/* * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000-2002 Silicon Graphics, Inc. All rights reserved. */ #ifndef _ASM_IA64_SN_SN_CPUID_H #define _ASM_IA64_SN_SN_CPUID_H #include #include #include #include #include #include #include /* * Functions for converting between cpuids, nodeids and NASIDs. * * These are for SGI platforms only. * */ /* * Definitions of terms (these definitions are for IA64 ONLY. Other architectures * use cpuid/cpunum quite defferently): * * CPUID - a number in range of 0..NR_CPUS-1 that uniquely identifies * the cpu. The value cpuid has no significance on IA64 other than * the boot cpu is 0. * smp_processor_id() returns the cpuid of the current cpu. * * CPUNUM - On IA64, a cpunum and cpuid are the same. This is NOT true * on other architectures like IA32. * * CPU_PHYSICAL_ID (also known as HARD_PROCESSOR_ID) * This is the same as 31:24 of the processor LID register * hard_smp_processor_id()- cpu_physical_id of current processor * cpu_physical_id(cpuid) - convert a to a * cpu_logical_id(phy_id) - convert a to a * * not real efficient - dont use in perf critical code * * LID - processor defined register (see PRM V2). * * On SN1 * 31:24 - id Contains the NASID * 23:16 - eid Contains 0-3 to identify the cpu on the node * bit 17 - synergy number * bit 16 - FSB slot number * On SN2 * 31:28 - id Contains 0-3 to identify the cpu on the node * 27:16 - eid Contains the NASID * * * * The following assumes the following mappings for LID register values: * * The macros convert between cpu physical ids & slice/fsb/synergy/nasid/cnodeid. * These terms are described below: * * * ----- ----- ----- ----- CPU * | 0 | | 1 | | 2 | | 3 | SLICE * ----- ----- ----- ----- * | | | | * | | | | * 0 | | 1 0 | | 1 FSB SLOT * ------- ------- * | | * | | * ------- ------- * | | | | * | 0 | | 1 | SYNERGY (SN1 only) * | | | | * ------- ------- * | | * | | * ------------------------------- * | | * | BEDROCK / SHUB | NASID (0..MAX_NASIDS) * | | CNODEID (0..num_compact_nodes-1) * | | * | | * ------------------------------- * | * */ #ifndef CONFIG_SMP #define cpu_logical_id(cpu) 0 #define cpu_physical_id(cpuid) ((ia64_get_lid() >> 16) & 0xffff) #endif #ifdef CONFIG_IA64_SGI_SN1 /* * macros for some of these exist in sn/addrs.h & sn/arch.h, etc. However, * trying #include these files here causes circular dependencies. */ #define cpu_physical_id_to_nasid(cpi) ((cpi) >> 8) #define cpu_physical_id_to_synergy(cpi) (((cpi) >> 1) & 1) #define cpu_physical_id_to_fsb_slot(cpi) ((cpi) & 1) #define cpu_physical_id_to_slice(cpi) ((cpi) & 3) #define get_nasid() ((ia64_get_lid() >> 24)) #define get_slice() ((ia64_get_lid() >> 16) & 3) #define get_node_number(addr) (((unsigned long)(addr)>>33) & 0x7f) #else #define cpu_physical_id_to_nasid(cpi) ((cpi) &0xfff) #define cpu_physical_id_to_slice(cpi) ((cpi>>12) & 3) #define get_nasid() ((ia64_get_lid() >> 16) & 0xfff) #define get_slice() ((ia64_get_lid() >> 28) & 0xf) #define get_node_number(addr) (((unsigned long)(addr)>>38) & 0x7ff) #endif /* * NOTE: id & eid refer to Intels definitions of the LID register * (id = NASID, eid = slice) * NOTE: on non-MP systems, only cpuid 0 exists */ #define id_eid_to_cpu_physical_id(id,eid) (((id)<<8) | (eid)) #define id_eid_to_cpuid(id,eid) (cpu_logical_id(id_eid_to_cpu_physical_id((id),(eid)))) /* * The following table/struct is used for managing PTC coherency domains. */ typedef struct { u8 domain; u8 reserved; u16 sapicid; } sn_sapicid_info_t; extern sn_sapicid_info_t sn_sapicid_info[]; /* indexed by cpuid */ #ifdef CONFIG_IA64_SGI_SN1 /* * cpuid_to_fsb_slot - convert a cpuid to the fsb slot number that it is in. * (there are 2 cpus per FSB. This function returns 0 or 1) */ #define cpuid_to_fsb_slot(cpuid) (cpu_physical_id_to_fsb_slot(cpu_physical_id(cpuid))) /* * cpuid_to_synergy - convert a cpuid to the synergy that it resides on * (there are 2 synergies per node. Function returns 0 or 1 to * specify which synergy the cpu is on) */ #define cpuid_to_synergy(cpuid) (cpu_physical_id_to_synergy(cpu_physical_id(cpuid))) #endif /* * cpuid_to_slice - convert a cpuid to the slice that it resides on * There are 4 cpus per node. This function returns 0 .. 3) */ #define cpuid_to_slice(cpuid) (cpu_physical_id_to_slice(cpu_physical_id(cpuid))) /* * cpuid_to_nasid - convert a cpuid to the NASID that it resides on */ #define cpuid_to_nasid(cpuid) (cpu_physical_id_to_nasid(cpu_physical_id(cpuid))) /* * cpuid_to_cnodeid - convert a cpuid to the cnode that it resides on */ #define cpuid_to_cnodeid(cpuid) (local_node_data->physical_node_map[cpuid_to_nasid(cpuid)]) /* * cnodeid_to_nasid - convert a cnodeid to a NASID * Macro relies on pg_data for a node being on the node itself. * Just extract the NASID from the pointer. * */ #define cnodeid_to_nasid(cnodeid) (get_node_number(local_node_data->pg_data_ptrs[cnodeid])) /* * nasid_to_cnodeid - convert a NASID to a cnodeid */ #define nasid_to_cnodeid(nasid) (local_node_data->physical_node_map[nasid]) /* * cnode_slice_to_cpuid - convert a codeid & slice to a cpuid */ #define cnode_slice_to_cpuid(cnodeid,slice) (id_eid_to_cpuid(cnodeid_to_nasid(cnodeid),(slice))) /* * cpuid_to_subnode - convert a cpuid to the subnode it resides on. * slice 0 & 1 are on subnode 0 * slice 2 & 3 are on subnode 1. */ #define cpuid_to_subnode(cpuid) ((cpuid_to_slice(cpuid)<2) ? 0 : 1) /* * cpuid_to_localslice - convert a cpuid to a local slice * slice 0 & 2 are local slice 0 * slice 1 & 3 are local slice 1 */ #define cpuid_to_localslice(cpuid) (cpuid_to_slice(cpuid) & 1) #define smp_physical_node_id() (cpuid_to_nasid(smp_processor_id())) /* * cnodeid_to_cpuid - convert a cnode to a cpuid of a cpu on the node. * returns -1 if no cpus exist on the node */ extern int cnodeid_to_cpuid(int cnode); #endif /* _ASM_IA64_SN_SN_CPUID_H */