/* * High memory handling common code and variables. * * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de * * * Redesigned the x86 32-bit VM architecture to deal with * 64-bit physical space. With current x86 CPUs this * means up to 64 Gigabytes physical RAM. * * Rewrote high memory support to move the page cache into * high memory. Implemented permanent (schedulable) kmaps * based on Linus' idea. * * Copyright (C) 1999 Ingo Molnar */ #include #include #include #include #include /* * Virtual_count is not a pure "count". * 0 means that it is not mapped, and has not been mapped * since a TLB flush - it is usable. * 1 means that there are no users, but it has been mapped * since the last TLB flush - so we can't use it. * n means that there are (n-1) current users of it. */ static int pkmap_count[LAST_PKMAP]; static unsigned int last_pkmap_nr; static spinlock_t kmap_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED; pte_t * pkmap_page_table; static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); static void flush_all_zero_pkmaps(void) { int i; flush_cache_all(); for (i = 0; i < LAST_PKMAP; i++) { struct page *page; /* * zero means we don't have anything to do, * >1 means that it is still in use. Only * a count of 1 means that it is free but * needs to be unmapped */ if (pkmap_count[i] != 1) continue; pkmap_count[i] = 0; /* sanity check */ if (pte_none(pkmap_page_table[i])) BUG(); /* * Don't need an atomic fetch-and-clear op here; * no-one has the page mapped, and cannot get at * its virtual address (and hence PTE) without first * getting the kmap_lock (which is held here). * So no dangers, even with speculative execution. */ page = pte_page(pkmap_page_table[i]); pte_clear(&pkmap_page_table[i]); page->virtual = NULL; } flush_tlb_all(); } static inline unsigned long map_new_virtual(struct page *page) { unsigned long vaddr; int count; start: count = LAST_PKMAP; /* Find an empty entry */ for (;;) { last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK; if (!last_pkmap_nr) { flush_all_zero_pkmaps(); count = LAST_PKMAP; } if (!pkmap_count[last_pkmap_nr]) break; /* Found a usable entry */ if (--count) continue; /* * Sleep for somebody else to unmap their entries */ { DECLARE_WAITQUEUE(wait, current); current->state = TASK_UNINTERRUPTIBLE; add_wait_queue(&pkmap_map_wait, &wait); spin_unlock(&kmap_lock); schedule(); remove_wait_queue(&pkmap_map_wait, &wait); spin_lock(&kmap_lock); /* Somebody else might have mapped it while we slept */ if (page->virtual) return (unsigned long) page->virtual; /* Re-start */ goto start; } } vaddr = PKMAP_ADDR(last_pkmap_nr); set_pte(&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot)); pkmap_count[last_pkmap_nr] = 1; page->virtual = (void *) vaddr; return vaddr; } void *kmap_high(struct page *page) { unsigned long vaddr; /* * For highmem pages, we can't trust "virtual" until * after we have the lock. * * We cannot call this from interrupts, as it may block */ spin_lock(&kmap_lock); vaddr = (unsigned long) page->virtual; if (!vaddr) vaddr = map_new_virtual(page); pkmap_count[PKMAP_NR(vaddr)]++; if (pkmap_count[PKMAP_NR(vaddr)] < 2) BUG(); spin_unlock(&kmap_lock); return (void*) vaddr; } void kunmap_high(struct page *page) { unsigned long vaddr; unsigned long nr; int need_wakeup; spin_lock(&kmap_lock); vaddr = (unsigned long) page->virtual; if (!vaddr) BUG(); nr = PKMAP_NR(vaddr); /* * A count must never go down to zero * without a TLB flush! */ need_wakeup = 0; switch (--pkmap_count[nr]) { case 0: BUG(); case 1: /* * Avoid an unnecessary wake_up() function call. * The common case is pkmap_count[] == 1, but * no waiters. * The tasks queued in the wait-queue are guarded * by both the lock in the wait-queue-head and by * the kmap_lock. As the kmap_lock is held here, * no need for the wait-queue-head's lock. Simply * test if the queue is empty. */ need_wakeup = waitqueue_active(&pkmap_map_wait); } spin_unlock(&kmap_lock); /* do wake-up, if needed, race-free outside of the spin lock */ if (need_wakeup) wake_up(&pkmap_map_wait); } #define POOL_SIZE 32 /* * This lock gets no contention at all, normally. */ static spinlock_t emergency_lock = SPIN_LOCK_UNLOCKED; int nr_emergency_pages; static LIST_HEAD(emergency_pages); int nr_emergency_bhs; static LIST_HEAD(emergency_bhs); /* * Simple bounce buffer support for highmem pages. * This will be moved to the block layer in 2.5. */ static inline void copy_from_high_bh (struct buffer_head *to, struct buffer_head *from) { struct page *p_from; char *vfrom; p_from = from->b_page; vfrom = kmap_atomic(p_from, KM_USER0); memcpy(to->b_data, vfrom + bh_offset(from), to->b_size); kunmap_atomic(vfrom, KM_USER0); } static inline void copy_to_high_bh_irq (struct buffer_head *to, struct buffer_head *from) { struct page *p_to; char *vto; unsigned long flags; p_to = to->b_page; __save_flags(flags); __cli(); vto = kmap_atomic(p_to, KM_BOUNCE_READ); memcpy(vto + bh_offset(to), from->b_data, to->b_size); kunmap_atomic(vto, KM_BOUNCE_READ); __restore_flags(flags); } static inline void bounce_end_io (struct buffer_head *bh, int uptodate) { struct page *page; struct buffer_head *bh_orig = (struct buffer_head *)(bh->b_private); unsigned long flags; bh_orig->b_end_io(bh_orig, uptodate); page = bh->b_page; spin_lock_irqsave(&emergency_lock, flags); if (nr_emergency_pages >= POOL_SIZE) __free_page(page); else { /* * We are abusing page->list to manage * the highmem emergency pool: */ list_add(&page->list, &emergency_pages); nr_emergency_pages++; } if (nr_emergency_bhs >= POOL_SIZE) { #ifdef HIGHMEM_DEBUG /* Don't clobber the constructed slab cache */ init_waitqueue_head(&bh->b_wait); #endif kmem_cache_free(bh_cachep, bh); } else { /* * Ditto in the bh case, here we abuse b_inode_buffers: */ list_add(&bh->b_inode_buffers, &emergency_bhs); nr_emergency_bhs++; } spin_unlock_irqrestore(&emergency_lock, flags); } static __init int init_emergency_pool(void) { struct sysinfo i; si_meminfo(&i); si_swapinfo(&i); if (!i.totalhigh) return 0; spin_lock_irq(&emergency_lock); while (nr_emergency_pages < POOL_SIZE) { struct page * page = alloc_page(GFP_ATOMIC); if (!page) { printk("couldn't refill highmem emergency pages"); break; } list_add(&page->list, &emergency_pages); nr_emergency_pages++; } while (nr_emergency_bhs < POOL_SIZE) { struct buffer_head * bh = kmem_cache_alloc(bh_cachep, SLAB_ATOMIC); if (!bh) { printk("couldn't refill highmem emergency bhs"); break; } list_add(&bh->b_inode_buffers, &emergency_bhs); nr_emergency_bhs++; } spin_unlock_irq(&emergency_lock); printk("allocated %d pages and %d bhs reserved for the highmem bounces\n", nr_emergency_pages, nr_emergency_bhs); return 0; } __initcall(init_emergency_pool); static void bounce_end_io_write (struct buffer_head *bh, int uptodate) { bounce_end_io(bh, uptodate); } static void bounce_end_io_read (struct buffer_head *bh, int uptodate) { struct buffer_head *bh_orig = (struct buffer_head *)(bh->b_private); if (uptodate) copy_to_high_bh_irq(bh_orig, bh); bounce_end_io(bh, uptodate); } struct page *alloc_bounce_page (void) { struct list_head *tmp; struct page *page; page = alloc_page(GFP_NOHIGHIO); if (page) return page; /* * No luck. First, kick the VM so it doesnt idle around while * we are using up our emergency rations. */ wakeup_bdflush(); repeat_alloc: /* * Try to allocate from the emergency pool. */ tmp = &emergency_pages; spin_lock_irq(&emergency_lock); if (!list_empty(tmp)) { page = list_entry(tmp->next, struct page, list); list_del(tmp->next); nr_emergency_pages--; } spin_unlock_irq(&emergency_lock); if (page) return page; /* we need to wait I/O completion */ run_task_queue(&tq_disk); current->policy |= SCHED_YIELD; __set_current_state(TASK_RUNNING); schedule(); goto repeat_alloc; } struct buffer_head *alloc_bounce_bh (void) { struct list_head *tmp; struct buffer_head *bh; bh = kmem_cache_alloc(bh_cachep, SLAB_NOHIGHIO); if (bh) return bh; /* * No luck. First, kick the VM so it doesnt idle around while * we are using up our emergency rations. */ wakeup_bdflush(); repeat_alloc: /* * Try to allocate from the emergency pool. */ tmp = &emergency_bhs; spin_lock_irq(&emergency_lock); if (!list_empty(tmp)) { bh = list_entry(tmp->next, struct buffer_head, b_inode_buffers); list_del(tmp->next); nr_emergency_bhs--; } spin_unlock_irq(&emergency_lock); if (bh) return bh; /* we need to wait I/O completion */ run_task_queue(&tq_disk); current->policy |= SCHED_YIELD; __set_current_state(TASK_RUNNING); schedule(); goto repeat_alloc; } struct buffer_head * create_bounce(int rw, struct buffer_head * bh_orig) { struct page *page; struct buffer_head *bh; if (!PageHighMem(bh_orig->b_page)) return bh_orig; bh = alloc_bounce_bh(); /* * This is wasteful for 1k buffers, but this is a stopgap measure * and we are being ineffective anyway. This approach simplifies * things immensly. On boxes with more than 4GB RAM this should * not be an issue anyway. */ page = alloc_bounce_page(); set_bh_page(bh, page, 0); bh->b_next = NULL; bh->b_blocknr = bh_orig->b_blocknr; bh->b_size = bh_orig->b_size; bh->b_list = -1; bh->b_dev = bh_orig->b_dev; bh->b_count = bh_orig->b_count; bh->b_rdev = bh_orig->b_rdev; bh->b_state = bh_orig->b_state; #ifdef HIGHMEM_DEBUG bh->b_flushtime = jiffies; bh->b_next_free = NULL; bh->b_prev_free = NULL; /* bh->b_this_page */ bh->b_reqnext = NULL; bh->b_pprev = NULL; #endif /* bh->b_page */ if (rw == WRITE) { bh->b_end_io = bounce_end_io_write; copy_from_high_bh(bh, bh_orig); } else bh->b_end_io = bounce_end_io_read; bh->b_private = (void *)bh_orig; bh->b_rsector = bh_orig->b_rsector; #ifdef HIGHMEM_DEBUG memset(&bh->b_wait, -1, sizeof(bh->b_wait)); #endif return bh; }