#ifndef _PARISC_PGTABLE_H #define _PARISC_PGTABLE_H #ifndef __ASSEMBLY__ /* * we simulate an x86-style page table for the linux mm code */ #include #include #include /* To make 53c7xx.c happy */ #define IOMAP_FULL_CACHING 2 /* used for 'what' below */ #define IOMAP_NOCACHE_SER 3 extern void kernel_set_cachemode(unsigned long addr, unsigned long size, int what); /* * cache_clear() semantics: Clear any cache entries for the area in question, * without writing back dirty entries first. This is useful if the data will * be overwritten anyway, e.g. by DMA to memory. The range is defined by a * _physical_ address. */ #define cache_clear(paddr, len) do { } while (0) /* * cache_push() semantics: Write back any dirty cache data in the given area, * and invalidate the range in the instruction cache. It needs not (but may) * invalidate those entries also in the data cache. The range is defined by a * _physical_ address. */ #define cache_push(paddr, len) \ do { \ unsigned long vaddr = phys_to_virt(paddr); \ flush_cache_range(&init_mm, vaddr, vaddr + len); \ } while(0) #define cache_push_v(vaddr, len) \ flush_cache_range(&init_mm, vaddr, vaddr + len) /* * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel * memory. For the return value to be meaningful, ADDR must be >= * PAGE_OFFSET. This operation can be relatively expensive (e.g., * require a hash-, or multi-level tree-lookup or something of that * sort) but it guarantees to return TRUE only if accessing the page * at that address does not cause an error. Note that there may be * addresses for which kern_addr_valid() returns FALSE even though an * access would not cause an error (e.g., this is typically true for * memory mapped I/O regions. * * XXX Need to implement this for parisc. */ #define kern_addr_valid(addr) (1) /* Certain architectures need to do special things when PTEs * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) \ do{ \ *(pteptr) = (pteval); \ } while(0) #endif /* !__ASSEMBLY__ */ #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) /* * pgd entries used up by user/kernel: */ #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) #define FIRST_USER_PGD_NR 0 #ifndef __ASSEMBLY__ extern void *vmalloc_start; #define PCXL_DMA_MAP_SIZE (8*1024*1024) #define VMALLOC_START ((unsigned long)vmalloc_start) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END (FIXADDR_START) #endif #define _PAGE_READ 0x001 /* read access allowed */ #define _PAGE_WRITE 0x002 /* write access allowed */ #define _PAGE_EXEC 0x004 /* execute access allowed */ #define _PAGE_GATEWAY 0x008 /* privilege promotion allowed */ #define _PAGE_GATEWAY_BIT 28 /* _PAGE_GATEWAY & _PAGE_GATEWAY_BIT need */ /* to agree. One could be defined in relation */ /* to the other, but that's kind of ugly. */ /* 0x010 reserved (B bit) */ #define _PAGE_DIRTY 0x020 /* D: dirty */ /* 0x040 reserved (T bit) */ #define _PAGE_NO_CACHE 0x080 /* Software: Uncacheable */ #define _PAGE_NO_CACHE_BIT 24 /* Needs to agree with _PAGE_NO_CACHE above */ #define _PAGE_ACCESSED 0x100 /* R: page cache referenced */ #define _PAGE_PRESENT 0x200 /* Software: pte contains a translation */ #define _PAGE_PRESENT_BIT 22 /* Needs to agree with _PAGE_PRESENT above */ #define _PAGE_USER 0x400 /* Software: User accessable page */ #define _PAGE_USER_BIT 21 /* Needs to agree with _PAGE_USER above */ /* 0x800 still available */ #ifdef __ASSEMBLY__ #define _PGB_(x) (1 << (63 - (x))) #define __PAGE_O _PGB_(13) #define __PAGE_U _PGB_(12) #define __PAGE_T _PGB_(2) #define __PAGE_D _PGB_(3) #define __PAGE_B _PGB_(4) #define __PAGE_P _PGB_(14) #endif #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define _PAGE_KERNEL (_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) #ifndef __ASSEMBLY__ #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED) /* Others seem to make this executable, I don't know if that's correct or not. The stack is mapped this way though so this is necessary in the short term - dhd@linuxcare.com, 2000-08-08 */ #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED) #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED) #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED) #define PAGE_COPY PAGE_EXECREAD #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED) #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED) #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ) /* * We could have an execute only page using "gateway - promote to priv * level 3", but that is kind of silly. So, the way things are defined * now, we must always have read permission for pages with execute * permission. For the fun of it we'll go ahead and support write only * pages. */ /*xwr*/ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 __P000 /* copy on write */ #define __P011 __P001 /* copy on write */ #define __P100 PAGE_EXECREAD #define __P101 PAGE_EXECREAD #define __P110 __P100 /* copy on write */ #define __P111 __P101 /* copy on write */ #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_WRITEONLY #define __S011 PAGE_SHARED #define __S100 PAGE_EXECREAD #define __S101 PAGE_EXECREAD #define __S110 PAGE_RWX #define __S111 PAGE_RWX extern unsigned long swapper_pg_dir[]; /* declared in init_task.c */ /* initial page tables for 0-8MB for kernel */ extern unsigned long pg0[]; /* zero page used for uninitialized stuff */ extern unsigned long *empty_zero_page; /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t * __bad_pagetable(void); #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #define pte_none(x) (!pte_val(x)) #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) #define pte_clear(xp) do { pte_val(*(xp)) = 0; } while (0) #define pte_pagenr(x) ((unsigned long)((pte_val(x) >> PAGE_SHIFT))) #define pmd_none(x) (!pmd_val(x)) #define pmd_bad(x) ((pmd_val(x) & ~PAGE_MASK) != _PAGE_TABLE) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) #ifdef __LP64__ #define pgd_page(pgd) ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) /* For 64 bit we have three level tables */ #define pgd_none(x) (!pgd_val(x)) #define pgd_bad(x) ((pgd_val(x) & ~PAGE_MASK) != _PAGE_TABLE) #define pgd_present(x) (pgd_val(x) & _PAGE_PRESENT) #define pgd_clear(xp) do { pgd_val(*(xp)) = 0; } while (0) #else /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */ extern inline int pgd_none(pgd_t pgd) { return 0; } extern inline int pgd_bad(pgd_t pgd) { return 0; } extern inline int pgd_present(pgd_t pgd) { return 1; } extern inline void pgd_clear(pgd_t * pgdp) { } #endif /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_READ; return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define __mk_pte(addr,pgprot) \ ({ \ pte_t __pte; \ \ pte_val(__pte) = ((addr)+pgprot_val(pgprot)); \ \ __pte; \ }) #define mk_pte(page,pgprot) \ ({ \ pte_t __pte; \ \ pte_val(__pte) = ((page)-mem_map)*PAGE_SIZE + \ pgprot_val(pgprot); \ __pte; \ }) /* This takes a physical page address that is used by the remapping functions */ #define mk_pte_phys(physpage, pgprot) \ ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } /* * Permanent address of a page. Obviously must never be * called on a highmem page. */ #define __page_address(page) ({ if (PageHighMem(page)) BUG(); PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT); }) #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) #define pte_page(x) (mem_map+pte_pagenr(x)) #define pmd_page(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) #define pgd_index(address) ((address) >> PGDIR_SHIFT) /* to find an entry in a page-table-directory */ #define pgd_offset(mm, address) \ ((mm)->pgd + ((address) >> PGDIR_SHIFT)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* Find an entry in the second-level page table.. */ #ifdef __LP64__ #define pmd_offset(dir,address) \ ((pmd_t *) pgd_page(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1))) #else #define pmd_offset(dir,addr) ((pmd_t *) dir) #endif /* Find an entry in the third-level page table.. */ #define pte_offset(pmd, address) \ ((pte_t *) pmd_page(*(pmd)) + (((address)>>PAGE_SHIFT) & (PTRS_PER_PTE-1))) extern void paging_init (void); extern inline void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) { } /* Encode and de-code a swap entry */ #define SWP_TYPE(x) ((x).val & 0x3f) #define SWP_OFFSET(x) ( (((x).val >> 6) & 0x7) | \ (((x).val >> 7) & ~0x7) ) #define SWP_ENTRY(type, offset) ((swp_entry_t) { (type) | \ ((offset & 0x7) << 6) | \ ((offset & ~0x7) << 7) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val }) #define module_map vmalloc #define module_unmap vfree #include #endif /* !__ASSEMBLY__ */ /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #define io_remap_page_range remap_page_range /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) #endif /* _PARISC_PAGE_H */