#ifndef _PARISC_BITOPS_H #define _PARISC_BITOPS_H #include #include #include #include #ifdef __LP64__ # define SHIFT_PER_LONG 6 #ifndef BITS_PER_LONG # define BITS_PER_LONG 64 #endif #else # define SHIFT_PER_LONG 5 #ifndef BITS_PER_LONG # define BITS_PER_LONG 32 #endif #endif #define CHOP_SHIFTCOUNT(x) ((x) & (BITS_PER_LONG - 1)) static __inline__ int test_and_set_bit(int nr, void * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; int oldbit; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags); mask = 1L << CHOP_SHIFTCOUNT(nr); oldbit = (*addr & mask) ? 1 : 0; *addr |= mask; SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags); return oldbit; } static __inline__ int test_and_clear_bit(int nr, void * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; int oldbit; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags); mask = 1L << CHOP_SHIFTCOUNT(nr); oldbit = (*addr & mask) ? 1 : 0; *addr &= ~mask; SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags); return oldbit; } static __inline__ int test_and_change_bit(int nr, void * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; int oldbit; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); SPIN_LOCK_IRQSAVE(ATOMIC_HASH(addr), flags); mask = 1L << CHOP_SHIFTCOUNT(nr); oldbit = (*addr & mask) ? 1 : 0; *addr ^= mask; SPIN_UNLOCK_IRQRESTORE(ATOMIC_HASH(addr), flags); return oldbit; } /* again, the read-only case doesn't have to do any locking */ static __inline__ int test_bit(int nr, const volatile void *address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); return !!(*addr & mask); } /* sparc does this, other arch's don't -- what's the right answer? XXX */ #define smp_mb__before_clear_bit() do { } while(0) #define smp_mb__after_clear_bit() do { } while(0) #define set_bit(nr,addr) ((void)test_and_set_bit(nr,addr)) #define clear_bit(nr,addr) ((void)test_and_clear_bit(nr,addr)) #define change_bit(nr,addr) ((void)test_and_change_bit(nr,addr)) /* XXX We'd need some binary search here */ extern __inline__ unsigned long ffz(unsigned long word) { unsigned long result; result = 0; while(word & 1) { result++; word >>= 1; } return result; } #ifdef __KERNEL__ /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ #define ffs(x) generic_ffs(x) /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) #endif /* __KERNEL__ */ /* * This implementation of find_{first,next}_zero_bit was stolen from * Linus' asm-alpha/bitops.h. */ #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) static __inline__ unsigned long find_next_zero_bit(void * addr, unsigned long size, unsigned long offset) { unsigned long * p = ((unsigned long *) addr) + (offset >> SHIFT_PER_LONG); unsigned long result = offset & ~(BITS_PER_LONG-1); unsigned long tmp; if (offset >= size) return size; size -= result; offset &= (BITS_PER_LONG-1); if (offset) { tmp = *(p++); tmp |= ~0UL >> (BITS_PER_LONG-offset); if (size < BITS_PER_LONG) goto found_first; if (~tmp) goto found_middle; size -= BITS_PER_LONG; result += BITS_PER_LONG; } while (size & ~(BITS_PER_LONG -1)) { if (~(tmp = *(p++))) goto found_middle; result += BITS_PER_LONG; size -= BITS_PER_LONG; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; found_middle: return result + ffz(tmp); } #define _EXT2_HAVE_ASM_BITOPS_ #ifdef __KERNEL__ /* * test_and_{set,clear}_bit guarantee atomicity without * disabling interrupts. */ #define ext2_set_bit(nr, addr) test_and_set_bit((nr) ^ 0x18, addr) #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr) ^ 0x18, addr) #endif /* __KERNEL__ */ static __inline__ int ext2_test_bit(int nr, __const__ void * addr) { __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; return (ADDR[nr >> 3] >> (nr & 7)) & 1; } /* * This implementation of ext2_find_{first,next}_zero_bit was stolen from * Linus' asm-alpha/bitops.h and modified for a big-endian machine. */ #define ext2_find_first_zero_bit(addr, size) \ ext2_find_next_zero_bit((addr), (size), 0) extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned int *p = ((unsigned int *) addr) + (offset >> 5); unsigned int result = offset & ~31UL; unsigned int tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = cpu_to_le32p(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (tmp != ~0U) goto found_middle; size -= 32; result += 32; } while (size >= 32) { if ((tmp = cpu_to_le32p(p++)) != ~0U) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = cpu_to_le32p(p); found_first: tmp |= ~0U << size; found_middle: return result + ffz(tmp); } /* Bitmap functions for the minix filesystem. */ #define minix_set_bit(nr,addr) ext2_set_bit(nr,addr) #define minix_clear_bit(nr,addr) ext2_clear_bit(nr,addr) #define minix_test_bit(nr,addr) ext2_test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) ext2_find_first_zero_bit(addr,size) #endif /* _PARISC_BITOPS_H */