/* * Driver for HAL2 sound processors * Copyright (c) 2001, 2002 Ladislav Michl * * Based on Ulf Carlsson's code. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Supported devices: * /dev/dsp standard dsp device, (mostly) OSS compatible * /dev/mixer standard mixer device, (mostly) OSS compatible * * Driver currently supports indigo mode only. Recording doesn't work. Why? */ #include #include #include #include #include #include #include #include #include #include #include "hal2.h" #if 0 #define DEBUG(args...) printk(args) #else #define DEBUG(args...) #endif #if 0 #define DEBUG_MIX(args...) printk(args) #else #define DEBUG_MIX(args...) #endif #define H2_INDIRECT_WAIT(regs) while (regs->isr & H2_ISR_TSTATUS); #define H2_READ_ADDR(addr) (addr | (1<<7)) #define H2_WRITE_ADDR(addr) (addr) static char *hal2str = "HAL2 audio"; static int ibuffers = 32; static int obuffers = 32; /* I doubt anyone has a machine with two HAL2 cards. It's possible to * have two HPC's, so it is probably possible to have two HAL2 cards. * Try to deal with it, but note that it is not tested. */ #define MAXCARDS 2 static hal2_card_t* hal2_card[MAXCARDS]; static const struct { unsigned char idx:4, avail:1; } mixtable[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_PCM] = { H2_MIX_OUTPUT_ATT, 1 }, /* voice */ [SOUND_MIXER_MIC] = { H2_MIX_INPUT_GAIN, 1 }, /* mic */ }; #define H2_SUPPORTED_FORMATS (AFMT_S16_LE | AFMT_S16_BE) static inline void hal2_isr_write(hal2_card_t *hal2, u32 val) { hal2->ctl_regs->isr = val; } static inline u32 hal2_isr_look(hal2_card_t *hal2) { return hal2->ctl_regs->isr; } static inline u32 hal2_rev_look(hal2_card_t *hal2) { return hal2->ctl_regs->rev; } #if 0 static u16 hal2_i_look16(hal2_card_t *hal2, u32 addr) { hal2_ctl_regs_t *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); return (regs->idr0 & 0xffff); } #endif static u32 hal2_i_look32(hal2_card_t *hal2, u32 addr) { u32 ret; hal2_ctl_regs_t *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); ret = regs->idr0 & 0xffff; regs->iar = H2_READ_ADDR(addr | 0x1); H2_INDIRECT_WAIT(regs); ret |= (regs->idr0 & 0xffff) << 16; return ret; } static void hal2_i_write16(hal2_card_t *hal2, u32 addr, u16 val) { hal2_ctl_regs_t *regs = hal2->ctl_regs; regs->idr0 = val; regs->idr1 = 0; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } static void hal2_i_write32(hal2_card_t *hal2, u32 addr, u32 val) { hal2_ctl_regs_t *regs = hal2->ctl_regs; regs->idr0 = val & 0xffff; regs->idr1 = val >> 16; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } static void hal2_i_setbit16(hal2_card_t *hal2, u32 addr, u16 bit) { hal2_ctl_regs_t *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); regs->idr0 = regs->idr0 | bit; regs->idr1 = 0; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } static void hal2_i_setbit32(hal2_card_t *hal2, u32 addr, u32 bit) { u32 tmp; hal2_ctl_regs_t *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); tmp = regs->idr0 | (regs->idr1 << 16) | bit; regs->idr0 = tmp & 0xffff; regs->idr1 = tmp >> 16; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } static void hal2_i_clearbit16(hal2_card_t *hal2, u32 addr, u16 bit) { hal2_ctl_regs_t *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); regs->idr0 = regs->idr0 & ~bit; regs->idr1 = 0; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } #if 0 static void hal2_i_clearbit32(hal2_card_t *hal2, u32 addr, u32 bit) { u32 tmp; hal2_ctl_regs_t *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); tmp = (regs->idr0 | (regs->idr1 << 16)) & ~bit; regs->idr0 = tmp & 0xffff; regs->idr1 = tmp >> 16; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } #endif #ifdef HAL2_DEBUG static void hal2_dump_regs(hal2_card_t *hal2) { printk("isr: %08hx ", hal2_isr_look(hal2)); printk("rev: %08hx\n", hal2_rev_look(hal2)); printk("relay: %04hx\n", hal2_i_look16(hal2, H2I_RELAY_C)); printk("port en: %04hx ", hal2_i_look16(hal2, H2I_DMA_PORT_EN)); printk("dma end: %04hx ", hal2_i_look16(hal2, H2I_DMA_END)); printk("dma drv: %04hx\n", hal2_i_look16(hal2, H2I_DMA_DRV)); printk("syn ctl: %04hx ", hal2_i_look16(hal2, H2I_SYNTH_C)); printk("aesrx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESRX_C)); printk("aestx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESTX_C)); printk("dac ctl1: %04hx ", hal2_i_look16(hal2, H2I_ADC_C1)); printk("dac ctl2: %08lx ", hal2_i_look32(hal2, H2I_ADC_C2)); printk("adc ctl1: %04hx ", hal2_i_look16(hal2, H2I_DAC_C1)); printk("adc ctl2: %08lx ", hal2_i_look32(hal2, H2I_DAC_C2)); printk("syn map: %04hx\n", hal2_i_look16(hal2, H2I_SYNTH_MAP_C)); printk("bres1 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES1_C1)); printk("bres1 ctl2: %04lx ", hal2_i_look32(hal2, H2I_BRES1_C2)); printk("bres2 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES2_C1)); printk("bres2 ctl2: %04lx ", hal2_i_look32(hal2, H2I_BRES2_C2)); printk("bres3 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES3_C1)); printk("bres3 ctl2: %04lx\n", hal2_i_look32(hal2, H2I_BRES3_C2)); } #endif static hal2_card_t* hal2_dsp_find_card(int minor) { int i; for (i = 0; i < MAXCARDS; i++) if (hal2_card[i] != NULL && hal2_card[i]->dev_dsp == minor) return hal2_card[i]; return NULL; } static hal2_card_t* hal2_mixer_find_card(int minor) { int i; for (i = 0; i < MAXCARDS; i++) if (hal2_card[i] != NULL && hal2_card[i]->dev_mixer == minor) return hal2_card[i]; return NULL; } static void hal2_dac_interrupt(hal2_codec_t *dac) { int running; spin_lock(&dac->lock); /* if tail buffer contains zero samples DMA stream was already * stopped */ running = dac->tail->info.cnt; dac->tail->info.cnt = 0; dac->tail->info.desc.cntinfo = HPCDMA_XIE | HPCDMA_EOX; dma_cache_wback_inv((unsigned long) dac->tail, sizeof(struct hpc_dma_desc)); /* we just proccessed empty buffer, don't update tail pointer */ if (running) dac->tail = dac->tail->info.next; spin_unlock(&dac->lock); wake_up(&dac->dma_wait); } static void hal2_adc_interrupt(hal2_codec_t *adc) { int running; spin_lock(&adc->lock); /* if head buffer contains nonzero samples DMA stream was already * stopped */ running = !adc->head->info.cnt; adc->head->info.cnt = H2_BUFFER_SIZE; adc->head->info.desc.cntinfo = HPCDMA_XIE | HPCDMA_EOX; dma_cache_wback_inv((unsigned long) adc->head, sizeof(struct hpc_dma_desc)); /* we just proccessed empty buffer, don't update head pointer */ if (running) { dma_cache_inv((unsigned long) adc->head->data, H2_BUFFER_SIZE); adc->head = adc->head->info.next; } spin_unlock(&adc->lock); wake_up(&adc->dma_wait); } static void hal2_interrupt(int irq, void *dev_id, struct pt_regs *regs) { hal2_card_t *hal2 = (hal2_card_t*)dev_id; /* decide what caused this interrupt */ if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) hal2_dac_interrupt(&hal2->dac); if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) hal2_adc_interrupt(&hal2->adc); } static int hal2_compute_rate(hal2_codec_t *codec, unsigned int rate) { unsigned short inc; /* We default to 44.1 kHz and if it isn't possible to fall back to * 48.0 kHz with the needed adjustments of real_rate. */ DEBUG("rate: %d\n", rate); /* Refer to CS4216 data sheet */ if (rate < 4000) rate = 4000; if (rate > 50000) rate = 50000; /* Note: This is NOT the way they set up the bresenham clock generators * in the specification. I've tried to implement that method but it * doesn't work. It's probably another silly bug in the spec. * * I accidently discovered this method while I was testing and it seems * to work very well with all frequencies, and thee shall follow rule #1 * of programming :-) */ if (44100 % rate == 0) { inc = 44100 / rate; if (inc < 1) inc = 1; codec->master = 44100; } else { inc = 48000 / rate; if (inc < 1) inc = 1; rate = 48000 / inc; codec->master = 48000; } codec->inc = inc; codec->mod = 1; DEBUG("real_rate: %d\n", rate); return rate; } static void hal2_set_dac_rate(hal2_card_t *hal2) { unsigned int master = hal2->dac.master; int inc = hal2->dac.inc; int mod = hal2->dac.mod; DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod); hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0); hal2_i_write32(hal2, H2I_BRES1_C2, ((0xffff & (mod - inc - 1)) << 16) | 1); } static void hal2_set_adc_rate(hal2_card_t *hal2) { unsigned int master = hal2->adc.master; int inc = hal2->adc.inc; int mod = hal2->adc.mod; DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod); hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0); hal2_i_write32(hal2, H2I_BRES2_C2, ((0xffff & (mod - inc - 1)) << 16) | 1); } static void hal2_setup_dac(hal2_card_t *hal2) { unsigned int fifobeg, fifoend, highwater, sample_size; hal2_pbus_t *pbus = &hal2->dac.pbus; DEBUG("hal2_setup_dac\n"); /* Now we set up some PBUS information. The PBUS needs information about * what portion of the fifo it will use. If it's receiving or * transmitting, and finally whether the stream is little endian or big * endian. The information is written later, on the start call. */ sample_size = 2 * hal2->dac.voices; /* Fifo should be set to hold exactly four samples. Highwater mark * should be set to two samples. */ highwater = (sample_size * 2) >> 1; /* halfwords */ fifobeg = 0; /* playback is first */ fifoend = (sample_size * 4) >> 3; /* doublewords */ pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD | (highwater << 8) | (fifobeg << 16) | (fifoend << 24); /* We disable everything before we do anything at all */ pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); hal2_i_clearbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); /* Setup the HAL2 for playback */ hal2_set_dac_rate(hal2); /* We are using 1st Bresenham clock generator for playback */ hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) | (1 << H2I_C1_CLKID_SHIFT) | (hal2->dac.voices << H2I_C1_DATAT_SHIFT)); } static void hal2_setup_adc(hal2_card_t *hal2) { unsigned int fifobeg, fifoend, highwater, sample_size; hal2_pbus_t *pbus = &hal2->adc.pbus; DEBUG("hal2_setup_adc\n"); sample_size = 2 * hal2->adc.voices; highwater = (sample_size * 2) >> 1; /* halfwords */ fifobeg = (4 * 4) >> 3; /* record is second */ fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */ pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD | (highwater << 8) | (fifobeg << 16) | (fifoend << 24); pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); hal2_i_clearbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); /* Setup the HAL2 for record */ hal2_set_adc_rate(hal2); /* We are using 2nd Bresenham clock generator for record */ hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) | (2 << H2I_C1_CLKID_SHIFT) | (hal2->adc.voices << H2I_C1_DATAT_SHIFT)); } static void hal2_start_dac(hal2_card_t *hal2) { hal2_pbus_t *pbus = &hal2->dac.pbus; DEBUG("hal2_start_dac\n"); pbus->pbus->pbdma_dptr = PHYSADDR(hal2->dac.tail); pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; /* set endianess */ if (hal2->dac.format & AFMT_S16_LE) hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX); else hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX); /* set DMA bus */ hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); /* enable DAC */ hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); } static void hal2_start_adc(hal2_card_t *hal2) { hal2_pbus_t *pbus = &hal2->adc.pbus; DEBUG("hal2_start_adc\n"); pbus->pbus->pbdma_dptr = PHYSADDR(hal2->adc.head); pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; /* set endianess */ if (hal2->adc.format & AFMT_S16_LE) hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR); else hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR); /* set DMA bus */ hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); /* enable ADC */ hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); } static inline void hal2_stop_dac(hal2_card_t *hal2) { DEBUG("hal2_stop_dac\n"); hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; /* The HAL2 itself may remain enabled safely */ } static inline void hal2_stop_adc(hal2_card_t *hal2) { DEBUG("hal2_stop_adc\n"); hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; } #define hal2_alloc_dac_dmabuf(hal2) hal2_alloc_dmabuf(hal2, 1) #define hal2_alloc_adc_dmabuf(hal2) hal2_alloc_dmabuf(hal2, 0) static int hal2_alloc_dmabuf(hal2_card_t *hal2, int is_dac) { int buffers, cntinfo; hal2_buf_t *buf, *prev; hal2_codec_t *codec; if (is_dac) { codec = &hal2->dac; buffers = obuffers; cntinfo = HPCDMA_XIE | HPCDMA_EOX; } else { codec = &hal2->adc; buffers = ibuffers; cntinfo = HPCDMA_XIE | H2_BUFFER_SIZE; } DEBUG("allocating %d DMA buffers.\n", buffers); buf = (hal2_buf_t*) get_zeroed_page(GFP_KERNEL); if (!buf) return -ENOMEM; codec->head = buf; codec->tail = buf; while (--buffers) { buf->info.desc.pbuf = PHYSADDR(&buf->data); buf->info.desc.cntinfo = cntinfo; buf->info.cnt = 0; prev = buf; buf = (hal2_buf_t*) get_zeroed_page(GFP_KERNEL); if (!buf) { printk("HAL2: Not enough memory for DMA buffer.\n"); buf = codec->head; while (buf) { prev = buf; free_page((unsigned long) buf); buf = prev->info.next; } return -ENOMEM; } prev->info.next = buf; prev->info.desc.pnext = PHYSADDR(buf); /* The PBUS can prolly not read this stuff when it's in * the cache so we have to flush it back to main memory */ dma_cache_wback_inv((unsigned long) prev, PAGE_SIZE); } buf->info.desc.pbuf = PHYSADDR(&buf->data); buf->info.desc.cntinfo = cntinfo; buf->info.cnt = 0; buf->info.next = codec->head; buf->info.desc.pnext = PHYSADDR(codec->head); dma_cache_wback_inv((unsigned long) buf, PAGE_SIZE); return 0; } #define hal2_free_dac_dmabuf(hal2) hal2_free_dmabuf(hal2, 1) #define hal2_free_adc_dmabuf(hal2) hal2_free_dmabuf(hal2, 0) static void hal2_free_dmabuf(hal2_card_t *hal2, int is_dac) { hal2_buf_t *buf, *next; hal2_codec_t *codec = (is_dac) ? &hal2->dac : &hal2->adc; if (!codec->head) return; buf = codec->head->info.next; codec->head->info.next = NULL; while (buf) { next = buf->info.next; free_page((unsigned long) buf); buf = next; } codec->head = codec->tail = NULL; } /* * Add 'count' bytes to 'buffer' from DMA ring buffers. Return number of * bytes added or -EFAULT if copy_from_user failed. */ static int hal2_get_buffer(hal2_card_t *hal2, char *buffer, int count) { unsigned long flags; int size, ret = 0; hal2_codec_t *adc = &hal2->adc; spin_lock_irqsave(&adc->lock, flags); DEBUG("getting %d bytes ", count); /* enable DMA stream if there are no data */ if (!(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) && adc->tail->info.cnt == 0) hal2_start_adc(hal2); DEBUG("... "); while (adc->tail->info.cnt > 0 && count > 0) { size = min(adc->tail->info.cnt, count); spin_unlock_irqrestore(&adc->lock, flags); if (copy_to_user(buffer, &adc->tail->data[H2_BUFFER_SIZE-size], size)) { ret = -EFAULT; goto out; } spin_lock_irqsave(&adc->lock, flags); adc->tail->info.cnt -= size; /* buffer is empty, update tail pointer */ if (adc->tail->info.cnt == 0) { adc->tail->info.desc.cntinfo = HPCDMA_XIE | H2_BUFFER_SIZE; dma_cache_wback_inv((unsigned long) adc->tail, sizeof(struct hpc_dma_desc)); adc->tail = adc->tail->info.next; /* enable DMA stream again if needed */ if (!(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT)) hal2_start_adc(hal2); } buffer += size; ret += size; count -= size; DEBUG("(%d) ", size); } spin_unlock_irqrestore(&adc->lock, flags); out: DEBUG("\n"); return ret; } /* * Add 'count' bytes from 'buffer' to DMA ring buffers. Return number of * bytes added or -EFAULT if copy_from_user failed. */ static int hal2_add_buffer(hal2_card_t *hal2, char *buffer, int count) { unsigned long flags; int size, ret = 0; hal2_codec_t *dac = &hal2->dac; spin_lock_irqsave(&dac->lock, flags); DEBUG("adding %d bytes ", count); while (dac->head->info.cnt == 0 && count > 0) { size = min((int)H2_BUFFER_SIZE, count); spin_unlock_irqrestore(&dac->lock, flags); if (copy_from_user(dac->head->data, buffer, size)) { ret = -EFAULT; goto out; } spin_lock_irqsave(&dac->lock, flags); dac->head->info.desc.cntinfo = size | HPCDMA_XIE; dac->head->info.cnt = size; dma_cache_wback_inv((unsigned long) dac->head, size + PAGE_SIZE - H2_BUFFER_SIZE); buffer += size; ret += size; count -= size; dac->head = dac->head->info.next; DEBUG("(%d) ", size); } if (!(dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) && ret > 0) hal2_start_dac(hal2); spin_unlock_irqrestore(&dac->lock, flags); out: DEBUG("\n"); return ret; } #define hal2_reset_dac_pointer(hal2) hal2_reset_pointer(hal2, 1) #define hal2_reset_adc_pointer(hal2) hal2_reset_pointer(hal2, 0) static void hal2_reset_pointer(hal2_card_t *hal2, int is_dac) { hal2_codec_t *codec = (is_dac) ? &hal2->dac : &hal2->adc; DEBUG("hal2_reset_pointer\n"); codec->tail = codec->head; do { codec->tail->info.desc.cntinfo = HPCDMA_XIE | (is_dac) ? HPCDMA_EOX : H2_BUFFER_SIZE; codec->tail->info.cnt = 0; dma_cache_wback_inv((unsigned long) codec->tail, sizeof(struct hpc_dma_desc)); codec->tail = codec->tail->info.next; } while (codec->tail != codec->head); } static int hal2_sync_dac(hal2_card_t *hal2) { DECLARE_WAITQUEUE(wait, current); hal2_codec_t *dac = &hal2->dac; int ret = 0; signed long timeout = 1 + 1000 * H2_BUFFER_SIZE * 2 * dac->voices * HZ / dac->sample_rate / 900; down(&dac->sem); while (dac->tail->info.cnt > 0 && ret == 0) { add_wait_queue(&dac->dma_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); if (!schedule_timeout(timeout)) /* We may get bogus timeout when system is * heavily loaded */ if (dac->tail->info.cnt) { printk("HAL2: timeout...\n"); ret = -ETIME; } if (signal_pending(current)) ret = -ERESTARTSYS; remove_wait_queue(&dac->dma_wait, &wait); } /* Make sure that DMA is stopped */ if (dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) { hal2_stop_dac(hal2); hal2_reset_dac_pointer(hal2); } up(&dac->sem); return ret; } static int hal2_write_mixer(hal2_card_t *hal2, int index, int vol) { unsigned int l, r; DEBUG_MIX("mixer %d write\n", index); if (index >= SOUND_MIXER_NRDEVICES || !mixtable[index].avail) return -EINVAL; r = (vol >> 8) & 0xff; if (r > 100) r = 100; l = vol & 0xff; if (l > 100) l = 100; hal2->mixer.volume[mixtable[index].idx] = l | (r << 8); switch (mixtable[index].idx) { case H2_MIX_OUTPUT_ATT: { DEBUG_MIX("output attenuator %d,%d\n", l, r); if (r | l) { unsigned int tmp = hal2_i_look32(hal2, H2I_DAC_C2); tmp &= ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); /* Attenuator has five bits */ l = (31 * (100 - l) / 99); r = (31 * (100 - r) / 99); DEBUG_MIX("left: %d, right %d\n", l, r); tmp |= (l << H2I_C2_L_ATT_SHIFT) & H2I_C2_L_ATT_M; tmp |= (r << H2I_C2_R_ATT_SHIFT) & H2I_C2_R_ATT_M; hal2_i_write32(hal2, H2I_DAC_C2, tmp); } else hal2_i_setbit32(hal2, H2I_DAC_C2, H2I_C2_MUTE); } case H2_MIX_INPUT_GAIN: { /* TODO */ } } return 0; } static void hal2_init_mixer(hal2_card_t *hal2) { int i; for (i = 0; i < SOUND_MIXER_NRDEVICES; i++) hal2_write_mixer(hal2, i, 100 | (100 << 8)); } static int hal2_mixer_ioctl(hal2_card_t *hal2, unsigned int cmd, unsigned long arg) { int val; if (cmd == SOUND_MIXER_INFO) { mixer_info info; strncpy(info.id, hal2str, sizeof(info.id)); strncpy(info.name, hal2str, sizeof(info.name)); info.modify_counter = hal2->mixer.modcnt; if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == SOUND_OLD_MIXER_INFO) { _old_mixer_info info; strncpy(info.id, hal2str, sizeof(info.id)); strncpy(info.name, hal2str, sizeof(info.name)); if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == OSS_GETVERSION) return put_user(SOUND_VERSION, (int *)arg); if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int)) return -EINVAL; if (_IOC_DIR(cmd) == _IOC_READ) { switch (_IOC_NR(cmd)) { /* Give the current record source */ case SOUND_MIXER_RECSRC: val = 0; /* FIXME */ break; /* Give the supported mixers, all of them support stereo */ case SOUND_MIXER_DEVMASK: case SOUND_MIXER_STEREODEVS: { int i; for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].avail) val |= 1 << i; break; } /* Arg contains a bit for each supported recording source */ case SOUND_MIXER_RECMASK: val = 0; break; case SOUND_MIXER_CAPS: val = 0; break; /* Read a specific mixer */ default: { int i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].avail) return -EINVAL; val = hal2->mixer.volume[mixtable[i].idx]; break; } } return put_user(val, (int *)arg); } if (_IOC_DIR(cmd) != (_IOC_WRITE|_IOC_READ)) return -EINVAL; hal2->mixer.modcnt++; if (get_user(val, (int *)arg)) return -EFAULT; switch (_IOC_NR(cmd)) { /* Arg contains a bit for each recording source */ case SOUND_MIXER_RECSRC: return 0; /* FIXME */ default: return hal2_write_mixer(hal2, _IOC_NR(cmd), val); } return 0; } static int hal2_open_mixdev(struct inode *inode, struct file *file) { hal2_card_t *hal2 = hal2_mixer_find_card(MINOR(inode->i_rdev)); if (hal2) { file->private_data = hal2; return 0; } return -ENODEV; } static int hal2_release_mixdev(struct inode *inode, struct file *file) { return 0; } static int hal2_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { return hal2_mixer_ioctl((hal2_card_t *)file->private_data, cmd, arg); } static int hal2_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { int val; hal2_card_t *hal2 = (hal2_card_t *) file->private_data; switch (cmd) { case OSS_GETVERSION: return put_user(SOUND_VERSION, (int *)arg); case SNDCTL_DSP_SYNC: if (file->f_mode & FMODE_WRITE) return hal2_sync_dac(hal2); return 0; case SNDCTL_DSP_SETDUPLEX: return 0; case SNDCTL_DSP_GETCAPS: return put_user(DSP_CAP_DUPLEX | DSP_CAP_MULTI, (int *)arg); case SNDCTL_DSP_RESET: if (file->f_mode & FMODE_READ) { hal2_stop_adc(hal2); hal2_reset_adc_pointer(hal2); } if (file->f_mode & FMODE_WRITE) { hal2_stop_dac(hal2); hal2_reset_dac_pointer(hal2); } return 0; case SNDCTL_DSP_SPEED: if (get_user(val, (int *)arg)) return -EFAULT; if (file->f_mode & FMODE_READ) { hal2_stop_adc(hal2); val = hal2_compute_rate(&hal2->adc, val); hal2->adc.sample_rate = val; hal2_set_adc_rate(hal2); } if (file->f_mode & FMODE_WRITE) { hal2_stop_dac(hal2); val = hal2_compute_rate(&hal2->dac, val); hal2->dac.sample_rate = val; hal2_set_dac_rate(hal2); } return put_user(val, (int *)arg); case SNDCTL_DSP_STEREO: if (get_user(val, (int *)arg)) return -EFAULT; if (file->f_mode & FMODE_READ) { hal2_stop_adc(hal2); hal2->adc.voices = (val) ? 2 : 1; hal2_setup_adc(hal2); } if (file->f_mode & FMODE_WRITE) { hal2_stop_dac(hal2); hal2->dac.voices = (val) ? 2 : 1; hal2_setup_dac(hal2); } return 0; case SNDCTL_DSP_CHANNELS: if (get_user(val, (int *)arg)) return -EFAULT; if (val != 0) { if (file->f_mode & FMODE_READ) { hal2_stop_adc(hal2); hal2->adc.voices = (val == 1) ? 1 : 2; hal2_setup_adc(hal2); } if (file->f_mode & FMODE_WRITE) { hal2_stop_dac(hal2); hal2->dac.voices = (val == 1) ? 1 : 2; hal2_setup_dac(hal2); } } val = -EINVAL; if (file->f_mode & FMODE_READ) val = hal2->adc.voices; if (file->f_mode & FMODE_WRITE) val = hal2->dac.voices; return put_user(val, (int *)arg); case SNDCTL_DSP_GETFMTS: /* Returns a mask */ return put_user(H2_SUPPORTED_FORMATS, (int *)arg); case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/ if (get_user(val, (int *)arg)) return -EFAULT; if (val != AFMT_QUERY) { if (!(val & H2_SUPPORTED_FORMATS)) return -EINVAL; if (file->f_mode & FMODE_READ) { hal2_stop_adc(hal2); hal2->adc.format = val; hal2_setup_adc(hal2); } if (file->f_mode & FMODE_WRITE) { hal2_stop_dac(hal2); hal2->dac.format = val; hal2_setup_dac(hal2); } } else { val = -EINVAL; if (file->f_mode & FMODE_READ) val = hal2->adc.format; if (file->f_mode & FMODE_WRITE) val = hal2->dac.format; } return put_user(val, (int *)arg); case SNDCTL_DSP_POST: return 0; case SNDCTL_DSP_GETOSPACE: { unsigned long flags; audio_buf_info info; hal2_buf_t *buf; hal2_codec_t *dac = &hal2->dac; if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&dac->lock, flags); info.fragments = 0; buf = dac->head; while (buf->info.cnt == 0 && buf != dac->tail) { info.fragments++; buf = buf->info.next; } spin_unlock_irqrestore(&dac->lock, flags); info.fragstotal = obuffers; info.fragsize = H2_BUFFER_SIZE; info.bytes = info.fragsize * info.fragments; return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0; } case SNDCTL_DSP_GETISPACE: { unsigned long flags; audio_buf_info info; hal2_buf_t *buf; hal2_codec_t *adc = &hal2->adc; if (!(file->f_mode & FMODE_READ)) return -EINVAL; spin_lock_irqsave(&adc->lock, flags); info.fragments = 0; info.bytes = 0; buf = adc->tail; while (buf->info.cnt > 0 && buf != adc->head) { info.fragments++; info.bytes += buf->info.cnt; buf = buf->info.next; } spin_unlock_irqrestore(&adc->lock, flags); info.fragstotal = ibuffers; info.fragsize = H2_BUFFER_SIZE; return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0; } case SNDCTL_DSP_NONBLOCK: file->f_flags |= O_NONBLOCK; return 0; case SNDCTL_DSP_GETBLKSIZE: return put_user(H2_BUFFER_SIZE, (int *)arg); case SNDCTL_DSP_SETFRAGMENT: return 0; case SOUND_PCM_READ_RATE: val = -EINVAL; if (file->f_mode & FMODE_READ) val = hal2->adc.sample_rate; if (file->f_mode & FMODE_WRITE) val = hal2->dac.sample_rate; return put_user(val, (int *)arg); case SOUND_PCM_READ_CHANNELS: val = -EINVAL; if (file->f_mode & FMODE_READ) val = hal2->adc.voices; if (file->f_mode & FMODE_WRITE) val = hal2->dac.voices; return put_user(val, (int *)arg); case SOUND_PCM_READ_BITS: val = 16; return put_user(val, (int *)arg); } return hal2_mixer_ioctl(hal2, cmd, arg); } static ssize_t hal2_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { ssize_t err; hal2_card_t *hal2 = (hal2_card_t *) file->private_data; hal2_codec_t *adc = &hal2->adc; if (count == 0) return 0; if (ppos != &file->f_pos) return -ESPIPE; down(&adc->sem); if (file->f_flags & O_NONBLOCK) { err = hal2_get_buffer(hal2, buffer, count); err = err == 0 ? -EAGAIN : err; } else { do { /* ~10% longer */ signed long timeout = 1 + 1000 * H2_BUFFER_SIZE * 2 * adc->voices * HZ / adc->sample_rate / 900; DECLARE_WAITQUEUE(wait, current); ssize_t cnt = 0; err = hal2_get_buffer(hal2, buffer, count); if (err > 0) { count -= err; cnt += err; buffer += err; err = cnt; } if (count > 0 && err >= 0) { add_wait_queue(&adc->dma_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); /* Well, it is possible, that interrupt already * arrived. Hmm, shit happens, we have one more * buffer filled ;) */ if (!schedule_timeout(timeout)) /* We may get bogus timeout when system * is heavily loaded */ if (!adc->tail->info.cnt) { printk("HAL2: timeout...\n"); hal2_stop_adc(hal2); hal2_reset_adc_pointer(hal2); err = -EAGAIN; } if (signal_pending(current)) err = -ERESTARTSYS; remove_wait_queue(&adc->dma_wait, &wait); } } while (count > 0 && err >= 0); } up(&adc->sem); return err; } static ssize_t hal2_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { ssize_t err; char *buf = (char*) buffer; hal2_card_t *hal2 = (hal2_card_t *) file->private_data; hal2_codec_t *dac = &hal2->dac; if (count == 0) return 0; if (ppos != &file->f_pos) return -ESPIPE; down(&dac->sem); if (file->f_flags & O_NONBLOCK) { err = hal2_add_buffer(hal2, buf, count); err = err == 0 ? -EAGAIN : err; } else { do { /* ~10% longer */ signed long timeout = 1 + 1000 * H2_BUFFER_SIZE * 2 * dac->voices * HZ / dac->sample_rate / 900; DECLARE_WAITQUEUE(wait, current); ssize_t cnt = 0; err = hal2_add_buffer(hal2, buf, count); if (err > 0) { count -= err; cnt += err; buf += err; err = cnt; } if (count > 0 && err >= 0) { add_wait_queue(&dac->dma_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); /* Well, it is possible, that interrupt already * arrived. Hmm, shit happens, we have one more * buffer free ;) */ if (!schedule_timeout(timeout)) /* We may get bogus timeout when system * is heavily loaded */ if (dac->head->info.cnt) { printk("HAL2: timeout...\n"); hal2_stop_dac(hal2); hal2_reset_dac_pointer(hal2); err = -EAGAIN; } if (signal_pending(current)) err = -ERESTARTSYS; remove_wait_queue(&dac->dma_wait, &wait); } } while (count > 0 && err >= 0); } up(&dac->sem); return err; } static unsigned int hal2_poll(struct file *file, struct poll_table_struct *wait) { unsigned long flags; unsigned int mask = 0; hal2_card_t *hal2 = (hal2_card_t *) file->private_data; if (file->f_mode & FMODE_READ) { hal2_codec_t *adc = &hal2->adc; poll_wait(file, &hal2->adc.dma_wait, wait); spin_lock_irqsave(&adc->lock, flags); if (adc->tail->info.cnt > 0) mask |= POLLIN; spin_unlock_irqrestore(&adc->lock, flags); } if (file->f_mode & FMODE_WRITE) { hal2_codec_t *dac = &hal2->dac; poll_wait(file, &dac->dma_wait, wait); spin_lock_irqsave(&dac->lock, flags); if (dac->head->info.cnt == 0) mask |= POLLOUT; spin_unlock_irqrestore(&dac->lock, flags); } return mask; } static int hal2_open(struct inode *inode, struct file *file) { int err; hal2_card_t *hal2 = hal2_dsp_find_card(MINOR(inode->i_rdev)); DEBUG("opening audio device.\n"); if (!hal2) { printk("HAL2: Whee?! Open door and go away!\n"); return -ENODEV; } file->private_data = hal2; if (file->f_mode & FMODE_READ) { if (hal2->adc.usecount) return -EBUSY; /* OSS spec wanted us to use 8 bit, 8 kHz mono by default, * but HAL2 can't do 8bit audio */ hal2->adc.format = AFMT_S16_BE; hal2->adc.voices = 1; hal2->adc.sample_rate = hal2_compute_rate(&hal2->adc, 8000); hal2_set_adc_rate(hal2); /* alloc DMA buffers */ err = hal2_alloc_adc_dmabuf(hal2); if (err) return err; hal2_setup_adc(hal2); hal2->adc.usecount++; } if (file->f_mode & FMODE_WRITE) { if (hal2->dac.usecount) return -EBUSY; hal2->dac.format = AFMT_S16_BE; hal2->dac.voices = 1; hal2->dac.sample_rate = hal2_compute_rate(&hal2->dac, 8000); hal2_set_dac_rate(hal2); /* alloc DMA buffers */ err = hal2_alloc_dac_dmabuf(hal2); if (err) return err; hal2_setup_dac(hal2); hal2->dac.usecount++; } return 0; } static int hal2_release(struct inode *inode, struct file *file) { hal2_card_t *hal2 = (hal2_card_t *) file->private_data; if (file->f_mode & FMODE_READ) { hal2_stop_adc(hal2); hal2_free_adc_dmabuf(hal2); hal2->adc.usecount--; } if (file->f_mode & FMODE_WRITE) { hal2_sync_dac(hal2); hal2_free_dac_dmabuf(hal2); hal2->dac.usecount--; } return 0; } static struct file_operations hal2_audio_fops = { owner: THIS_MODULE, llseek: no_llseek, read: hal2_read, write: hal2_write, poll: hal2_poll, ioctl: hal2_ioctl, open: hal2_open, release: hal2_release, }; static struct file_operations hal2_mixer_fops = { owner: THIS_MODULE, llseek: no_llseek, ioctl: hal2_ioctl_mixdev, open: hal2_open_mixdev, release: hal2_release_mixdev, }; static int hal2_request_irq(hal2_card_t *hal2, int irq) { unsigned long flags; int ret = 0; save_and_cli(flags); if (request_irq(irq, hal2_interrupt, SA_SHIRQ, hal2str, hal2)) { printk(KERN_ERR "HAL2: Can't get irq %d\n", irq); ret = -EAGAIN; } restore_flags(flags); return ret; } static int hal2_alloc_resources(hal2_card_t *hal2, struct hpc3_regs *hpc3) { hal2_pbus_t *pbus; pbus = &hal2->dac.pbus; pbus->pbusnr = 0; pbus->pbus = &hpc3->pbdma[pbus->pbusnr]; /* The spec says that we should write 0x08248844 but that's WRONG. HAL2 * does 8 bit DMA, not 16 bit even if it generates 16 bit audio. */ hpc3->pbus_dmacfgs[pbus->pbusnr][0] = 0x08208844; /* Magic :-) */ pbus = &hal2->adc.pbus; pbus->pbusnr = 1; pbus->pbus = &hpc3->pbdma[pbus->pbusnr]; hpc3->pbus_dmacfgs[pbus->pbusnr][0] = 0x08208844; /* Magic :-) */ return hal2_request_irq(hal2, SGI_HPCDMA_IRQ); } static void hal2_init_codec(hal2_codec_t *codec) { init_waitqueue_head(&codec->dma_wait); init_MUTEX(&codec->sem); spin_lock_init(&codec->lock); } static void hal2_free_resources(hal2_card_t *hal2) { free_irq(SGI_HPCDMA_IRQ, hal2); } static int hal2_detect(hal2_card_t *hal2) { unsigned short board, major, minor; unsigned short rev; /* reset HAL2 */ hal2_isr_write(hal2, 0); /* release reset */ hal2_isr_write(hal2, H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N); hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE); if ((rev = hal2_rev_look(hal2)) & H2_REV_AUDIO_PRESENT) { DEBUG("HAL2: no device detected, rev: 0x%04hx\n", rev); return -ENODEV; } board = (rev & H2_REV_BOARD_M) >> 12; major = (rev & H2_REV_MAJOR_CHIP_M) >> 4; minor = (rev & H2_REV_MINOR_CHIP_M); printk("SGI HAL2 Processor revision %i.%i.%i detected\n", board, major, minor); if (board != 4 || major != 1 || minor != 0) printk( "Other revision than 4.1.0 detected. " "Your card is probably unsupported\n"); return 0; } static int hal2_init_card(hal2_card_t **phal2, struct hpc3_regs *hpc3, unsigned long hpc3_base) { int ret = 0; hal2_card_t *hal2; hal2 = (hal2_card_t *) kmalloc(sizeof(hal2_card_t), GFP_KERNEL); if (!hal2) return -ENOMEM; memset(hal2, 0, sizeof(hal2_card_t)); hal2->ctl_regs = (hal2_ctl_regs_t *) KSEG1ADDR(hpc3_base + H2_CTL_PIO); hal2->aes_regs = (hal2_aes_regs_t *) KSEG1ADDR(hpc3_base + H2_AES_PIO); hal2->vol_regs = (hal2_vol_regs_t *) KSEG1ADDR(hpc3_base + H2_VOL_PIO); hal2->syn_regs = (hal2_syn_regs_t *) KSEG1ADDR(hpc3_base + H2_SYN_PIO); if (hal2_detect(hal2) < 0) { printk("HAL2 audio processor not found\n"); ret = -ENODEV; goto fail1; } hal2_init_codec(&hal2->dac); hal2_init_codec(&hal2->adc); ret = hal2_alloc_resources(hal2, hpc3); if (ret) goto fail1; hal2_init_mixer(hal2); hal2->dev_dsp = register_sound_dsp(&hal2_audio_fops, -1); if (hal2->dev_dsp < 0) { ret = hal2->dev_dsp; goto fail2; } hal2->dev_mixer = register_sound_mixer(&hal2_mixer_fops, -1); if (hal2->dev_mixer < 0) { ret = hal2->dev_mixer; goto fail3; } *phal2 = hal2; return 0; fail3: unregister_sound_dsp(hal2->dev_dsp); fail2: hal2_free_resources(hal2); fail1: kfree(hal2); return ret; } /* * We are assuming only one HAL2 card. If you ever meet machine with more than * one, tell immediately about it to someone. Preferably to me. --ladis */ static int __init init_hal2(void) { int i; for (i = 0; i < MAXCARDS; i++) hal2_card[i] = NULL; return hal2_init_card(&hal2_card[0], hpc3c0, HPC3_CHIP0_PBASE); } static void __exit exit_hal2(void) { int i; for (i = 0; i < MAXCARDS; i++) if (hal2_card[i]) { hal2_free_resources(hal2_card[i]); unregister_sound_dsp(hal2_card[i]->dev_dsp); unregister_sound_mixer(hal2_card[i]->dev_mixer); kfree(hal2_card[i]); } } module_init(init_hal2); module_exit(exit_hal2); MODULE_DESCRIPTION("OSS compatible driver for SGI HAL2 audio"); MODULE_AUTHOR("Ladislav Michl"); MODULE_LICENSE("GPL");