/* * linux/fs/nfs/pagelist.c * * A set of helper functions for managing NFS read and write requests. * The main purpose of these routines is to provide support for the * coalescing of several requests into a single RPC call. * * Copyright 2000, 2001 (c) Trond Myklebust * */ #include #include #include #include #include #include #include #include #include #define NFS_PARANOIA 1 /* * Spinlock */ spinlock_t nfs_wreq_lock = SPIN_LOCK_UNLOCKED; static kmem_cache_t *nfs_page_cachep; static inline struct nfs_page * nfs_page_alloc(void) { struct nfs_page *p; p = kmem_cache_alloc(nfs_page_cachep, SLAB_NOFS); if (p) { memset(p, 0, sizeof(*p)); INIT_LIST_HEAD(&p->wb_hash); INIT_LIST_HEAD(&p->wb_list); INIT_LIST_HEAD(&p->wb_lru); init_waitqueue_head(&p->wb_wait); } return p; } static inline void nfs_page_free(struct nfs_page *p) { kmem_cache_free(nfs_page_cachep, p); } static int nfs_try_to_free_pages(struct nfs_server *); /** * nfs_create_request - Create an NFS read/write request. * @file: file that owns this request * @inode: inode to which the request is attached * @page: page to write * @offset: starting offset within the page for the write * @count: number of bytes to read/write * * The page must be locked by the caller. This makes sure we never * create two different requests for the same page, and avoids * a possible deadlock when we reach the hard limit on the number * of dirty pages. * User should ensure it is safe to sleep in this function. */ struct nfs_page * nfs_create_request(struct file *file, struct inode *inode, struct page *page, unsigned int offset, unsigned int count) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_reqlist *cache = NFS_REQUESTLIST(inode); struct nfs_page *req; /* Deal with hard limits. */ for (;;) { /* Prevent races by incrementing *before* we test */ atomic_inc(&cache->nr_requests); /* If we haven't reached the local hard limit yet, * try to allocate the request struct */ if (atomic_read(&cache->nr_requests) <= MAX_REQUEST_HARD) { req = nfs_page_alloc(); if (req != NULL) break; } atomic_dec(&cache->nr_requests); /* Try to free up at least one request in order to stay * below the hard limit */ if (nfs_try_to_free_pages(server)) continue; if (signalled() && (server->flags & NFS_MOUNT_INTR)) return ERR_PTR(-ERESTARTSYS); current->policy = SCHED_YIELD; schedule(); } /* Initialize the request struct. Initially, we assume a * long write-back delay. This will be adjusted in * update_nfs_request below if the region is not locked. */ req->wb_page = page; page_cache_get(page); req->wb_offset = offset; req->wb_bytes = count; /* If we have a struct file, use its cached credentials */ if (file) { req->wb_file = file; get_file(file); req->wb_cred = nfs_file_cred(file); } req->wb_inode = inode; req->wb_count = 1; return req; } /** * nfs_release_request - Release the count on an NFS read/write request * @req: request to release * * Release all resources associated with a write request after it * has been committed to stable storage * * Note: Should never be called with the spinlock held! */ void nfs_release_request(struct nfs_page *req) { struct inode *inode = req->wb_inode; struct nfs_reqlist *cache = NFS_REQUESTLIST(inode); spin_lock(&nfs_wreq_lock); if (--req->wb_count) { spin_unlock(&nfs_wreq_lock); return; } __nfs_del_lru(req); spin_unlock(&nfs_wreq_lock); atomic_dec(&cache->nr_requests); #ifdef NFS_PARANOIA if (!list_empty(&req->wb_list)) BUG(); if (!list_empty(&req->wb_hash)) BUG(); if (NFS_WBACK_BUSY(req)) BUG(); if (atomic_read(&cache->nr_requests) < 0) BUG(); #endif /* Release struct file or cached credential */ if (req->wb_file) fput(req->wb_file); else if (req->wb_cred) put_rpccred(req->wb_cred); page_cache_release(req->wb_page); nfs_page_free(req); } /** * nfs_list_add_request - Insert a request into a sorted list * @req: request * @head: head of list into which to insert the request. * * Note that the wb_list is sorted by page index in order to facilitate * coalescing of requests. * We use an insertion sort that is optimized for the case of appended * writes. */ void nfs_list_add_request(struct nfs_page *req, struct list_head *head) { struct list_head *pos; unsigned long pg_idx = page_index(req->wb_page); #ifdef NFS_PARANOIA if (!list_empty(&req->wb_list)) { printk(KERN_ERR "NFS: Add to list failed!\n"); BUG(); } #endif list_for_each_prev(pos, head) { struct nfs_page *p = nfs_list_entry(pos); if (page_index(p->wb_page) < pg_idx) break; } list_add(&req->wb_list, pos); req->wb_list_head = head; } /** * nfs_wait_on_request - Wait for a request to complete. * @req: request to wait upon. * * Interruptible by signals only if mounted with intr flag. * The user is responsible for holding a count on the request. */ int nfs_wait_on_request(struct nfs_page *req) { struct inode *inode = req->wb_inode; struct rpc_clnt *clnt = NFS_CLIENT(inode); if (!NFS_WBACK_BUSY(req)) return 0; return nfs_wait_event(clnt, req->wb_wait, !NFS_WBACK_BUSY(req)); } /** * nfs_coalesce_requests - Split coalesced requests out from a list. * @head: source list * @dst: destination list * @nmax: maximum number of requests to coalesce * * Moves a maximum of 'nmax' elements from one list to another. * The elements are checked to ensure that they form a contiguous set * of pages, and that they originated from the same file. */ int nfs_coalesce_requests(struct list_head *head, struct list_head *dst, unsigned int nmax) { struct nfs_page *req = NULL; unsigned int npages = 0; while (!list_empty(head)) { struct nfs_page *prev = req; req = nfs_list_entry(head->next); if (prev) { if (req->wb_file != prev->wb_file) break; if (page_index(req->wb_page) != page_index(prev->wb_page)+1) break; if (req->wb_offset != 0) break; } nfs_list_remove_request(req); nfs_list_add_request(req, dst); npages++; if (req->wb_offset + req->wb_bytes != PAGE_CACHE_SIZE) break; if (npages >= nmax) break; } return npages; } /* * nfs_scan_forward - Coalesce more requests * @req: First request to add * @dst: destination list * @nmax: maximum number of requests to coalesce * * Tries to coalesce more requests by traversing the request's wb_list. * Moves the resulting list into dst. Requests are guaranteed to be * contiguous, and to originate from the same file. */ static int nfs_scan_forward(struct nfs_page *req, struct list_head *dst, int nmax) { struct nfs_server *server = NFS_SERVER(req->wb_inode); struct list_head *pos, *head = req->wb_list_head; struct file *file = req->wb_file; unsigned long idx = page_index(req->wb_page) + 1; int npages = 0; for (pos = req->wb_list.next; nfs_lock_request(req); pos = pos->next) { nfs_list_remove_request(req); nfs_list_add_request(req, dst); __nfs_del_lru(req); __nfs_add_lru(&server->lru_busy, req); npages++; if (npages == nmax) break; if (pos == head) break; if (req->wb_offset + req->wb_bytes != PAGE_CACHE_SIZE) break; req = nfs_list_entry(pos); if (page_index(req->wb_page) != idx++) break; if (req->wb_offset != 0) break; if (req->wb_file != file) break; } return npages; } /** * nfs_scan_lru - Scan one of the least recently used list * @head: One of the NFS superblock lru lists * @dst: Destination list * @nmax: maximum number of requests to coalesce * * Scans one of the NFS superblock lru lists for upto nmax requests * and returns them on a list. The requests are all guaranteed to be * contiguous, originating from the same inode and the same file. */ int nfs_scan_lru(struct list_head *head, struct list_head *dst, int nmax) { struct list_head *pos; struct nfs_page *req; int npages = 0; list_for_each(pos, head) { req = nfs_lru_entry(pos); npages = nfs_scan_forward(req, dst, nmax); if (npages) break; } return npages; } /** * nfs_scan_lru_timeout - Scan one of the superblock lru lists for timed out requests * @head: One of the NFS superblock lru lists * @dst: Destination list * @nmax: maximum number of requests to coalesce * * Scans one of the NFS superblock lru lists for upto nmax requests * and returns them on a list. The requests are all guaranteed to be * contiguous, originating from the same inode and the same file. * The first request on the destination list will be timed out, the * others are not guaranteed to be so. */ int nfs_scan_lru_timeout(struct list_head *head, struct list_head *dst, int nmax) { struct list_head *pos; struct nfs_page *req; int npages = 0; list_for_each(pos, head) { req = nfs_lru_entry(pos); if (time_after(req->wb_timeout, jiffies)) break; npages = nfs_scan_forward(req, dst, nmax); if (npages) break; } return npages; } /** * nfs_scan_list - Scan a list for matching requests * @head: One of the NFS inode request lists * @dst: Destination list * @file: if set, ensure we match requests from this file * @idx_start: lower bound of page->index to scan * @npages: idx_start + npages sets the upper bound to scan. * * Moves elements from one of the inode request lists. * If the number of requests is set to 0, the entire address_space * starting at index idx_start, is scanned. * The requests are *not* checked to ensure that they form a contiguous set. * You must be holding the nfs_wreq_lock when calling this function */ int nfs_scan_list(struct list_head *head, struct list_head *dst, struct file *file, unsigned long idx_start, unsigned int npages) { struct list_head *pos, *tmp; struct nfs_page *req; unsigned long idx_end; int res; res = 0; if (npages == 0) idx_end = ~0; else idx_end = idx_start + npages - 1; list_for_each_safe(pos, tmp, head) { unsigned long pg_idx; req = nfs_list_entry(pos); if (file && req->wb_file != file) continue; pg_idx = page_index(req->wb_page); if (pg_idx < idx_start) continue; if (pg_idx > idx_end) break; if (!nfs_lock_request(req)) continue; nfs_list_remove_request(req); nfs_list_add_request(req, dst); __nfs_del_lru(req); __nfs_add_lru(&NFS_SERVER(req->wb_inode)->lru_busy, req); res++; } return res; } /* * nfs_try_to_free_pages - Free up NFS read/write requests * @server: The NFS superblock * * This function attempts to flush out NFS reads and writes in order * to keep the hard limit on the total number of pending requests * on a given NFS partition. * Note: we first try to commit unstable writes, then flush out pending * reads, then finally the dirty pages. * The assumption is that this reflects the ordering from the fastest * to the slowest method for reclaiming requests. */ static int nfs_try_to_free_pages(struct nfs_server *server) { LIST_HEAD(head); struct nfs_page *req = NULL; int nreq; for (;;) { if (req) { int status = nfs_wait_on_request(req); nfs_release_request(req); if (status) break; req = NULL; } nreq = atomic_read(&server->rw_requests->nr_requests); if (nreq < MAX_REQUEST_HARD) return 1; spin_lock(&nfs_wreq_lock); /* Are there any busy RPC calls that might free up requests? */ if (!list_empty(&server->lru_busy)) { req = nfs_lru_entry(server->lru_busy.next); req->wb_count++; __nfs_del_lru(req); spin_unlock(&nfs_wreq_lock); continue; } #ifdef CONFIG_NFS_V3 /* Let's try to free up some completed NFSv3 unstable writes */ nfs_scan_lru_commit(server, &head); if (!list_empty(&head)) { spin_unlock(&nfs_wreq_lock); nfs_commit_list(&head, 0); continue; } #endif /* OK, so we try to free up some pending readaheads */ nfs_scan_lru_read(server, &head); if (!list_empty(&head)) { spin_unlock(&nfs_wreq_lock); nfs_pagein_list(&head, server->rpages); continue; } /* Last resort: we try to flush out single requests */ nfs_scan_lru_dirty(server, &head); if (!list_empty(&head)) { spin_unlock(&nfs_wreq_lock); nfs_flush_list(&head, server->wpages, FLUSH_STABLE); continue; } spin_unlock(&nfs_wreq_lock); break; } /* We failed to free up requests */ return 0; } int nfs_init_nfspagecache(void) { nfs_page_cachep = kmem_cache_create("nfs_page", sizeof(struct nfs_page), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (nfs_page_cachep == NULL) return -ENOMEM; return 0; } void nfs_destroy_nfspagecache(void) { if (kmem_cache_destroy(nfs_page_cachep)) printk(KERN_INFO "nfs_page: not all structures were freed\n"); }