp_reclen = 0; xprt->tcp_copied = 0; xprt->tcp_more = 0; /* Now connect it asynchronously. */ dprintk("RPC: %4d connecting new socket\n", task->tk_pid); status = sock->ops->connect(sock, (struct sockaddr *) &xprt->addr, sizeof(xprt->addr), O_NONBLOCK); if (status < 0) { switch (status) { case -EALREADY: case -EINPROGRESS: status = 0; break; case -EISCONN: case -EPIPE: status = 0; xprt_close(xprt); goto defer; default: printk("RPC: TCP connect error %d!\n", -status); xprt_close(xprt); goto defer; } dprintk("RPC: %4d connect status %d connected %d\n", task->tk_pid, status, xprt_connected(xprt)); spin_lock_bh(&xprt->sock_lock); if (!xprt_connected(xprt)) { task->tk_timeout = xprt->timeout.to_maxval; rpc_sleep_on(&xprt->sending, task, xprt_reconn_status, NULL); spin_unlock_bh(&xprt->sock_lock); return; } spin_unlock_bh(&xprt->sock_lock); } defer: if (status < 0) { rpc_delay(task, 5*HZ); task->tk_status = -ENOTCONN; } out_write: xprt_release_write(xprt, task); } /* * Reconnect timeout. We just mark the transport as not being in the * process of reconnecting, and leave the rest to the upper layers. */ static void xprt_reconn_status(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; dprintk("RPC: %4d xprt_reconn_timeout %d\n", task->tk_pid, task->tk_status); xprt_release_write(xprt, task); } /* * Look up the RPC request corresponding to a reply, and then lock it. */ static inline struct rpc_rqst * xprt_lookup_rqst(struct rpc_xprt *xprt, u32 xid) { struct rpc_task *head, *task; struct rpc_rqst *req; int safe = 0; spin_lock_bh(&rpc_queue_lock); if ((head = xprt->pending.task) != NULL) { task = head; do { if ((req = task->tk_rqstp) && req->rq_xid == xid) goto out; task = task->tk_next; if (++safe > 100) { printk("xprt_lookup_rqst: loop in Q!\n"); goto out_bad; } } while (task != head); } dprintk("RPC: unknown XID %08x in reply.\n", xid); out_bad: req = NULL; out: if (req && !__rpc_lock_task(req->rq_task)) req = NULL; spin_unlock_bh(&rpc_queue_lock); return req; } /* * Complete reply received. * The TCP code relies on us to remove the request from xprt->pending. */ static inline void xprt_complete_rqst(struct rpc_xprt *xprt, struct rpc_rqst *req, int copied) { struct rpc_task *task = req->rq_task; /* Adjust congestion window */ xprt_adjust_cwnd(xprt, copied); #ifdef RPC_PROFILE /* Profile only reads for now */ if (copied > 1024) { static unsigned long nextstat = 0; static unsigned long pkt_rtt = 0, pkt_len = 0, pkt_cnt = 0; pkt_cnt++; pkt_len += req->rq_slen + copied; pkt_rtt += jiffies - req->rq_xtime; if (time_before(nextstat, jiffies)) { printk("RPC: %lu %ld cwnd\n", jiffies, xprt->cwnd); printk("RPC: %ld %ld %ld %ld stat\n", jiffies, pkt_cnt, pkt_len, pkt_rtt); pkt_rtt = pkt_len = pkt_cnt = 0; nextstat = jiffies + 5 * HZ; } } #endif dprintk("RPC: %4d has input (%d bytes)\n", task->tk_pid, copied); task->tk_status = copied; req->rq_received = 1; /* ... and wake up the process. */ rpc_wake_up_task(task); return; } /* * We have set things up such that we perform the checksum of the UDP * packet in parallel with the copies into the RPC client iovec. -DaveM */ static int csum_partial_copy_to_page_cache(struct iovec *iov, struct sk_buff *skb, int copied) { int offset = sizeof(struct udphdr); __u8 *cur_ptr = iov->iov_base; __kernel_size_t cur_len = iov->iov_len; unsigned int csum = skb->csum; int need_csum = (skb->ip_summed != CHECKSUM_UNNECESSARY); int slack = skb->len - copied - sizeof(struct udphdr); if (need_csum) csum = csum_partial(skb->data, sizeof(struct udphdr), csum); while (copied > 0) { if (cur_len) { int to_move = cur_len; if (to_move > copied) to_move = copied; if (need_csum) { unsigned int csum2; csum2 = skb_copy_and_csum_bits(skb, offset, cur_ptr, to_move, 0); csum = csum_block_add(csum, csum2, offset); } else skb_copy_bits(skb, offset, cur_ptr, to_move); offset += to_move; copied -= to_move; cur_ptr += to_move; cur_len -= to_move; } if (cur_len <= 0) { iov++; cur_len = iov->iov_len; cur_ptr = iov->iov_base; } } if (need_csum) { if (slack > 0) { unsigned int csum2; csum2 = skb_checksum(skb, offset, slack, 0); csum = csum_block_add(csum, csum2, offset); } if ((unsigned short)csum_fold(csum)) return -1; } return 0; } /* * Input handler for RPC replies. Called from a bottom half and hence * atomic. */ static void udp_data_ready(struct sock *sk, int len) { struct rpc_task *task; struct rpc_xprt *xprt; struct rpc_rqst *rovr; struct sk_buff *skb; int err, repsize, copied; dprintk("RPC: udp_data_ready...\n"); if (!(xprt = xprt_from_sock(sk))) { printk("RPC: udp_data_ready request not found!\n"); goto out; } dprintk("RPC: udp_data_ready client %p\n", xprt); if ((skb = skb_recv_datagram(sk, 0, 1, &err)) == NULL) goto out; if (xprt->shutdown) goto dropit; repsize = skb->len - sizeof(struct udphdr); if (repsize < 4) { printk("RPC: impossible RPC reply size %d!\n", repsize); goto dropit; } /* Look up and lock the request corresponding to the given XID */ rovr = xprt_lookup_rqst(xprt, *(u32 *) (skb->h.raw + sizeof(struct udphdr))); if (!rovr) goto dropit; task = rovr->rq_task; dprintk("RPC: %4d received reply\n", task->tk_pid); xprt_pktdump("packet data:", (u32 *) (skb->h.raw+sizeof(struct udphdr)), repsize); if ((copied = rovr->rq_rlen) > repsize) copied = repsize; /* Suck it into the iovec, verify checksum if not done by hw. */ if (csum_partial_copy_to_page_cache(rovr->rq_rvec, skb, copied)) goto out_unlock; /* Something worked... */ dst_confirm(skb->dst); xprt_complete_rqst(xprt, rovr, copied); out_unlock: rpc_unlock_task(task); dropit: skb_free_datagram(sk, skb); out: if (sk->sleep && waitqueue_active(sk->sleep)) wake_up_interruptible(sk->sleep); } /* * TCP read fragment marker */ static inline int tcp_read_fraghdr(struct rpc_xprt *xprt) { struct iovec riov; int want, result; if (xprt->tcp_offset >= sizeof(xprt->tcp_recm)) goto done; want = sizeof(xprt->tcp_recm) - xprt->tcp_offset; dprintk("RPC: reading header (%d bytes)\n", want); do { riov.iov_base = ((u8*) &xprt->tcp_recm) + xprt->tcp_offset; riov.iov_len = want; result = xprt_recvmsg(xprt, &riov, 1, want, 0); if (result < 0) return result; xprt->tcp_offset += result; want -= result; } while (want); /* Get the record length and mask out the last fragment bit */ xprt->tcp_reclen = ntohl(xprt->tcp_recm); xprt->tcp_more = (xprt->tcp_reclen & 0x80000000) ? 0 : 1; xprt->tcp_reclen &= 0x7fffffff; dprintk("RPC: New record reclen %d morefrags %d\n", xprt->tcp_reclen, xprt->tcp_more); done: return xprt->tcp_reclen + sizeof(xprt->tcp_recm) - xprt->tcp_offset; } /* * TCP read xid */ static inline int tcp_read_xid(struct rpc_xprt *xprt, int avail) { struct iovec riov; int want, result; if (xprt->tcp_copied >= sizeof(xprt->tcp_xid) || !avail) goto done; want = min_t(unsigned int, sizeof(xprt->tcp_xid) - xprt->tcp_copied, avail); do { dprintk("RPC: reading xid (%d bytes)\n", want); riov.iov_base = ((u8*) &xprt->tcp_xid) + xprt->tcp_copied; riov.iov_len = want; result = xprt_recvmsg(xprt, &riov, 1, want, 0); if (result < 0) return result; xprt->tcp_copied += result; xprt->tcp_offset += result; want -= result; avail -= result; } while (want); done: return avail; } /* * TCP read and complete request */ static inline int tcp_read_request(struct rpc_xprt *xprt, struct rpc_rqst *req, int avail) { int want, result; if (req->rq_rlen <= xprt->tcp_copied || !avail) goto done; want = min_t(unsigned int, req->rq_rlen - xprt->tcp_copied, avail); do { dprintk("RPC: %4d TCP receiving %d bytes\n", req->rq_task->tk_pid, want); result = xprt_recvmsg(xprt, req->rq_rvec, req->rq_rnr, want, xprt->tcp_copied); if (result < 0) return result; xprt->tcp_copied += result; xprt->tcp_offset += result; avail -= result; want -= result; } while (want); done: if (req->rq_rlen > xprt->tcp_copied && xprt->tcp_more) return avail; dprintk("RPC: %4d received reply complete\n", req->rq_task->tk_pid); xprt_complete_rqst(xprt, req, xprt->tcp_copied); return avail; } /* * TCP discard extra bytes from a short read */ static inline int tcp_read_discard(struct rpc_xprt *xprt, int avail) { struct iovec riov; static u8 dummy[64]; int want, result = 0; while (avail) { want = min_t(unsigned int, avail, sizeof(dummy)); riov.iov_base = dummy; riov.iov_len = want; dprintk("RPC: TCP skipping %d bytes\n", want); result = xprt_recvmsg(xprt, &riov, 1, want, 0); if (result < 0) return result; xprt->tcp_offset += result; avail -= result; } return avail; } /* * TCP record receive routine * This is not the most efficient code since we call recvfrom thrice-- * first receiving the record marker, then the XID, then the data. * * The optimal solution would be a RPC support in the TCP layer, which * would gather all data up to the next record marker and then pass us * the list of all TCP segments ready to be copied. */ static int tcp_input_record(struct rpc_xprt *xprt) { struct rpc_rqst *req = NULL; struct rpc_task *task = NULL; int avail, result; dprintk("RPC: tcp_input_record\n"); if (xprt->shutdown) return -EIO; if (!xprt_connected(xprt)) return -ENOTCONN; /* Read in a new fragment marker if necessary */ /* Can we ever really expect to get completely empty fragments? */ if ((result = tcp_read_fraghdr(xprt)) < 0) return result; avail = result; /* Read in the xid if necessary */ if ((result = tcp_read_xid(xprt, avail)) < 0) return result; if (!(avail = result)) goto out_ok; /* Find and lock the request corresponding to this xid */ req = xprt_lookup_rqst(xprt, xprt->tcp_xid); if (req) { task = req->rq_task; /* Read in the request data */ result = tcp_read_request(xprt, req, avail); rpc_unlock_task(task); if (result < 0) return result; avail = result; } /* Skip over any trailing bytes on short reads */ if ((result = tcp_read_discard(xprt, avail)) < 0) return result; out_ok: dprintk("RPC: tcp_input_record done (off %d reclen %d copied %d)\n", xprt->tcp_offset, xprt->tcp_reclen, xprt->tcp_copied); result = xprt->tcp_reclen; xprt->tcp_reclen = 0; xprt->tcp_offset = 0; if (!xprt->tcp_more) xprt->tcp_copied = 0; return result; } /* * TCP task queue stuff */ LIST_HEAD(rpc_xprt_pending); /* List of xprts having pending tcp requests */ static inline void tcp_rpciod_queue(void) { rpciod_wake_up(); } int xprt_tcp_pending(void) { int retval; spin_lock_bh(&rpc_queue_lock); retval = !list_empty(&rpc_xprt_pending); spin_unlock_bh(&rpc_queue_lock); return retval; } static inline void xprt_append_pending(struct rpc_xprt *xprt) { spin_lock_bh(&rpc_queue_lock); if (list_empty(&xprt->rx_pending)) { list_add(&xprt->rx_pending, rpc_xprt_pending.prev); dprintk("RPC: xprt queue %p\n", xprt); tcp_rpciod_queue(); } spin_unlock_bh(&rpc_queue_lock); } static void xprt_remove_pending(struct rpc_xprt *xprt) { spin_lock_bh(&rpc_queue_lock); if (!list_empty(&xprt->rx_pending)) { list_del(&xprt->rx_pending); INIT_LIST_HEAD(&xprt->rx_pending); } spin_unlock_bh(&rpc_queue_lock); } static inline struct rpc_xprt *xprt_remove_pending_next(void) { struct rpc_xprt *xprt = NULL; spin_lock_bh(&rpc_queue_lock); if (!list_empty(&rpc_xprt_pending)) { xprt = list_entry(rpc_xprt_pending.next, struct rpc_xprt, rx_pending); list_del(&xprt->rx_pending); INIT_LIST_HEAD(&xprt->rx_pending); } spin_unlock_bh(&rpc_queue_lock); return xprt; } /* * This is protected from tcp_data_ready and the stack as its run * inside of the RPC I/O daemon */ void __rpciod_tcp_dispatcher(void) { struct rpc_xprt *xprt; int safe_retry = 0, result; dprintk("rpciod_tcp_dispatcher: Queue Running\n"); /* * Empty each pending socket */ while ((xprt = xprt_remove_pending_next()) != NULL) { dprintk("rpciod_tcp_dispatcher: Processing %p\n", xprt); do { result = tcp_input_record(xprt); } while (result >= 0); if (safe_retry++ > 200) { schedule(); safe_retry = 0; } } } /* * data_ready callback for TCP. We can't just jump into the * tcp recvmsg functions inside of the network receive bh or * bad things occur. We queue it to pick up after networking * is done. */ static void tcp_data_ready(struct sock *sk, int len) { struct rpc_xprt *xprt; dprintk("RPC: tcp_data_ready...\n"); if (!(xprt = xprt_from_sock(sk))) { printk("Not a socket with xprt %p\n", sk); goto out; } if (xprt->shutdown) goto out; xprt_append_pending(xprt); dprintk("RPC: tcp_data_ready client %p\n", xprt); dprintk("RPC: state %x conn %d dead %d zapped %d\n", sk->state, xprt_connected(xprt), sk->dead, sk->zapped); out: if (sk->sleep && waitqueue_active(sk->sleep)) wake_up_interruptible(sk->sleep); } static void tcp_state_change(struct sock *sk) { struct rpc_xprt *xprt; if (!(xprt = xprt_from_sock(sk))) goto out; dprintk("RPC: tcp_state_change client %p...\n", xprt); dprintk("RPC: state %x conn %d dead %d zapped %d\n", sk->state, xprt_connected(xprt), sk->dead, sk->zapped); switch (sk->state) { case TCP_ESTABLISHED: if (xprt_test_and_set_connected(xprt)) break; spin_lock(&xprt->sock_lock); if (xprt->snd_task && xprt->snd_task->tk_rpcwait == &xprt->sending) rpc_wake_up_task(xprt->snd_task); spin_unlock(&xprt->sock_lock); break; case TCP_SYN_SENT: case TCP_SYN_RECV: break; default: xprt_disconnect(xprt); break; } out: if (sk->sleep && waitqueue_active(sk->sleep)) wake_up_interruptible_all(sk->sleep); } /* * The following 2 routines allow a task to sleep while socket memory is * low. */ static void tcp_write_space(struct sock *sk) { struct rpc_xprt *xprt; struct socket *sock; if (!(xprt = xprt_from_sock(sk)) || !(sock = sk->socket)) return; if (xprt->shutdown) return; /* Wait until we have enough socket memory */ if (!sock_writeable(sk)) return; if (!xprt_test_and_set_wspace(xprt)) { spin_lock(&xprt->sock_lock); if (xprt->snd_task && xprt->snd_task->tk_rpcwait == &xprt->sending) rpc_wake_up_task(xprt->snd_task); spin_unlock(&xprt->sock_lock); } if (test_bit(SOCK_NOSPACE, &sock->flags)) { if (sk->sleep && waitqueue_active(sk->sleep)) { clear_bit(SOCK_NOSPACE, &sock->flags); wake_up_interruptible(sk->sleep); } } } static void udp_write_space(struct sock *sk) { struct rpc_xprt *xprt; if (!(xprt = xprt_from_sock(sk))) return; if (xprt->shutdown) return; /* Wait until we have enough socket memory */ if (sock_wspace(sk) < min_t(int, sk->sndbuf,XPRT_MIN_WRITE_SPACE)) return; if (!xprt_test_and_set_wspace(xprt)) { spin_lock(&xprt->sock_lock); if (xprt->snd_task && xprt->snd_task->tk_rpcwait == &xprt->sending) rpc_wake_up_task(xprt->snd_task); spin_unlock(&xprt->sock_lock); } if (sk->sleep && waitqueue_active(sk->sleep)) wake_up_interruptible(sk->sleep); } /* * RPC receive timeout handler. */ static void xprt_timer(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; if (req) xprt_adjust_cwnd(task->tk_xprt, -ETIMEDOUT); dprintk("RPC: %4d xprt_timer (%s request)\n", task->tk_pid, req ? "pending" : "backlogged"); task->tk_status = -ETIMEDOUT; task->tk_timeout = 0; rpc_wake_up_task(task); } /* * Place the actual RPC call. * We have to copy the iovec because sendmsg fiddles with its contents. */ void xprt_transmit(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; dprintk("RPC: %4d xprt_transmit(%x)\n", task->tk_pid, *(u32 *)(req->rq_svec[0].iov_base)); if (xprt->shutdown) task->tk_status = -EIO; if (!xprt_connected(xprt)) task->tk_status = -ENOTCONN; if (task->tk_status < 0) return; if (task->tk_rpcwait) rpc_remove_wait_queue(task); /* set up everything as needed. */ /* Write the record marker */ if (xprt->stream) { u32 *marker = req->rq_svec[0].iov_base; *marker = htonl(0x80000000|(req->rq_slen-sizeof(*marker))); } if (!xprt_lock_write(xprt, task)) return; #ifdef RPC_PROFILE req->rq_xtime = jiffies; #endif do_xprt_transmit(task); } static void do_xprt_transmit(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; int status, retry = 0; /* For fast networks/servers we have to put the request on * the pending list now: * Note that we don't want the task timing out during the * call to xprt_sendmsg(), so we initially disable the timeout, * and then reset it later... */ xprt_receive(task); /* Continue transmitting the packet/record. We must be careful * to cope with writespace callbacks arriving _after_ we have * called xprt_sendmsg(). */ while (1) { xprt_clear_wspace(xprt); status = xprt_sendmsg(xprt, req); if (status < 0) break; if (xprt->stream) { req->rq_bytes_sent += status; if (req->rq_bytes_sent >= req->rq_slen) goto out_receive; } else { if (status >= req->rq_slen) goto out_receive; status = -ENOMEM; break; } dprintk("RPC: %4d xmit incomplete (%d left of %d)\n", task->tk_pid, req->rq_slen - req->rq_bytes_sent, req->rq_slen); status = -EAGAIN; if (retry++ > 50) break; } rpc_unlock_task(task); /* Note: at this point, task->tk_sleeping has not yet been set, * hence there is no danger of the waking up task being put on * schedq, and being picked up by a parallel run of rpciod(). */ rpc_wake_up_task(task); if (!RPC_IS_RUNNING(task)) goto out_release; if (req->rq_received) goto out_release; task->tk_status = status; switch (status) { case -ENOMEM: /* Protect against (udp|tcp)_write_space */ spin_lock_bh(&xprt->sock_lock); if (!xprt_wspace(xprt)) { task->tk_timeout = req->rq_timeout.to_current; rpc_sleep_on(&xprt->sending, task, NULL, NULL); } spin_unlock_bh(&xprt->sock_lock); return; case -EAGAIN: /* Keep holding the socket if it is blocked */ rpc_delay(task, HZ>>4); return; case -ECONNREFUSED: case -ENOTCONN: if (!xprt->stream) return; default: if (xprt->stream) xprt_disconnect(xprt); req->rq_bytes_sent = 0; goto out_release; } out_receive: dprintk("RPC: %4d xmit complete\n", task->tk_pid); /* Set the task's receive timeout value */ task->tk_timeout = req->rq_timeout.to_current; rpc_add_timer(task, xprt_timer); rpc_unlock_task(task); out_release: xprt_release_write(xprt, task); } /* * Queue the task for a reply to our call. * When the callback is invoked, the congestion window should have * been updated already. */ void xprt_receive(struct rpc_task *task) { struct rpc_rqst *req = task->tk_rqstp; struct rpc_xprt *xprt = req->rq_xprt; dprintk("RPC: %4d xprt_receive\n", task->tk_pid); req->rq_received = 0; task->tk_timeout = 0; rpc_sleep_locked(&xprt->pending, task, NULL, NULL); } /* * Reserve an RPC call slot. */ int xprt_reserve(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; /* We already have an initialized request. */ if (task->tk_rqstp) return 0; dprintk("RPC: %4d xprt_reserve cong = %ld cwnd = %ld\n", task->tk_pid, xprt->cong, xprt->cwnd); spin_lock_bh(&xprt->xprt_lock); xprt_reserve_status(task); if (task->tk_rqstp) { task->tk_timeout = 0; } else if (!task->tk_timeout) { task->tk_status = -ENOBUFS; } else { dprintk("RPC: xprt_reserve waiting on backlog\n"); task->tk_status = -EAGAIN; rpc_sleep_on(&xprt->backlog, task, NULL, NULL); } spin_unlock_bh(&xprt->xprt_lock); dprintk("RPC: %4d xprt_reserve returns %d\n", task->tk_pid, task->tk_status); return task->tk_status; } /* * Reservation callback */ static void xprt_reserve_status(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; struct rpc_rqst *req; if (xprt->shutdown) { task->tk_status = -EIO; } else if (task->tk_status < 0) { /* NOP */ } else if (task->tk_rqstp) { /* We've already been given a request slot: NOP */ } else { if (RPCXPRT_CONGESTED(xprt) || !(req = xprt->free)) goto out_nofree; /* OK: There's room for us. Grab a free slot and bump * congestion value */ xprt->free = req->rq_next; req->rq_next = NULL; xprt->cong += RPC_CWNDSCALE; task->tk_rqstp = req; xprt_request_init(task, xprt); if (xprt->free) xprt_clear_backlog(xprt); } return; out_nofree: task->tk_status = -EAGAIN; } /* * Initialize RPC request */ static void xprt_request_init(struct rpc_task *task, struct rpc_xprt *xprt) { struct rpc_rqst *req = task->tk_rqstp; static u32 xid = 0; if (!xid) xid = CURRENT_TIME << 12; dprintk("RPC: %4d reserved req %p xid %08x\n", task->tk_pid, req, xid); task->tk_status = 0; req->rq_timeout = xprt->timeout; req->rq_task = task; req->rq_xprt = xprt; req->rq_xid = xid++; if (!xid) xid++; } /* * Release an RPC call slot */ void xprt_release(struct rpc_task *task) { struct rpc_xprt *xprt = task->tk_xprt; struct rpc_rqst *req; if (xprt->snd_task == task) { if (xprt->stream) xprt_disconnect(xprt); xprt_release_write(xprt, task); } if (!(req = task->tk_rqstp)) return; task->tk_rqstp = NULL; memset(req, 0, sizeof(*req)); /* mark unused */ dprintk("RPC: %4d release request %p\n", task->tk_pid, req); spin_lock_bh(&xprt->xprt_lock); req->rq_next = xprt->free; xprt->free = req; /* Decrease congestion value. */ xprt->cong -= RPC_CWNDSCALE; xprt_clear_backlog(xprt); spin_unlock_bh(&xprt->xprt_lock); } /* * Set default timeout parameters */ void xprt_default_timeout(struct rpc_timeout *to, int proto) { if (proto == IPPROTO_UDP) xprt_set_timeout(to, 5, 5 * HZ); else xprt_set_timeout(to, 5, 60 * HZ); } /* * Set constant timeout */ void xprt_set_timeout(struct rpc_timeout *to, unsigned int retr, unsigned long incr) { to->to_current = to->to_initval = to->to_increment = incr; to->to_maxval = incr * retr; to->to_resrvval = incr * retr; to->to_retries = retr; to->to_exponential = 0; } /* * Initialize an RPC client */ static struct rpc_xprt * xprt_setup(struct socket *sock, int proto, struct sockaddr_in *ap, struct rpc_timeout *to) { struct rpc_xprt *xprt; struct rpc_rqst *req; int i; dprintk("RPC: setting up %s transport...\n", proto == IPPROTO_UDP? "UDP" : "TCP"); if ((xprt = kmalloc(sizeof(struct rpc_xprt), GFP_KERNEL)) == NULL) return NULL; memset(xprt, 0, sizeof(*xprt)); /* Nnnngh! */ xprt->addr = *ap; xprt->prot = proto; xprt->stream = (proto == IPPROTO_TCP)? 1 : 0; if (xprt->stream) { xprt->cwnd = RPC_MAXCWND; xprt->nocong = 1; } else xprt->cwnd = RPC_INITCWND; xprt->congtime = jiffies; spin_lock_init(&xprt->sock_lock); spin_lock_init(&xprt->xprt_lock); init_waitqueue_head(&xprt->cong_wait); /* Set timeout parameters */ if (to) { xprt->timeout = *to; xprt->timeout.to_current = to->to_initval; xprt->timeout.to_resrvval = to->to_maxval << 1; } else xprt_default_timeout(&xprt->timeout, xprt->prot); xprt->pending = RPC_INIT_WAITQ("xprt_pending"); xprt->sending = RPC_INIT_WAITQ("xprt_sending"); xprt->backlog = RPC_INIT_WAITQ("xprt_backlog"); /* initialize free list */ for (i = 0, req = xprt->slot; i < RPC_MAXREQS-1; i++, req++) req->rq_next = req + 1; req->rq_next = NULL; xprt->free = xprt->slot; INIT_LIST_HEAD(&xprt->rx_pending); dprintk("RPC: created transport %p\n", xprt); xprt_bind_socket(xprt, sock); return xprt; } /* * Bind to a reserved port */ static inline int xprt_bindresvport(struct socket *sock) { struct sockaddr_in myaddr; int err, port; memset(&myaddr, 0, sizeof(myaddr)); myaddr.sin_family = AF_INET; port = 800; do { myaddr.sin_port = htons(port); err = sock->ops->bind(sock, (struct sockaddr *) &myaddr, sizeof(myaddr)); } while (err == -EADDRINUSE && --port > 0); if (err < 0) printk("RPC: Can't bind to reserved port (%d).\n", -err); return err; } static int xprt_bind_socket(struct rpc_xprt *xprt, struct socket *sock) { struct sock *sk = sock->sk; if (xprt->inet) return -EBUSY; sk->user_data = xprt; xprt->old_data_ready = sk->data_ready; xprt->old_state_change = sk->state_change; xprt->old_write_space = sk->write_space; if (xprt->prot == IPPROTO_UDP) { sk->data_ready = udp_data_ready; sk->write_space = udp_write_space; sk->no_check = UDP_CSUM_NORCV; xprt_set_connected(xprt); } else { sk->data_ready = tcp_data_ready; sk->state_change = tcp_state_change; sk->write_space = tcp_write_space; xprt_clear_connected(xprt); } /* Reset to new socket */ xprt->sock = sock; xprt->inet = sk; /* * TCP requires the rpc I/O daemon is present */ if(xprt->stream) rpciod_up(); return 0; } /* * Create a client socket given the protocol and peer address. */ static struct socket * xprt_create_socket(int proto, struct rpc_timeout *to) { struct socket *sock; int type, err; dprintk("RPC: xprt_create_socket(%s %d)\n", (proto == IPPROTO_UDP)? "udp" : "tcp", proto); type = (proto == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; if ((err = sock_create(PF_INET, type, proto, &sock)) < 0) { printk("RPC: can't create socket (%d).\n", -err); goto failed; } /* If the caller has the capability, bind to a reserved port */ if (capable(CAP_NET_BIND_SERVICE) && xprt_bindresvport(sock) < 0) goto failed; return sock; failed: sock_release(sock); return NULL; } /* * Create an RPC client transport given the protocol and peer address. */ struct rpc_xprt * xprt_create_proto(int proto, struct sockaddr_in *sap, struct rpc_timeout *to) { struct socket *sock; struct rpc_xprt *xprt; dprintk("RPC: xprt_create_proto called\n"); if (!(sock = xprt_create_socket(proto, to))) return NULL; if (!(xprt = xprt_setup(sock, proto, sap, to))) sock_release(sock); return xprt; } /* * Prepare for transport shutdown. */ void xprt_shutdown(struct rpc_xprt *xprt) { xprt->shutdown = 1; rpc_wake_up(&xprt->sending); rpc_wake_up(&xprt->pending); rpc_wake_up(&xprt->backlog); if (waitqueue_active(&xprt->cong_wait)) wake_up(&xprt->cong_wait); } /* * Clear the xprt backlog queue */ int xprt_clear_backlog(struct rpc_xprt *xprt) { if (RPCXPRT_CONGESTED(xprt)) return 0; rpc_wake_up_next(&xprt->backlog); if (waitqueue_active(&xprt->cong_wait)) wake_up(&xprt->cong_wait); return 1; } /* * Destroy an RPC transport, killing off all requests. */ int xprt_destroy(struct rpc_xprt *xprt) { dprintk("RPC: destroying transport %p\n", xprt); xprt_shutdown(xprt); xprt_close(xprt); kfree(xprt); return 0; }