/* * sd.c Copyright (C) 1992 Drew Eckhardt * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale * * Linux scsi disk driver * Initial versions: Drew Eckhardt * Subsequent revisions: Eric Youngdale * * * * Modified by Eric Youngdale ericy@andante.org to * add scatter-gather, multiple outstanding request, and other * enhancements. * * Modified by Eric Youngdale eric@andante.org to support loadable * low-level scsi drivers. * * Modified by Jirka Hanika geo@ff.cuni.cz to support more * scsi disks using eight major numbers. * * Modified by Richard Gooch rgooch@atnf.csiro.au to support devfs. * * Modified by Torben Mathiasen tmm@image.dk * Resource allocation fixes in sd_init and cleanups. * * Modified by Alex Davis * Fix problem where partition info not being read in sd_open. * * Modified by Alex Davis * Fix problem where removable media could be ejected after sd_open. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAJOR_NR SCSI_DISK0_MAJOR #include #include #include "scsi.h" #include "hosts.h" #include "sd.h" #include #include "constants.h" #include /* must follow "hosts.h" */ #include /* * static const char RCSid[] = "$Header:"; */ #define SD_MAJOR(i) (!(i) ? SCSI_DISK0_MAJOR : SCSI_DISK1_MAJOR-1+(i)) #define SCSI_DISKS_PER_MAJOR 16 #define SD_MAJOR_NUMBER(i) SD_MAJOR((i) >> 8) #define SD_MINOR_NUMBER(i) ((i) & 255) #define MKDEV_SD_PARTITION(i) MKDEV(SD_MAJOR_NUMBER(i), (i) & 255) #define MKDEV_SD(index) MKDEV_SD_PARTITION((index) << 4) #define N_USED_SCSI_DISKS (sd_template.dev_max + SCSI_DISKS_PER_MAJOR - 1) #define N_USED_SD_MAJORS (N_USED_SCSI_DISKS / SCSI_DISKS_PER_MAJOR) #define MAX_RETRIES 5 /* * Time out in seconds for disks and Magneto-opticals (which are slower). */ #define SD_TIMEOUT (30 * HZ) #define SD_MOD_TIMEOUT (75 * HZ) struct hd_struct *sd; static Scsi_Disk *rscsi_disks; static int *sd_sizes; static int *sd_blocksizes; static int *sd_hardsizes; /* Hardware sector size */ static int *sd_max_sectors; static int check_scsidisk_media_change(kdev_t); static int fop_revalidate_scsidisk(kdev_t); static int sd_init_onedisk(int); static int sd_init(void); static void sd_finish(void); static int sd_attach(Scsi_Device *); static int sd_detect(Scsi_Device *); static void sd_detach(Scsi_Device *); static int sd_init_command(Scsi_Cmnd *); static struct Scsi_Device_Template sd_template = { name:"disk", tag:"sd", scsi_type:TYPE_DISK, major:SCSI_DISK0_MAJOR, /* * Secondary range of majors that this driver handles. */ min_major:SCSI_DISK1_MAJOR, max_major:SCSI_DISK7_MAJOR, blk:1, detect:sd_detect, init:sd_init, finish:sd_finish, attach:sd_attach, detach:sd_detach, init_command:sd_init_command, }; static void rw_intr(Scsi_Cmnd * SCpnt); #if defined(CONFIG_PPC) /* * Moved from arch/ppc/pmac_setup.c. This is where it really belongs. */ kdev_t __init sd_find_target(void *host, int tgt) { Scsi_Disk *dp; int i; for (dp = rscsi_disks, i = 0; i < sd_template.dev_max; ++i, ++dp) if (dp->device != NULL && dp->device->host == host && dp->device->id == tgt) return MKDEV_SD(i); return 0; } #endif static int sd_ioctl(struct inode * inode, struct file * file, unsigned int cmd, unsigned long arg) { kdev_t dev = inode->i_rdev; struct Scsi_Host * host; Scsi_Device * SDev; int diskinfo[4]; SDev = rscsi_disks[DEVICE_NR(dev)].device; if (!SDev) return -ENODEV; /* * If we are in the middle of error recovery, don't let anyone * else try and use this device. Also, if error recovery fails, it * may try and take the device offline, in which case all further * access to the device is prohibited. */ if( !scsi_block_when_processing_errors(SDev) ) { return -ENODEV; } switch (cmd) { case HDIO_GETGEO: /* Return BIOS disk parameters */ { struct hd_geometry *loc = (struct hd_geometry *) arg; if(!loc) return -EINVAL; host = rscsi_disks[DEVICE_NR(dev)].device->host; /* default to most commonly used values */ diskinfo[0] = 0x40; diskinfo[1] = 0x20; diskinfo[2] = rscsi_disks[DEVICE_NR(dev)].capacity >> 11; /* override with calculated, extended default, or driver values */ if(host->hostt->bios_param != NULL) host->hostt->bios_param(&rscsi_disks[DEVICE_NR(dev)], dev, &diskinfo[0]); else scsicam_bios_param(&rscsi_disks[DEVICE_NR(dev)], dev, &diskinfo[0]); if (put_user(diskinfo[0], &loc->heads) || put_user(diskinfo[1], &loc->sectors) || put_user(diskinfo[2], &loc->cylinders) || put_user(sd[SD_PARTITION(inode->i_rdev)].start_sect, &loc->start)) return -EFAULT; return 0; } case HDIO_GETGEO_BIG: { struct hd_big_geometry *loc = (struct hd_big_geometry *) arg; if(!loc) return -EINVAL; host = rscsi_disks[DEVICE_NR(dev)].device->host; /* default to most commonly used values */ diskinfo[0] = 0x40; diskinfo[1] = 0x20; diskinfo[2] = rscsi_disks[DEVICE_NR(dev)].capacity >> 11; /* override with calculated, extended default, or driver values */ if(host->hostt->bios_param != NULL) host->hostt->bios_param(&rscsi_disks[DEVICE_NR(dev)], dev, &diskinfo[0]); else scsicam_bios_param(&rscsi_disks[DEVICE_NR(dev)], dev, &diskinfo[0]); if (put_user(diskinfo[0], &loc->heads) || put_user(diskinfo[1], &loc->sectors) || put_user(diskinfo[2], (unsigned int *) &loc->cylinders) || put_user(sd[SD_PARTITION(inode->i_rdev)].start_sect, &loc->start)) return -EFAULT; return 0; } case BLKGETSIZE: case BLKGETSIZE64: case BLKROSET: case BLKROGET: case BLKRASET: case BLKRAGET: case BLKFLSBUF: case BLKSSZGET: case BLKPG: case BLKELVGET: case BLKELVSET: case BLKBSZGET: case BLKBSZSET: return blk_ioctl(inode->i_rdev, cmd, arg); case BLKRRPART: /* Re-read partition tables */ if (!capable(CAP_SYS_ADMIN)) return -EACCES; return revalidate_scsidisk(dev, 1); default: return scsi_ioctl(rscsi_disks[DEVICE_NR(dev)].device , cmd, (void *) arg); } } static void sd_devname(unsigned int disknum, char *buffer) { if (disknum < 26) sprintf(buffer, "sd%c", 'a' + disknum); else { unsigned int min1; unsigned int min2; /* * For larger numbers of disks, we need to go to a new * naming scheme. */ min1 = disknum / 26; min2 = disknum % 26; sprintf(buffer, "sd%c%c", 'a' + min1 - 1, 'a' + min2); } } static request_queue_t *sd_find_queue(kdev_t dev) { Scsi_Disk *dpnt; int target; target = DEVICE_NR(dev); dpnt = &rscsi_disks[target]; if (!dpnt->device) return NULL; /* No such device */ return &dpnt->device->request_queue; } static int sd_init_command(Scsi_Cmnd * SCpnt) { int dev, devm, block, this_count; Scsi_Disk *dpnt; #if CONFIG_SCSI_LOGGING char nbuff[6]; #endif devm = SD_PARTITION(SCpnt->request.rq_dev); dev = DEVICE_NR(SCpnt->request.rq_dev); block = SCpnt->request.sector; this_count = SCpnt->request_bufflen >> 9; SCSI_LOG_HLQUEUE(1, printk("Doing sd request, dev = %d, block = %d\n", devm, block)); dpnt = &rscsi_disks[dev]; if (devm >= (sd_template.dev_max << 4) || !dpnt->device || !dpnt->device->online || block + SCpnt->request.nr_sectors > sd[devm].nr_sects) { SCSI_LOG_HLQUEUE(2, printk("Finishing %ld sectors\n", SCpnt->request.nr_sectors)); SCSI_LOG_HLQUEUE(2, printk("Retry with 0x%p\n", SCpnt)); return 0; } block += sd[devm].start_sect; if (dpnt->device->changed) { /* * quietly refuse to do anything to a changed disc until the changed * bit has been reset */ /* printk("SCSI disk has been changed. Prohibiting further I/O.\n"); */ return 0; } SCSI_LOG_HLQUEUE(2, sd_devname(devm, nbuff)); SCSI_LOG_HLQUEUE(2, printk("%s : real dev = /dev/%d, block = %d\n", nbuff, dev, block)); /* * If we have a 1K hardware sectorsize, prevent access to single * 512 byte sectors. In theory we could handle this - in fact * the scsi cdrom driver must be able to handle this because * we typically use 1K blocksizes, and cdroms typically have * 2K hardware sectorsizes. Of course, things are simpler * with the cdrom, since it is read-only. For performance * reasons, the filesystems should be able to handle this * and not force the scsi disk driver to use bounce buffers * for this. */ if (dpnt->device->sector_size == 1024) { if ((block & 1) || (SCpnt->request.nr_sectors & 1)) { printk("sd.c:Bad block number requested"); return 0; } else { block = block >> 1; this_count = this_count >> 1; } } if (dpnt->device->sector_size == 2048) { if ((block & 3) || (SCpnt->request.nr_sectors & 3)) { printk("sd.c:Bad block number requested"); return 0; } else { block = block >> 2; this_count = this_count >> 2; } } if (dpnt->device->sector_size == 4096) { if ((block & 7) || (SCpnt->request.nr_sectors & 7)) { printk("sd.c:Bad block number requested"); return 0; } else { block = block >> 3; this_count = this_count >> 3; } } switch (SCpnt->request.cmd) { case WRITE: if (!dpnt->device->writeable) { return 0; } SCpnt->cmnd[0] = WRITE_6; SCpnt->sc_data_direction = SCSI_DATA_WRITE; break; case READ: SCpnt->cmnd[0] = READ_6; SCpnt->sc_data_direction = SCSI_DATA_READ; break; default: panic("Unknown sd command %d\n", SCpnt->request.cmd); } SCSI_LOG_HLQUEUE(2, printk("%s : %s %d/%ld 512 byte blocks.\n", nbuff, (SCpnt->request.cmd == WRITE) ? "writing" : "reading", this_count, SCpnt->request.nr_sectors)); SCpnt->cmnd[1] = (SCpnt->device->scsi_level <= SCSI_2) ? ((SCpnt->lun << 5) & 0xe0) : 0; if (((this_count > 0xff) || (block > 0x1fffff)) || SCpnt->device->ten) { if (this_count > 0xffff) this_count = 0xffff; SCpnt->cmnd[0] += READ_10 - READ_6; SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; SCpnt->cmnd[5] = (unsigned char) block & 0xff; SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; } else { if (this_count > 0xff) this_count = 0xff; SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); SCpnt->cmnd[3] = (unsigned char) block & 0xff; SCpnt->cmnd[4] = (unsigned char) this_count; SCpnt->cmnd[5] = 0; } /* * We shouldn't disconnect in the middle of a sector, so with a dumb * host adapter, it's safe to assume that we can at least transfer * this many bytes between each connect / disconnect. */ SCpnt->transfersize = dpnt->device->sector_size; SCpnt->underflow = this_count << 9; SCpnt->allowed = MAX_RETRIES; SCpnt->timeout_per_command = (SCpnt->device->type == TYPE_DISK ? SD_TIMEOUT : SD_MOD_TIMEOUT); /* * This is the completion routine we use. This is matched in terms * of capability to this function. */ SCpnt->done = rw_intr; /* * This indicates that the command is ready from our end to be * queued. */ return 1; } static int sd_open(struct inode *inode, struct file *filp) { int target, retval = -ENXIO; Scsi_Device * SDev; target = DEVICE_NR(inode->i_rdev); SCSI_LOG_HLQUEUE(1, printk("target=%d, max=%d\n", target, sd_template.dev_max)); if (target >= sd_template.dev_max || !rscsi_disks[target].device) return -ENXIO; /* No such device */ /* * If the device is in error recovery, wait until it is done. * If the device is offline, then disallow any access to it. */ if (!scsi_block_when_processing_errors(rscsi_disks[target].device)) { return -ENXIO; } /* * Make sure that only one process can do a check_change_disk at one time. * This is also used to lock out further access when the partition table * is being re-read. */ while (rscsi_disks[target].device->busy) { barrier(); cpu_relax(); } /* * The following code can sleep. * Module unloading must be prevented */ SDev = rscsi_disks[target].device; if (SDev->host->hostt->module) __MOD_INC_USE_COUNT(SDev->host->hostt->module); if (sd_template.module) __MOD_INC_USE_COUNT(sd_template.module); SDev->access_count++; if (rscsi_disks[target].device->removable) { SDev->allow_revalidate = 1; check_disk_change(inode->i_rdev); SDev->allow_revalidate = 0; /* * If the drive is empty, just let the open fail. */ if ((!rscsi_disks[target].ready) && !(filp->f_flags & O_NDELAY)) { retval = -ENOMEDIUM; goto error_out; } /* * Similarly, if the device has the write protect tab set, * have the open fail if the user expects to be able to write * to the thing. */ if ((rscsi_disks[target].write_prot) && (filp->f_mode & 2)) { retval = -EROFS; goto error_out; } } /* * It is possible that the disk changing stuff resulted in the device * being taken offline. If this is the case, report this to the user, * and don't pretend that * the open actually succeeded. */ if (!SDev->online) { goto error_out; } /* * See if we are requesting a non-existent partition. Do this * after checking for disk change. */ if (sd_sizes[SD_PARTITION(inode->i_rdev)] == 0) { goto error_out; } if (SDev->removable) if (SDev->access_count==1) if (scsi_block_when_processing_errors(SDev)) scsi_ioctl(SDev, SCSI_IOCTL_DOORLOCK, NULL); return 0; error_out: SDev->access_count--; if (SDev->host->hostt->module) __MOD_DEC_USE_COUNT(SDev->host->hostt->module); if (sd_template.module) __MOD_DEC_USE_COUNT(sd_template.module); return retval; } static int sd_release(struct inode *inode, struct file *file) { int target; Scsi_Device * SDev; target = DEVICE_NR(inode->i_rdev); SDev = rscsi_disks[target].device; if (!SDev) return -ENODEV; SDev->access_count--; if (SDev->removable) { if (!SDev->access_count) if (scsi_block_when_processing_errors(SDev)) scsi_ioctl(SDev, SCSI_IOCTL_DOORUNLOCK, NULL); } if (SDev->host->hostt->module) __MOD_DEC_USE_COUNT(SDev->host->hostt->module); if (sd_template.module) __MOD_DEC_USE_COUNT(sd_template.module); return 0; } static struct block_device_operations sd_fops = { owner: THIS_MODULE, open: sd_open, release: sd_release, ioctl: sd_ioctl, check_media_change: check_scsidisk_media_change, revalidate: fop_revalidate_scsidisk }; /* * If we need more than one SCSI disk major (i.e. more than * 16 SCSI disks), we'll have to kmalloc() more gendisks later. */ static struct gendisk sd_gendisk = { major: SCSI_DISK0_MAJOR, major_name: "sd", minor_shift: 4, max_p: 1 << 4, fops: &sd_fops, }; static struct gendisk *sd_gendisks = &sd_gendisk; #define SD_GENDISK(i) sd_gendisks[(i) / SCSI_DISKS_PER_MAJOR] /* * rw_intr is the interrupt routine for the device driver. * It will be notified on the end of a SCSI read / write, and * will take one of several actions based on success or failure. */ static void rw_intr(Scsi_Cmnd * SCpnt) { int result = SCpnt->result; #if CONFIG_SCSI_LOGGING char nbuff[6]; #endif int this_count = SCpnt->bufflen >> 9; int good_sectors = (result == 0 ? this_count : 0); int block_sectors = 1; SCSI_LOG_HLCOMPLETE(1, sd_devname(DEVICE_NR(SCpnt->request.rq_dev), nbuff)); SCSI_LOG_HLCOMPLETE(1, printk("%s : rw_intr(%d, %x [%x %x])\n", nbuff, SCpnt->host->host_no, result, SCpnt->sense_buffer[0], SCpnt->sense_buffer[2])); /* Handle MEDIUM ERRORs that indicate partial success. Since this is a relatively rare error condition, no care is taken to avoid unnecessary additional work such as memcpy's that could be avoided. */ /* An error occurred */ if (driver_byte(result) != 0) { /* Sense data is valid */ if (SCpnt->sense_buffer[0] == 0xF0 && SCpnt->sense_buffer[2] == MEDIUM_ERROR) { long error_sector = (SCpnt->sense_buffer[3] << 24) | (SCpnt->sense_buffer[4] << 16) | (SCpnt->sense_buffer[5] << 8) | SCpnt->sense_buffer[6]; if (SCpnt->request.bh != NULL) block_sectors = SCpnt->request.bh->b_size >> 9; switch (SCpnt->device->sector_size) { case 1024: error_sector <<= 1; if (block_sectors < 2) block_sectors = 2; break; case 2048: error_sector <<= 2; if (block_sectors < 4) block_sectors = 4; break; case 4096: error_sector <<=3; if (block_sectors < 8) block_sectors = 8; break; case 256: error_sector >>= 1; break; default: break; } error_sector -= sd[SD_PARTITION(SCpnt->request.rq_dev)].start_sect; error_sector &= ~(block_sectors - 1); good_sectors = error_sector - SCpnt->request.sector; if (good_sectors < 0 || good_sectors >= this_count) good_sectors = 0; } if (SCpnt->sense_buffer[2] == ILLEGAL_REQUEST) { if (SCpnt->device->ten == 1) { if (SCpnt->cmnd[0] == READ_10 || SCpnt->cmnd[0] == WRITE_10) SCpnt->device->ten = 0; } } } /* * This calls the generic completion function, now that we know * how many actual sectors finished, and how many sectors we need * to say have failed. */ scsi_io_completion(SCpnt, good_sectors, block_sectors); } /* * requeue_sd_request() is the request handler function for the sd driver. * Its function in life is to take block device requests, and translate * them to SCSI commands. */ static int check_scsidisk_media_change(kdev_t full_dev) { int retval; int target; int flag = 0; Scsi_Device * SDev; target = DEVICE_NR(full_dev); SDev = rscsi_disks[target].device; if (target >= sd_template.dev_max || !SDev) { printk("SCSI disk request error: invalid device.\n"); return 0; } if (!SDev->removable) return 0; /* * If the device is offline, don't send any commands - just pretend as * if the command failed. If the device ever comes back online, we * can deal with it then. It is only because of unrecoverable errors * that we would ever take a device offline in the first place. */ if (SDev->online == FALSE) { rscsi_disks[target].ready = 0; SDev->changed = 1; return 1; /* This will force a flush, if called from * check_disk_change */ } /* Using Start/Stop enables differentiation between drive with * no cartridge loaded - NOT READY, drive with changed cartridge - * UNIT ATTENTION, or with same cartridge - GOOD STATUS. * This also handles drives that auto spin down. eg iomega jaz 1GB * as this will spin up the drive. */ retval = -ENODEV; if (scsi_block_when_processing_errors(SDev)) retval = scsi_ioctl(SDev, SCSI_IOCTL_START_UNIT, NULL); if (retval) { /* Unable to test, unit probably not ready. * This usually means there is no disc in the * drive. Mark as changed, and we will figure * it out later once the drive is available * again. */ rscsi_disks[target].ready = 0; SDev->changed = 1; return 1; /* This will force a flush, if called from * check_disk_change */ } /* * for removable scsi disk ( FLOPTICAL ) we have to recognise the * presence of disk in the drive. This is kept in the Scsi_Disk * struct and tested at open ! Daniel Roche ( dan@lectra.fr ) */ rscsi_disks[target].ready = 1; /* FLOPTICAL */ retval = SDev->changed; if (!flag) SDev->changed = 0; return retval; } static int sd_init_onedisk(int i) { unsigned char cmd[10]; char nbuff[6]; unsigned char *buffer; unsigned long spintime_value = 0; int the_result, retries, spintime; int sector_size; Scsi_Request *SRpnt; /* * Get the name of the disk, in case we need to log it somewhere. */ sd_devname(i, nbuff); /* * If the device is offline, don't try and read capacity or any * of the other niceties. */ if (rscsi_disks[i].device->online == FALSE) return i; /* * We need to retry the READ_CAPACITY because a UNIT_ATTENTION is * considered a fatal error, and many devices report such an error * just after a scsi bus reset. */ SRpnt = scsi_allocate_request(rscsi_disks[i].device); if (!SRpnt) { printk(KERN_WARNING "(sd_init_onedisk:) Request allocation failure.\n"); return i; } buffer = (unsigned char *) scsi_malloc(512); if (!buffer) { printk(KERN_WARNING "(sd_init_onedisk:) Memory allocation failure.\n"); scsi_release_request(SRpnt); return i; } spintime = 0; /* Spin up drives, as required. Only do this at boot time */ /* Spinup needs to be done for module loads too. */ do { retries = 0; while (retries < 3) { cmd[0] = TEST_UNIT_READY; cmd[1] = (rscsi_disks[i].device->scsi_level <= SCSI_2) ? ((rscsi_disks[i].device->lun << 5) & 0xe0) : 0; memset((void *) &cmd[2], 0, 8); SRpnt->sr_cmd_len = 0; SRpnt->sr_sense_buffer[0] = 0; SRpnt->sr_sense_buffer[2] = 0; SRpnt->sr_data_direction = SCSI_DATA_NONE; scsi_wait_req (SRpnt, (void *) cmd, (void *) buffer, 0/*512*/, SD_TIMEOUT, MAX_RETRIES); the_result = SRpnt->sr_result; retries++; if (the_result == 0 || SRpnt->sr_sense_buffer[2] != UNIT_ATTENTION) break; } /* * If the drive has indicated to us that it doesn't have * any media in it, don't bother with any of the rest of * this crap. */ if( the_result != 0 && ((driver_byte(the_result) & DRIVER_SENSE) != 0) && SRpnt->sr_sense_buffer[2] == UNIT_ATTENTION && SRpnt->sr_sense_buffer[12] == 0x3A ) { rscsi_disks[i].capacity = 0x1fffff; sector_size = 512; rscsi_disks[i].device->changed = 1; rscsi_disks[i].ready = 0; break; } /* Look for non-removable devices that return NOT_READY. * Issue command to spin up drive for these cases. */ if (the_result && !rscsi_disks[i].device->removable && SRpnt->sr_sense_buffer[2] == NOT_READY) { unsigned long time1; if (!spintime) { printk("%s: Spinning up disk...", nbuff); cmd[0] = START_STOP; cmd[1] = (rscsi_disks[i].device->scsi_level <= SCSI_2) ? ((rscsi_disks[i].device->lun << 5) & 0xe0) : 0; cmd[1] |= 1; /* Return immediately */ memset((void *) &cmd[2], 0, 8); cmd[4] = 1; /* Start spin cycle */ SRpnt->sr_cmd_len = 0; SRpnt->sr_sense_buffer[0] = 0; SRpnt->sr_sense_buffer[2] = 0; SRpnt->sr_data_direction = SCSI_DATA_READ; scsi_wait_req(SRpnt, (void *) cmd, (void *) buffer, 0/*512*/, SD_TIMEOUT, MAX_RETRIES); spintime_value = jiffies; } spintime = 1; time1 = HZ; /* Wait 1 second for next try */ do { current->state = TASK_UNINTERRUPTIBLE; time1 = schedule_timeout(time1); } while(time1); printk("."); } } while (the_result && spintime && time_after(spintime_value + 100 * HZ, jiffies)); if (spintime) { if (the_result) printk("not responding...\n"); else printk("ready\n"); } retries = 3; do { cmd[0] = READ_CAPACITY; cmd[1] = (rscsi_disks[i].device->scsi_level <= SCSI_2) ? ((rscsi_disks[i].device->lun << 5) & 0xe0) : 0; memset((void *) &cmd[2], 0, 8); memset((void *) buffer, 0, 8); SRpnt->sr_cmd_len = 0; SRpnt->sr_sense_buffer[0] = 0; SRpnt->sr_sense_buffer[2] = 0; SRpnt->sr_data_direction = SCSI_DATA_READ; scsi_wait_req(SRpnt, (void *) cmd, (void *) buffer, 8, SD_TIMEOUT, MAX_RETRIES); the_result = SRpnt->sr_result; retries--; } while (the_result && retries); /* * The SCSI standard says: * "READ CAPACITY is necessary for self configuring software" * While not mandatory, support of READ CAPACITY is strongly * encouraged. * We used to die if we couldn't successfully do a READ CAPACITY. * But, now we go on about our way. The side effects of this are * * 1. We can't know block size with certainty. I have said * "512 bytes is it" as this is most common. * * 2. Recovery from when someone attempts to read past the * end of the raw device will be slower. */ if (the_result) { printk("%s : READ CAPACITY failed.\n" "%s : status = %x, message = %02x, host = %d, driver = %02x \n", nbuff, nbuff, status_byte(the_result), msg_byte(the_result), host_byte(the_result), driver_byte(the_result) ); if (driver_byte(the_result) & DRIVER_SENSE) print_req_sense("sd", SRpnt); else printk("%s : sense not available. \n", nbuff); printk("%s : block size assumed to be 512 bytes, disk size 1GB. \n", nbuff); rscsi_disks[i].capacity = 0x1fffff; sector_size = 512; /* Set dirty bit for removable devices if not ready - * sometimes drives will not report this properly. */ if (rscsi_disks[i].device->removable && SRpnt->sr_sense_buffer[2] == NOT_READY) rscsi_disks[i].device->changed = 1; } else { /* * FLOPTICAL, if read_capa is ok, drive is assumed to be ready */ rscsi_disks[i].ready = 1; rscsi_disks[i].capacity = 1 + ((buffer[0] << 24) | (buffer[1] << 16) | (buffer[2] << 8) | buffer[3]); sector_size = (buffer[4] << 24) | (buffer[5] << 16) | (buffer[6] << 8) | buffer[7]; if (sector_size == 0) { sector_size = 512; printk("%s : sector size 0 reported, assuming 512.\n", nbuff); } if (sector_size != 512 && sector_size != 1024 && sector_size != 2048 && sector_size != 4096 && sector_size != 256) { printk("%s : unsupported sector size %d.\n", nbuff, sector_size); /* * The user might want to re-format the drive with * a supported sectorsize. Once this happens, it * would be relatively trivial to set the thing up. * For this reason, we leave the thing in the table. */ rscsi_disks[i].capacity = 0; } if (sector_size > 1024) { int m; /* * We must fix the sd_blocksizes and sd_hardsizes * to allow us to read the partition tables. * The disk reading code does not allow for reading * of partial sectors. */ for (m = i << 4; m < ((i + 1) << 4); m++) { sd_blocksizes[m] = sector_size; } } { /* * The msdos fs needs to know the hardware sector size * So I have created this table. See ll_rw_blk.c * Jacques Gelinas (Jacques@solucorp.qc.ca) */ int m; int hard_sector = sector_size; int sz = rscsi_disks[i].capacity * (hard_sector/256); /* There are 16 minors allocated for each major device */ for (m = i << 4; m < ((i + 1) << 4); m++) { sd_hardsizes[m] = hard_sector; } printk("SCSI device %s: " "%d %d-byte hdwr sectors (%d MB)\n", nbuff, rscsi_disks[i].capacity, hard_sector, (sz/2 - sz/1250 + 974)/1950); } /* Rescale capacity to 512-byte units */ if (sector_size == 4096) rscsi_disks[i].capacity <<= 3; if (sector_size == 2048) rscsi_disks[i].capacity <<= 2; if (sector_size == 1024) rscsi_disks[i].capacity <<= 1; if (sector_size == 256) rscsi_disks[i].capacity >>= 1; } /* * Unless otherwise specified, this is not write protected. */ rscsi_disks[i].write_prot = 0; if (rscsi_disks[i].device->removable && rscsi_disks[i].ready) { /* FLOPTICAL */ /* * For removable scsi disk ( FLOPTICAL ) we have to recognise * the Write Protect Flag. This flag is kept in the Scsi_Disk * struct and tested at open ! * Daniel Roche ( dan@lectra.fr ) * * Changed to get all pages (0x3f) rather than page 1 to * get around devices which do not have a page 1. Since * we're only interested in the header anyway, this should * be fine. * -- Matthew Dharm (mdharm-scsi@one-eyed-alien.net) */ memset((void *) &cmd[0], 0, 8); cmd[0] = MODE_SENSE; cmd[1] = (rscsi_disks[i].device->scsi_level <= SCSI_2) ? ((rscsi_disks[i].device->lun << 5) & 0xe0) : 0; cmd[2] = 0x3f; /* Get all pages */ cmd[4] = 255; /* Ask for 255 bytes, even tho we want just the first 8 */ SRpnt->sr_cmd_len = 0; SRpnt->sr_sense_buffer[0] = 0; SRpnt->sr_sense_buffer[2] = 0; /* same code as READCAPA !! */ SRpnt->sr_data_direction = SCSI_DATA_READ; scsi_wait_req(SRpnt, (void *) cmd, (void *) buffer, 512, SD_TIMEOUT, MAX_RETRIES); the_result = SRpnt->sr_result; if (the_result) { printk("%s: test WP failed, assume Write Enabled\n", nbuff); } else { rscsi_disks[i].write_prot = ((buffer[2] & 0x80) != 0); printk("%s: Write Protect is %s\n", nbuff, rscsi_disks[i].write_prot ? "on" : "off"); } } /* check for write protect */ SRpnt->sr_device->ten = 1; SRpnt->sr_device->remap = 1; SRpnt->sr_device->sector_size = sector_size; /* Wake up a process waiting for device */ scsi_release_request(SRpnt); SRpnt = NULL; scsi_free(buffer, 512); return i; } /* * The sd_init() function looks at all SCSI drives present, determines * their size, and reads partition table entries for them. */ static int sd_registered; static int sd_init() { int i; if (sd_template.dev_noticed == 0) return 0; if (!rscsi_disks) sd_template.dev_max = sd_template.dev_noticed + SD_EXTRA_DEVS; if (sd_template.dev_max > N_SD_MAJORS * SCSI_DISKS_PER_MAJOR) sd_template.dev_max = N_SD_MAJORS * SCSI_DISKS_PER_MAJOR; if (!sd_registered) { for (i = 0; i < N_USED_SD_MAJORS; i++) { if (devfs_register_blkdev(SD_MAJOR(i), "sd", &sd_fops)) { printk("Unable to get major %d for SCSI disk\n", SD_MAJOR(i)); sd_template.dev_noticed = 0; return 1; } } sd_registered++; } /* We do not support attaching loadable devices yet. */ if (rscsi_disks) return 0; rscsi_disks = kmalloc(sd_template.dev_max * sizeof(Scsi_Disk), GFP_ATOMIC); if (!rscsi_disks) goto cleanup_devfs; memset(rscsi_disks, 0, sd_template.dev_max * sizeof(Scsi_Disk)); /* for every (necessary) major: */ sd_sizes = kmalloc((sd_template.dev_max << 4) * sizeof(int), GFP_ATOMIC); if (!sd_sizes) goto cleanup_disks; memset(sd_sizes, 0, (sd_template.dev_max << 4) * sizeof(int)); sd_blocksizes = kmalloc((sd_template.dev_max << 4) * sizeof(int), GFP_ATOMIC); if (!sd_blocksizes) goto cleanup_sizes; sd_hardsizes = kmalloc((sd_template.dev_max << 4) * sizeof(int), GFP_ATOMIC); if (!sd_hardsizes) goto cleanup_blocksizes; sd_max_sectors = kmalloc((sd_template.dev_max << 4) * sizeof(int), GFP_ATOMIC); if (!sd_max_sectors) goto cleanup_max_sectors; for (i = 0; i < sd_template.dev_max << 4; i++) { sd_blocksizes[i] = 1024; sd_hardsizes[i] = 512; /* * Allow lowlevel device drivers to generate 512k large scsi * commands if they know what they're doing and they ask for it * explicitly via the SHpnt->max_sectors API. */ sd_max_sectors[i] = MAX_SEGMENTS*8; } for (i = 0; i < N_USED_SD_MAJORS; i++) { blksize_size[SD_MAJOR(i)] = sd_blocksizes + i * (SCSI_DISKS_PER_MAJOR << 4); hardsect_size[SD_MAJOR(i)] = sd_hardsizes + i * (SCSI_DISKS_PER_MAJOR << 4); max_sectors[SD_MAJOR(i)] = sd_max_sectors + i * (SCSI_DISKS_PER_MAJOR << 4); } /* * FIXME: should unregister blksize_size, hardsect_size and max_sectors when * the module is unloaded. */ sd = kmalloc((sd_template.dev_max << 4) * sizeof(struct hd_struct), GFP_ATOMIC); if (!sd) goto cleanup_sd; memset(sd, 0, (sd_template.dev_max << 4) * sizeof(struct hd_struct)); if (N_USED_SD_MAJORS > 1) sd_gendisks = kmalloc(N_USED_SD_MAJORS * sizeof(struct gendisk), GFP_ATOMIC); if (!sd_gendisks) goto cleanup_sd_gendisks; for (i = 0; i < N_USED_SD_MAJORS; i++) { sd_gendisks[i] = sd_gendisk; sd_gendisks[i].de_arr = kmalloc (SCSI_DISKS_PER_MAJOR * sizeof *sd_gendisks[i].de_arr, GFP_ATOMIC); if (!sd_gendisks[i].de_arr) goto cleanup_gendisks_de_arr; memset (sd_gendisks[i].de_arr, 0, SCSI_DISKS_PER_MAJOR * sizeof *sd_gendisks[i].de_arr); sd_gendisks[i].flags = kmalloc (SCSI_DISKS_PER_MAJOR * sizeof *sd_gendisks[i].flags, GFP_ATOMIC); if (!sd_gendisks[i].flags) goto cleanup_gendisks_flags; memset (sd_gendisks[i].flags, 0, SCSI_DISKS_PER_MAJOR * sizeof *sd_gendisks[i].flags); sd_gendisks[i].major = SD_MAJOR(i); sd_gendisks[i].major_name = "sd"; sd_gendisks[i].minor_shift = 4; sd_gendisks[i].max_p = 1 << 4; sd_gendisks[i].part = sd + (i * SCSI_DISKS_PER_MAJOR << 4); sd_gendisks[i].sizes = sd_sizes + (i * SCSI_DISKS_PER_MAJOR << 4); sd_gendisks[i].nr_real = 0; sd_gendisks[i].real_devices = (void *) (rscsi_disks + i * SCSI_DISKS_PER_MAJOR); } return 0; cleanup_gendisks_flags: kfree(sd_gendisks[i].de_arr); cleanup_gendisks_de_arr: while (--i >= 0 ) { kfree(sd_gendisks[i].de_arr); kfree(sd_gendisks[i].flags); } if (sd_gendisks != &sd_gendisk) kfree(sd_gendisks); cleanup_sd_gendisks: kfree(sd); cleanup_sd: kfree(sd_max_sectors); cleanup_max_sectors: kfree(sd_hardsizes); cleanup_blocksizes: kfree(sd_blocksizes); cleanup_sizes: kfree(sd_sizes); cleanup_disks: kfree(rscsi_disks); rscsi_disks = NULL; cleanup_devfs: for (i = 0; i < N_USED_SD_MAJORS; i++) { devfs_unregister_blkdev(SD_MAJOR(i), "sd"); } sd_registered--; sd_template.dev_noticed = 0; return 1; } static void sd_finish() { int i; for (i = 0; i < N_USED_SD_MAJORS; i++) { blk_dev[SD_MAJOR(i)].queue = sd_find_queue; add_gendisk(&sd_gendisks[i]); } for (i = 0; i < sd_template.dev_max; ++i) if (!rscsi_disks[i].capacity && rscsi_disks[i].device) { sd_init_onedisk(i); if (!rscsi_disks[i].has_part_table) { sd_sizes[i << 4] = rscsi_disks[i].capacity; register_disk(&SD_GENDISK(i), MKDEV_SD(i), 1<<4, &sd_fops, rscsi_disks[i].capacity); rscsi_disks[i].has_part_table = 1; } } /* If our host adapter is capable of scatter-gather, then we increase * the read-ahead to 60 blocks (120 sectors). If not, we use * a two block (4 sector) read ahead. We can only respect this with the * granularity of every 16 disks (one device major). */ for (i = 0; i < N_USED_SD_MAJORS; i++) { read_ahead[SD_MAJOR(i)] = (rscsi_disks[i * SCSI_DISKS_PER_MAJOR].device && rscsi_disks[i * SCSI_DISKS_PER_MAJOR].device->host->sg_tablesize) ? 120 /* 120 sector read-ahead */ : 4; /* 4 sector read-ahead */ } return; } static int sd_detect(Scsi_Device * SDp) { if (SDp->type != TYPE_DISK && SDp->type != TYPE_MOD) return 0; sd_template.dev_noticed++; return 1; } static int sd_attach(Scsi_Device * SDp) { unsigned int devnum; Scsi_Disk *dpnt; int i; char nbuff[6]; if (SDp->type != TYPE_DISK && SDp->type != TYPE_MOD) return 0; if (sd_template.nr_dev >= sd_template.dev_max || rscsi_disks == NULL) { SDp->attached--; return 1; } for (dpnt = rscsi_disks, i = 0; i < sd_template.dev_max; i++, dpnt++) if (!dpnt->device) break; if (i >= sd_template.dev_max) { printk(KERN_WARNING "scsi_devices corrupt (sd)," " nr_dev %d dev_max %d\n", sd_template.nr_dev, sd_template.dev_max); SDp->attached--; return 1; } rscsi_disks[i].device = SDp; rscsi_disks[i].has_part_table = 0; sd_template.nr_dev++; SD_GENDISK(i).nr_real++; devnum = i % SCSI_DISKS_PER_MAJOR; SD_GENDISK(i).de_arr[devnum] = SDp->de; if (SDp->removable) SD_GENDISK(i).flags[devnum] |= GENHD_FL_REMOVABLE; sd_devname(i, nbuff); printk("Attached scsi %sdisk %s at scsi%d, channel %d, id %d, lun %d\n", SDp->removable ? "removable " : "", nbuff, SDp->host->host_no, SDp->channel, SDp->id, SDp->lun); return 0; } #define DEVICE_BUSY rscsi_disks[target].device->busy #define ALLOW_REVALIDATE rscsi_disks[target].device->allow_revalidate #define USAGE rscsi_disks[target].device->access_count #define CAPACITY rscsi_disks[target].capacity #define MAYBE_REINIT sd_init_onedisk(target) /* This routine is called to flush all partitions and partition tables * for a changed scsi disk, and then re-read the new partition table. * If we are revalidating a disk because of a media change, then we * enter with usage == 0. If we are using an ioctl, we automatically have * usage == 1 (we need an open channel to use an ioctl :-), so this * is our limit. */ int revalidate_scsidisk(kdev_t dev, int maxusage) { int target; int max_p; int start; int i; target = DEVICE_NR(dev); if (DEVICE_BUSY || (ALLOW_REVALIDATE == 0 && USAGE > maxusage)) { printk("Device busy for revalidation (usage=%d)\n", USAGE); return -EBUSY; } DEVICE_BUSY = 1; max_p = sd_gendisks->max_p; start = target << sd_gendisks->minor_shift; for (i = max_p - 1; i >= 0; i--) { int index = start + i; invalidate_device(MKDEV_SD_PARTITION(index), 1); sd_gendisks->part[index].start_sect = 0; sd_gendisks->part[index].nr_sects = 0; /* * Reset the blocksize for everything so that we can read * the partition table. Technically we will determine the * correct block size when we revalidate, but we do this just * to make sure that everything remains consistent. */ sd_blocksizes[index] = 1024; if (rscsi_disks[target].device->sector_size == 2048) sd_blocksizes[index] = 2048; else sd_blocksizes[index] = 1024; } #ifdef MAYBE_REINIT MAYBE_REINIT; #endif grok_partitions(&SD_GENDISK(target), target % SCSI_DISKS_PER_MAJOR, 1<<4, CAPACITY); DEVICE_BUSY = 0; return 0; } static int fop_revalidate_scsidisk(kdev_t dev) { return revalidate_scsidisk(dev, 0); } static void sd_detach(Scsi_Device * SDp) { Scsi_Disk *dpnt; int i, j; int max_p; int start; if (rscsi_disks == NULL) return; for (dpnt = rscsi_disks, i = 0; i < sd_template.dev_max; i++, dpnt++) if (dpnt->device == SDp) { /* If we are disconnecting a disk driver, sync and invalidate * everything */ max_p = sd_gendisk.max_p; start = i << sd_gendisk.minor_shift; for (j = max_p - 1; j >= 0; j--) { int index = start + j; invalidate_device(MKDEV_SD_PARTITION(index), 1); sd_gendisks->part[index].start_sect = 0; sd_gendisks->part[index].nr_sects = 0; sd_sizes[index] = 0; } devfs_register_partitions (&SD_GENDISK (i), SD_MINOR_NUMBER (start), 1); /* unregister_disk() */ dpnt->has_part_table = 0; dpnt->device = NULL; dpnt->capacity = 0; SDp->attached--; sd_template.dev_noticed--; sd_template.nr_dev--; SD_GENDISK(i).nr_real--; return; } return; } static int __init init_sd(void) { sd_template.module = THIS_MODULE; return scsi_register_module(MODULE_SCSI_DEV, &sd_template); } static void __exit exit_sd(void) { int i; scsi_unregister_module(MODULE_SCSI_DEV, &sd_template); for (i = 0; i < N_USED_SD_MAJORS; i++) devfs_unregister_blkdev(SD_MAJOR(i), "sd"); sd_registered--; if (rscsi_disks != NULL) { kfree(rscsi_disks); kfree(sd_sizes); kfree(sd_blocksizes); kfree(sd_hardsizes); kfree((char *) sd); } for (i = 0; i < N_USED_SD_MAJORS; i++) { del_gendisk(&sd_gendisks[i]); blk_size[SD_MAJOR(i)] = NULL; hardsect_size[SD_MAJOR(i)] = NULL; read_ahead[SD_MAJOR(i)] = 0; } sd_template.dev_max = 0; if (sd_gendisks != &sd_gendisk) kfree(sd_gendisks); } module_init(init_sd); module_exit(exit_sd); MODULE_LICENSE("GPL");