/* * NET/ROM release 007 * * This code REQUIRES 2.1.15 or higher/ NET3.038 * * This module: * This module is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * History * NET/ROM 001 Jonathan(G4KLX) Cloned from the AX25 code. * NET/ROM 002 Darryl(G7LED) Fixes and address enhancement. * Jonathan(G4KLX) Complete bind re-think. * Alan(GW4PTS) Trivial tweaks into new format. * NET/ROM 003 Jonathan(G4KLX) Added G8BPQ extensions. * Added NET/ROM routing ioctl. * Darryl(G7LED) Fix autobinding (on connect). * Fixed nr_release(), set TCP_CLOSE, wakeup app * context, THEN make the sock dead. * Circuit ID check before allocating it on * a connection. * Alan(GW4PTS) sendmsg/recvmsg only. Fixed connect clear bug * inherited from AX.25 * NET/ROM 004 Jonathan(G4KLX) Converted to module. * NET/ROM 005 Jonathan(G4KLX) Linux 2.1 * Alan(GW4PTS) Started POSIXisms * NET/ROM 006 Alan(GW4PTS) Brought in line with the ANK changes * Jonathan(G4KLX) Removed hdrincl. * NET/ROM 007 Jonathan(G4KLX) New timer architecture. * Impmented Idle timer. * Arnaldo C. Melo s/suser/capable/, micro cleanups * Jeroen(PE1RXQ) Use sock_orphan() on release. * Tomi(OH2BNS) Better frame type checking. * Device refcnt fixes. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* For TIOCINQ/OUTQ */ #include #include #include #include #include #include #include #include int nr_ndevs = 4; int sysctl_netrom_default_path_quality = NR_DEFAULT_QUAL; int sysctl_netrom_obsolescence_count_initialiser = NR_DEFAULT_OBS; int sysctl_netrom_network_ttl_initialiser = NR_DEFAULT_TTL; int sysctl_netrom_transport_timeout = NR_DEFAULT_T1; int sysctl_netrom_transport_maximum_tries = NR_DEFAULT_N2; int sysctl_netrom_transport_acknowledge_delay = NR_DEFAULT_T2; int sysctl_netrom_transport_busy_delay = NR_DEFAULT_T4; int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW; int sysctl_netrom_transport_no_activity_timeout = NR_DEFAULT_IDLE; int sysctl_netrom_routing_control = NR_DEFAULT_ROUTING; int sysctl_netrom_link_fails_count = NR_DEFAULT_FAILS; static unsigned short circuit = 0x101; static struct sock *volatile nr_list; static struct proto_ops nr_proto_ops; static void nr_free_sock(struct sock *sk) { sk_free(sk); MOD_DEC_USE_COUNT; } static struct sock *nr_alloc_sock(void) { struct sock *sk; nr_cb *nr; if ((sk = sk_alloc(PF_NETROM, GFP_ATOMIC, 1)) == NULL) return NULL; if ((nr = kmalloc(sizeof(*nr), GFP_ATOMIC)) == NULL) { sk_free(sk); return NULL; } MOD_INC_USE_COUNT; memset(nr, 0x00, sizeof(*nr)); sk->protinfo.nr = nr; nr->sk = sk; return sk; } /* * Socket removal during an interrupt is now safe. */ static void nr_remove_socket(struct sock *sk) { struct sock *s; unsigned long flags; save_flags(flags); cli(); if ((s = nr_list) == sk) { nr_list = s->next; dev_put(sk->protinfo.nr->device); restore_flags(flags); return; } while (s != NULL && s->next != NULL) { if (s->next == sk) { s->next = sk->next; dev_put(sk->protinfo.nr->device); restore_flags(flags); return; } s = s->next; } restore_flags(flags); } /* * Kill all bound sockets on a dropped device. */ static void nr_kill_by_device(struct net_device *dev) { struct sock *s; for (s = nr_list; s != NULL; s = s->next) { if (s->protinfo.nr->device == dev) nr_disconnect(s, ENETUNREACH); } } /* * Handle device status changes. */ static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = (struct net_device *)ptr; if (event != NETDEV_DOWN) return NOTIFY_DONE; nr_kill_by_device(dev); nr_rt_device_down(dev); return NOTIFY_DONE; } /* * Add a socket to the bound sockets list. */ static void nr_insert_socket(struct sock *sk) { unsigned long flags; save_flags(flags); cli(); sk->next = nr_list; nr_list = sk; restore_flags(flags); } /* * Find a socket that wants to accept the Connect Request we just * received. */ static struct sock *nr_find_listener(ax25_address *addr) { unsigned long flags; struct sock *s; save_flags(flags); cli(); for (s = nr_list; s != NULL; s = s->next) { if (ax25cmp(&s->protinfo.nr->source_addr, addr) == 0 && s->state == TCP_LISTEN) { restore_flags(flags); return s; } } restore_flags(flags); return NULL; } /* * Find a connected NET/ROM socket given my circuit IDs. */ static struct sock *nr_find_socket(unsigned char index, unsigned char id) { struct sock *s; unsigned long flags; save_flags(flags); cli(); for (s = nr_list; s != NULL; s = s->next) { if (s->protinfo.nr->my_index == index && s->protinfo.nr->my_id == id) { restore_flags(flags); return s; } } restore_flags(flags); return NULL; } /* * Find a connected NET/ROM socket given their circuit IDs. */ static struct sock *nr_find_peer(unsigned char index, unsigned char id, ax25_address *dest) { struct sock *s; unsigned long flags; save_flags(flags); cli(); for (s = nr_list; s != NULL; s = s->next) { if (s->protinfo.nr->your_index == index && s->protinfo.nr->your_id == id && ax25cmp(&s->protinfo.nr->dest_addr, dest) == 0) { restore_flags(flags); return s; } } restore_flags(flags); return NULL; } /* * Find next free circuit ID. */ static unsigned short nr_find_next_circuit(void) { unsigned short id = circuit; unsigned char i, j; for (;;) { i = id / 256; j = id % 256; if (i != 0 && j != 0) if (nr_find_socket(i, j) == NULL) break; id++; } return id; } /* * Deferred destroy. */ void nr_destroy_socket(struct sock *); /* * Handler for deferred kills. */ static void nr_destroy_timer(unsigned long data) { nr_destroy_socket((struct sock *)data); } /* * This is called from user mode and the timers. Thus it protects itself against * interrupt users but doesn't worry about being called during work. * Once it is removed from the queue no interrupt or bottom half will * touch it and we are (fairly 8-) ) safe. */ void nr_destroy_socket(struct sock *sk) /* Not static as it's used by the timer */ { struct sk_buff *skb; unsigned long flags; save_flags(flags); cli(); nr_stop_heartbeat(sk); nr_stop_t1timer(sk); nr_stop_t2timer(sk); nr_stop_t4timer(sk); nr_stop_idletimer(sk); nr_remove_socket(sk); nr_clear_queues(sk); /* Flush the queues */ while ((skb = skb_dequeue(&sk->receive_queue)) != NULL) { if (skb->sk != sk) { /* A pending connection */ skb->sk->dead = 1; /* Queue the unaccepted socket for death */ nr_start_heartbeat(skb->sk); skb->sk->protinfo.nr->state = NR_STATE_0; } kfree_skb(skb); } if (atomic_read(&sk->wmem_alloc) != 0 || atomic_read(&sk->rmem_alloc) != 0) { /* Defer: outstanding buffers */ init_timer(&sk->timer); sk->timer.expires = jiffies + 10 * HZ; sk->timer.function = nr_destroy_timer; sk->timer.data = (unsigned long)sk; add_timer(&sk->timer); } else { nr_free_sock(sk); } restore_flags(flags); } /* * Handling for system calls applied via the various interfaces to a * NET/ROM socket object. */ static int nr_setsockopt(struct socket *sock, int level, int optname, char *optval, int optlen) { struct sock *sk = sock->sk; int opt; if (level != SOL_NETROM) return -ENOPROTOOPT; if (optlen < sizeof(int)) return -EINVAL; if (get_user(opt, (int *)optval)) return -EFAULT; switch (optname) { case NETROM_T1: if (opt < 1) return -EINVAL; sk->protinfo.nr->t1 = opt * HZ; return 0; case NETROM_T2: if (opt < 1) return -EINVAL; sk->protinfo.nr->t2 = opt * HZ; return 0; case NETROM_N2: if (opt < 1 || opt > 31) return -EINVAL; sk->protinfo.nr->n2 = opt; return 0; case NETROM_T4: if (opt < 1) return -EINVAL; sk->protinfo.nr->t4 = opt * HZ; return 0; case NETROM_IDLE: if (opt < 0) return -EINVAL; sk->protinfo.nr->idle = opt * 60 * HZ; return 0; default: return -ENOPROTOOPT; } } static int nr_getsockopt(struct socket *sock, int level, int optname, char *optval, int *optlen) { struct sock *sk = sock->sk; int val = 0; int len; if (level != SOL_NETROM) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; switch (optname) { case NETROM_T1: val = sk->protinfo.nr->t1 / HZ; break; case NETROM_T2: val = sk->protinfo.nr->t2 / HZ; break; case NETROM_N2: val = sk->protinfo.nr->n2; break; case NETROM_T4: val = sk->protinfo.nr->t4 / HZ; break; case NETROM_IDLE: val = sk->protinfo.nr->idle / (60 * HZ); break; default: return -ENOPROTOOPT; } len = min_t(unsigned int, len, sizeof(int)); if (put_user(len, optlen)) return -EFAULT; return copy_to_user(optval, &val, len) ? -EFAULT : 0; } static int nr_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; if (sk->state != TCP_LISTEN) { memset(&sk->protinfo.nr->user_addr, '\0', AX25_ADDR_LEN); sk->max_ack_backlog = backlog; sk->state = TCP_LISTEN; return 0; } return -EOPNOTSUPP; } static int nr_create(struct socket *sock, int protocol) { struct sock *sk; nr_cb *nr; if (sock->type != SOCK_SEQPACKET || protocol != 0) return -ESOCKTNOSUPPORT; if ((sk = nr_alloc_sock()) == NULL) return -ENOMEM; nr = sk->protinfo.nr; sock_init_data(sock, sk); sock->ops = &nr_proto_ops; sk->protocol = protocol; skb_queue_head_init(&nr->ack_queue); skb_queue_head_init(&nr->reseq_queue); skb_queue_head_init(&nr->frag_queue); init_timer(&nr->t1timer); init_timer(&nr->t2timer); init_timer(&nr->t4timer); init_timer(&nr->idletimer); nr->t1 = sysctl_netrom_transport_timeout; nr->t2 = sysctl_netrom_transport_acknowledge_delay; nr->n2 = sysctl_netrom_transport_maximum_tries; nr->t4 = sysctl_netrom_transport_busy_delay; nr->idle = sysctl_netrom_transport_no_activity_timeout; nr->window = sysctl_netrom_transport_requested_window_size; nr->bpqext = 1; nr->state = NR_STATE_0; return 0; } static struct sock *nr_make_new(struct sock *osk) { struct sock *sk; nr_cb *nr; if (osk->type != SOCK_SEQPACKET) return NULL; if ((sk = nr_alloc_sock()) == NULL) return NULL; nr = sk->protinfo.nr; sock_init_data(NULL, sk); sk->type = osk->type; sk->socket = osk->socket; sk->priority = osk->priority; sk->protocol = osk->protocol; sk->rcvbuf = osk->rcvbuf; sk->sndbuf = osk->sndbuf; sk->debug = osk->debug; sk->state = TCP_ESTABLISHED; sk->sleep = osk->sleep; sk->zapped = osk->zapped; skb_queue_head_init(&nr->ack_queue); skb_queue_head_init(&nr->reseq_queue); skb_queue_head_init(&nr->frag_queue); init_timer(&nr->t1timer); init_timer(&nr->t2timer); init_timer(&nr->t4timer); init_timer(&nr->idletimer); nr->t1 = osk->protinfo.nr->t1; nr->t2 = osk->protinfo.nr->t2; nr->n2 = osk->protinfo.nr->n2; nr->t4 = osk->protinfo.nr->t4; nr->idle = osk->protinfo.nr->idle; nr->window = osk->protinfo.nr->window; nr->device = osk->protinfo.nr->device; nr->bpqext = osk->protinfo.nr->bpqext; return sk; } static int nr_release(struct socket *sock) { struct sock *sk = sock->sk; if (sk == NULL) return 0; switch (sk->protinfo.nr->state) { case NR_STATE_0: case NR_STATE_1: case NR_STATE_2: nr_disconnect(sk, 0); nr_destroy_socket(sk); break; case NR_STATE_3: nr_clear_queues(sk); sk->protinfo.nr->n2count = 0; nr_write_internal(sk, NR_DISCREQ); nr_start_t1timer(sk); nr_stop_t2timer(sk); nr_stop_t4timer(sk); nr_stop_idletimer(sk); sk->protinfo.nr->state = NR_STATE_2; sk->state = TCP_CLOSE; sk->shutdown |= SEND_SHUTDOWN; sk->state_change(sk); sock_orphan(sk); sk->destroy = 1; break; default: sk->socket = NULL; break; } sock->sk = NULL; return 0; } static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr; struct net_device *dev; ax25_address *user, *source; if (sk->zapped == 0) return -EINVAL; if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) return -EINVAL; if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) return -EINVAL; if (addr->fsa_ax25.sax25_family != AF_NETROM) return -EINVAL; if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) { SOCK_DEBUG(sk, "NET/ROM: bind failed: invalid node callsign\n"); return -EADDRNOTAVAIL; } /* * Only the super user can set an arbitrary user callsign. */ if (addr->fsa_ax25.sax25_ndigis == 1) { if (!capable(CAP_NET_BIND_SERVICE)) { dev_put(dev); return -EACCES; } sk->protinfo.nr->user_addr = addr->fsa_digipeater[0]; sk->protinfo.nr->source_addr = addr->fsa_ax25.sax25_call; } else { source = &addr->fsa_ax25.sax25_call; if ((user = ax25_findbyuid(current->euid)) == NULL) { if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) { dev_put(dev); return -EPERM; } user = source; } sk->protinfo.nr->user_addr = *user; sk->protinfo.nr->source_addr = *source; } sk->protinfo.nr->device = dev; nr_insert_socket(sk); sk->zapped = 0; SOCK_DEBUG(sk, "NET/ROM: socket is bound\n"); return 0; } static int nr_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr; ax25_address *user, *source = NULL; struct net_device *dev; if (sk->state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { sock->state = SS_CONNECTED; return 0; /* Connect completed during a ERESTARTSYS event */ } if (sk->state == TCP_CLOSE && sock->state == SS_CONNECTING) { sock->state = SS_UNCONNECTED; return -ECONNREFUSED; } if (sk->state == TCP_ESTABLISHED) return -EISCONN; /* No reconnect on a seqpacket socket */ sk->state = TCP_CLOSE; sock->state = SS_UNCONNECTED; if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) return -EINVAL; if (addr->sax25_family != AF_NETROM) return -EINVAL; if (sk->zapped) { /* Must bind first - autobinding in this may or may not work */ sk->zapped = 0; if ((dev = nr_dev_first()) == NULL) return -ENETUNREACH; source = (ax25_address *)dev->dev_addr; if ((user = ax25_findbyuid(current->euid)) == NULL) { if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) { dev_put(dev); return -EPERM; } user = source; } sk->protinfo.nr->user_addr = *user; sk->protinfo.nr->source_addr = *source; sk->protinfo.nr->device = dev; nr_insert_socket(sk); /* Finish the bind */ } sk->protinfo.nr->dest_addr = addr->sax25_call; circuit = nr_find_next_circuit(); sk->protinfo.nr->my_index = circuit / 256; sk->protinfo.nr->my_id = circuit % 256; circuit++; /* Move to connecting socket, start sending Connect Requests */ sock->state = SS_CONNECTING; sk->state = TCP_SYN_SENT; nr_establish_data_link(sk); sk->protinfo.nr->state = NR_STATE_1; nr_start_heartbeat(sk); /* Now the loop */ if (sk->state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) return -EINPROGRESS; cli(); /* To avoid races on the sleep */ /* * A Connect Ack with Choke or timeout or failed routing will go to closed. */ while (sk->state == TCP_SYN_SENT) { interruptible_sleep_on(sk->sleep); if (signal_pending(current)) { sti(); return -ERESTARTSYS; } } if (sk->state != TCP_ESTABLISHED) { sti(); sock->state = SS_UNCONNECTED; return sock_error(sk); /* Always set at this point */ } sock->state = SS_CONNECTED; sti(); return 0; } static int nr_accept(struct socket *sock, struct socket *newsock, int flags) { struct sock *sk; struct sock *newsk; struct sk_buff *skb; if ((sk = sock->sk) == NULL) return -EINVAL; if (sk->type != SOCK_SEQPACKET) return -EOPNOTSUPP; if (sk->state != TCP_LISTEN) return -EINVAL; /* * The write queue this time is holding sockets ready to use * hooked into the SABM we saved */ do { cli(); if ((skb = skb_dequeue(&sk->receive_queue)) == NULL) { if (flags & O_NONBLOCK) { sti(); return -EWOULDBLOCK; } interruptible_sleep_on(sk->sleep); if (signal_pending(current)) { sti(); return -ERESTARTSYS; } } } while (skb == NULL); newsk = skb->sk; newsk->pair = NULL; newsk->socket = newsock; newsk->sleep = &newsock->wait; sti(); /* Now attach up the new socket */ kfree_skb(skb); sk->ack_backlog--; newsock->sk = newsk; return 0; } static int nr_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, int peer) { struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr; struct sock *sk = sock->sk; if (peer != 0) { if (sk->state != TCP_ESTABLISHED) return -ENOTCONN; sax->fsa_ax25.sax25_family = AF_NETROM; sax->fsa_ax25.sax25_ndigis = 1; sax->fsa_ax25.sax25_call = sk->protinfo.nr->user_addr; sax->fsa_digipeater[0] = sk->protinfo.nr->dest_addr; *uaddr_len = sizeof(struct full_sockaddr_ax25); } else { sax->fsa_ax25.sax25_family = AF_NETROM; sax->fsa_ax25.sax25_ndigis = 0; sax->fsa_ax25.sax25_call = sk->protinfo.nr->source_addr; *uaddr_len = sizeof(struct sockaddr_ax25); } return 0; } int nr_rx_frame(struct sk_buff *skb, struct net_device *dev) { struct sock *sk; struct sock *make; ax25_address *src, *dest, *user; unsigned short circuit_index, circuit_id; unsigned short peer_circuit_index, peer_circuit_id; unsigned short frametype, flags, window, timeout; skb->sk = NULL; /* Initially we don't know who it's for */ /* * skb->data points to the netrom frame start */ src = (ax25_address *)(skb->data + 0); dest = (ax25_address *)(skb->data + 7); circuit_index = skb->data[15]; circuit_id = skb->data[16]; peer_circuit_index = skb->data[17]; peer_circuit_id = skb->data[18]; frametype = skb->data[19] & 0x0F; flags = skb->data[19] & 0xF0; switch (frametype) { case NR_PROTOEXT: #ifdef CONFIG_INET /* * Check for an incoming IP over NET/ROM frame. */ if (circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) { skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN); skb->h.raw = skb->data; return nr_rx_ip(skb, dev); } #endif return 0; case NR_CONNREQ: case NR_CONNACK: case NR_DISCREQ: case NR_DISCACK: case NR_INFO: case NR_INFOACK: /* * These frame types we understand. */ break; default: /* * Everything else is ignored. */ return 0; } /* * Find an existing socket connection, based on circuit ID, if it's * a Connect Request base it on their circuit ID. * * Circuit ID 0/0 is not valid but it could still be a "reset" for a * circuit that no longer exists at the other end ... */ sk = NULL; if (circuit_index == 0 && circuit_id == 0) { if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG) sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src); } else { if (frametype == NR_CONNREQ) sk = nr_find_peer(circuit_index, circuit_id, src); else sk = nr_find_socket(circuit_index, circuit_id); } if (sk != NULL) { skb->h.raw = skb->data; if (frametype == NR_CONNACK && skb->len == 22) sk->protinfo.nr->bpqext = 1; else sk->protinfo.nr->bpqext = 0; return nr_process_rx_frame(sk, skb); } /* * Now it should be a CONNREQ. */ if (frametype != NR_CONNREQ) { /* * Here it would be nice to be able to send a reset but * NET/ROM doesn't have one. The following hack would * have been a way to extend the protocol but apparently * it kills BPQ boxes... :-( */ #if 0 /* * Never reply to a CONNACK/CHOKE. */ if (frametype != NR_CONNACK || flags != NR_CHOKE_FLAG) nr_transmit_refusal(skb, 1); #endif return 0; } sk = nr_find_listener(dest); user = (ax25_address *)(skb->data + 21); if (sk == NULL || sk->ack_backlog == sk->max_ack_backlog || (make = nr_make_new(sk)) == NULL) { nr_transmit_refusal(skb, 0); return 0; } window = skb->data[20]; skb->sk = make; make->state = TCP_ESTABLISHED; /* Fill in his circuit details */ make->protinfo.nr->source_addr = *dest; make->protinfo.nr->dest_addr = *src; make->protinfo.nr->user_addr = *user; make->protinfo.nr->your_index = circuit_index; make->protinfo.nr->your_id = circuit_id; circuit = nr_find_next_circuit(); make->protinfo.nr->my_index = circuit / 256; make->protinfo.nr->my_id = circuit % 256; circuit++; /* Window negotiation */ if (window < make->protinfo.nr->window) make->protinfo.nr->window = window; /* L4 timeout negotiation */ if (skb->len == 37) { timeout = skb->data[36] * 256 + skb->data[35]; if (timeout * HZ < make->protinfo.nr->t1) make->protinfo.nr->t1 = timeout * HZ; make->protinfo.nr->bpqext = 1; } else { make->protinfo.nr->bpqext = 0; } nr_write_internal(make, NR_CONNACK); make->protinfo.nr->condition = 0x00; make->protinfo.nr->vs = 0; make->protinfo.nr->va = 0; make->protinfo.nr->vr = 0; make->protinfo.nr->vl = 0; make->protinfo.nr->state = NR_STATE_3; sk->ack_backlog++; make->pair = sk; dev_hold(make->protinfo.nr->device); nr_insert_socket(make); skb_queue_head(&sk->receive_queue, skb); nr_start_heartbeat(make); nr_start_idletimer(make); if (!sk->dead) sk->data_ready(sk, skb->len); return 1; } static int nr_sendmsg(struct socket *sock, struct msghdr *msg, int len, struct scm_cookie *scm) { struct sock *sk = sock->sk; struct sockaddr_ax25 *usax = (struct sockaddr_ax25 *)msg->msg_name; int err; struct sockaddr_ax25 sax; struct sk_buff *skb; unsigned char *asmptr; int size; if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR)) return -EINVAL; if (sk->zapped) return -EADDRNOTAVAIL; if (sk->shutdown & SEND_SHUTDOWN) { send_sig(SIGPIPE, current, 0); return -EPIPE; } if (sk->protinfo.nr->device == NULL) return -ENETUNREACH; if (usax) { if (msg->msg_namelen < sizeof(sax)) return -EINVAL; sax = *usax; if (ax25cmp(&sk->protinfo.nr->dest_addr, &sax.sax25_call) != 0) return -EISCONN; if (sax.sax25_family != AF_NETROM) return -EINVAL; } else { if (sk->state != TCP_ESTABLISHED) return -ENOTCONN; sax.sax25_family = AF_NETROM; sax.sax25_call = sk->protinfo.nr->dest_addr; } SOCK_DEBUG(sk, "NET/ROM: sendto: Addresses built.\n"); /* Build a packet */ SOCK_DEBUG(sk, "NET/ROM: sendto: building packet.\n"); size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + NR_NETWORK_LEN + NR_TRANSPORT_LEN; if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL) return err; skb_reserve(skb, size - len); /* * Push down the NET/ROM header */ asmptr = skb_push(skb, NR_TRANSPORT_LEN); SOCK_DEBUG(sk, "Building NET/ROM Header.\n"); /* Build a NET/ROM Transport header */ *asmptr++ = sk->protinfo.nr->your_index; *asmptr++ = sk->protinfo.nr->your_id; *asmptr++ = 0; /* To be filled in later */ *asmptr++ = 0; /* Ditto */ *asmptr++ = NR_INFO; SOCK_DEBUG(sk, "Built header.\n"); /* * Put the data on the end */ skb->h.raw = skb_put(skb, len); asmptr = skb->h.raw; SOCK_DEBUG(sk, "NET/ROM: Appending user data\n"); /* User data follows immediately after the NET/ROM transport header */ memcpy_fromiovec(asmptr, msg->msg_iov, len); SOCK_DEBUG(sk, "NET/ROM: Transmitting buffer\n"); if (sk->state != TCP_ESTABLISHED) { kfree_skb(skb); return -ENOTCONN; } nr_output(sk, skb); /* Shove it onto the queue */ return len; } static int nr_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags, struct scm_cookie *scm) { struct sock *sk = sock->sk; struct sockaddr_ax25 *sax = (struct sockaddr_ax25 *)msg->msg_name; int copied; struct sk_buff *skb; int er; /* * This works for seqpacket too. The receiver has ordered the queue for * us! We do one quick check first though */ if (sk->state != TCP_ESTABLISHED) return -ENOTCONN; /* Now we can treat all alike */ if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) return er; skb->h.raw = skb->data; copied = skb->len; if (copied > size) { copied = size; msg->msg_flags |= MSG_TRUNC; } skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); if (sax != NULL) { sax->sax25_family = AF_NETROM; memcpy(sax->sax25_call.ax25_call, skb->data + 7, AX25_ADDR_LEN); } msg->msg_namelen = sizeof(*sax); skb_free_datagram(sk, skb); return copied; } static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; switch (cmd) { case TIOCOUTQ: { long amount; amount = sk->sndbuf - atomic_read(&sk->wmem_alloc); if (amount < 0) amount = 0; return put_user(amount, (int *)arg); } case TIOCINQ: { struct sk_buff *skb; long amount = 0L; /* These two are safe on a single CPU system as only user tasks fiddle here */ if ((skb = skb_peek(&sk->receive_queue)) != NULL) amount = skb->len; return put_user(amount, (int *)arg); } case SIOCGSTAMP: if (sk != NULL) { if (sk->stamp.tv_sec == 0) return -ENOENT; return copy_to_user((void *)arg, &sk->stamp, sizeof(struct timeval)) ? -EFAULT : 0; } return -EINVAL; case SIOCGIFADDR: case SIOCSIFADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCGIFMETRIC: case SIOCSIFMETRIC: return -EINVAL; case SIOCADDRT: case SIOCDELRT: case SIOCNRDECOBS: if (!capable(CAP_NET_ADMIN)) return -EPERM; return nr_rt_ioctl(cmd, (void *)arg); default: return dev_ioctl(cmd, (void *)arg); } /*NOTREACHED*/ return 0; } static int nr_get_info(char *buffer, char **start, off_t offset, int length) { struct sock *s; struct net_device *dev; const char *devname; int len = 0; off_t pos = 0; off_t begin = 0; cli(); len += sprintf(buffer, "user_addr dest_node src_node dev my your st vs vr va t1 t2 t4 idle n2 wnd Snd-Q Rcv-Q inode\n"); for (s = nr_list; s != NULL; s = s->next) { if ((dev = s->protinfo.nr->device) == NULL) devname = "???"; else devname = dev->name; len += sprintf(buffer + len, "%-9s ", ax2asc(&s->protinfo.nr->user_addr)); len += sprintf(buffer + len, "%-9s ", ax2asc(&s->protinfo.nr->dest_addr)); len += sprintf(buffer + len, "%-9s %-3s %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n", ax2asc(&s->protinfo.nr->source_addr), devname, s->protinfo.nr->my_index, s->protinfo.nr->my_id, s->protinfo.nr->your_index, s->protinfo.nr->your_id, s->protinfo.nr->state, s->protinfo.nr->vs, s->protinfo.nr->vr, s->protinfo.nr->va, ax25_display_timer(&s->protinfo.nr->t1timer) / HZ, s->protinfo.nr->t1 / HZ, ax25_display_timer(&s->protinfo.nr->t2timer) / HZ, s->protinfo.nr->t2 / HZ, ax25_display_timer(&s->protinfo.nr->t4timer) / HZ, s->protinfo.nr->t4 / HZ, ax25_display_timer(&s->protinfo.nr->idletimer) / (60 * HZ), s->protinfo.nr->idle / (60 * HZ), s->protinfo.nr->n2count, s->protinfo.nr->n2, s->protinfo.nr->window, atomic_read(&s->wmem_alloc), atomic_read(&s->rmem_alloc), s->socket != NULL ? s->socket->inode->i_ino : 0L); pos = begin + len; if (pos < offset) { len = 0; begin = pos; } if (pos > offset + length) break; } sti(); *start = buffer + (offset - begin); len -= (offset - begin); if (len > length) len = length; return(len); } static struct net_proto_family nr_family_ops = { family: PF_NETROM, create: nr_create, }; static struct proto_ops SOCKOPS_WRAPPED(nr_proto_ops) = { family: PF_NETROM, release: nr_release, bind: nr_bind, connect: nr_connect, socketpair: sock_no_socketpair, accept: nr_accept, getname: nr_getname, poll: datagram_poll, ioctl: nr_ioctl, listen: nr_listen, shutdown: sock_no_shutdown, setsockopt: nr_setsockopt, getsockopt: nr_getsockopt, sendmsg: nr_sendmsg, recvmsg: nr_recvmsg, mmap: sock_no_mmap, sendpage: sock_no_sendpage, }; #include SOCKOPS_WRAP(nr_proto, PF_NETROM); static struct notifier_block nr_dev_notifier = { notifier_call: nr_device_event, }; static struct net_device *dev_nr; static char banner[] __initdata = KERN_INFO "G4KLX NET/ROM for Linux. Version 0.7 for AX25.037 Linux 2.4\n"; static int __init nr_proto_init(void) { int i; if (nr_ndevs > 0x7fffffff/sizeof(struct net_device)) { printk(KERN_ERR "NET/ROM: nr_proto_init - nr_ndevs parameter to large\n"); return -1; } if ((dev_nr = kmalloc(nr_ndevs * sizeof(struct net_device), GFP_KERNEL)) == NULL) { printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device structure\n"); return -1; } memset(dev_nr, 0x00, nr_ndevs * sizeof(struct net_device)); for (i = 0; i < nr_ndevs; i++) { sprintf(dev_nr[i].name, "nr%d", i); dev_nr[i].init = nr_init; register_netdev(&dev_nr[i]); } sock_register(&nr_family_ops); register_netdevice_notifier(&nr_dev_notifier); printk(banner); ax25_protocol_register(AX25_P_NETROM, nr_route_frame); ax25_linkfail_register(nr_link_failed); #ifdef CONFIG_SYSCTL nr_register_sysctl(); #endif nr_loopback_init(); proc_net_create("nr", 0, nr_get_info); proc_net_create("nr_neigh", 0, nr_neigh_get_info); proc_net_create("nr_nodes", 0, nr_nodes_get_info); return 0; } module_init(nr_proto_init); EXPORT_NO_SYMBOLS; MODULE_PARM(nr_ndevs, "i"); MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices"); MODULE_AUTHOR("Jonathan Naylor G4KLX "); MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol"); MODULE_LICENSE("GPL"); static void __exit nr_exit(void) { int i; proc_net_remove("nr"); proc_net_remove("nr_neigh"); proc_net_remove("nr_nodes"); nr_loopback_clear(); nr_rt_free(); ax25_protocol_release(AX25_P_NETROM); ax25_linkfail_release(nr_link_failed); unregister_netdevice_notifier(&nr_dev_notifier); #ifdef CONFIG_SYSCTL nr_unregister_sysctl(); #endif sock_unregister(PF_NETROM); for (i = 0; i < nr_ndevs; i++) { if (dev_nr[i].priv != NULL) { kfree(dev_nr[i].priv); dev_nr[i].priv = NULL; unregister_netdev(&dev_nr[i]); } } kfree(dev_nr); } module_exit(nr_exit);