/* * sbp2.c - SBP-2 protocol driver for IEEE-1394 * * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com) * jamesg@filanet.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * Brief Description: * * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394 * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level * driver. It also registers as a SCSI lower-level driver in order to accept * SCSI commands for transport using SBP-2. * * Driver Loading: * * Currently, the SBP-2 driver is supported only as a module. Because the * Linux SCSI stack is not Plug-N-Play aware, module load order is * important. Assuming the SCSI core drivers are either built into the * kernel or already loaded as modules, you should load the IEEE-1394 modules * in the following order: * * ieee1394 (e.g. insmod ieee1394) * ohci1394 (e.g. insmod ohci1394) * sbp2 (e.g. insmod sbp2) * * The SBP-2 driver will attempt to discover any attached SBP-2 devices when first * loaded, or after any IEEE-1394 bus reset (e.g. a hot-plug). It will then print * out a debug message indicating if it was able to discover a SBP-2 device. * * Currently, the SBP-2 driver will catch any attached SBP-2 devices during the * initial scsi bus scan (when the driver is first loaded). To add or remove * SBP-2 devices after this initial scan (i.e. if you plug-in or un-plug a * device after the SBP-2 driver is loaded), you must either use the scsi procfs * add-single-device, remove-single-device, or a shell script such as * rescan-scsi-bus.sh. * * The easiest way to add/detect new SBP-2 devices is to run the shell script * rescan-scsi-bus.sh (or re-load the SBP-2 driver). This script may be * found at: * http://www.garloff.de/kurt/linux/rescan-scsi-bus.sh * * As an alternative, you may manually add/remove SBP-2 devices via the procfs with * add-single-device or remove-single-device , where: * = host (starting at zero for first SCSI adapter) * = bus (normally zero) * = target (starting at zero for first SBP-2 device) * = lun (normally zero) * * e.g. To manually add/detect a new SBP-2 device * echo "scsi add-single-device 0 0 0 0" > /proc/scsi/scsi * * e.g. To manually remove a SBP-2 device after it's been unplugged * echo "scsi remove-single-device 0 0 0 0" > /proc/scsi/scsi * * e.g. To check to see which SBP-2/SCSI devices are currently registered * cat /proc/scsi/scsi * * After scanning for new SCSI devices (above), you may access any attached * SBP-2 storage devices as if they were SCSI devices (e.g. mount /dev/sda1, * fdisk, mkfs, etc.). * * * Current Support: * * The SBP-2 driver is still in an early state, but supports a variety of devices. * I have read/written many gigabytes of data from/to SBP-2 drives, and have seen * performance of more than 16 MBytes/s on individual drives (limit of the media * transfer rate). * * Following are the devices that have been tested successfully: * * - Western Digital IEEE-1394 hard drives * - Maxtor IEEE-1394 hard drives * - VST (SmartDisk) IEEE-1394 hard drives and Zip drives (several flavors) * - LaCie IEEE-1394 hard drives (several flavors) * - QPS IEEE-1394 CD-RW/DVD drives and hard drives * - BusLink IEEE-1394 hard drives * - Iomega IEEE-1394 Zip/Jazz drives * - ClubMac IEEE-1394 hard drives * - FirePower IEEE-1394 hard drives * - EzQuest IEEE-1394 hard drives and CD-RW drives * - Castlewood/ADS IEEE-1394 ORB drives * - Evergreen IEEE-1394 hard drives and CD-RW drives * - Addonics IEEE-1394 CD-RW drives * - Bellstor IEEE-1394 hard drives and CD-RW drives * - APDrives IEEE-1394 hard drives * - Fujitsu IEEE-1394 MO drives * - Sony IEEE-1394 CD-RW drives * - Epson IEEE-1394 scanner * - ADS IEEE-1394 memory stick and compact flash readers * (e.g. "insmod sbp2 mode_sense_hack=1" for mem stick and flash readers)) * - SBP-2 bridge-based devices (LSI, Oxford Semiconductor, Indigita bridges) * - Various other standard IEEE-1394 hard drives and enclosures * * * Performance Issues: * * - Make sure you are "not" running fat/fat32 on your attached SBP-2 drives. You'll * get much better performance formatting the drive ext2 (but you will lose the * ability to easily move the drive between Windows/Linux). * * * Current Issues: * * - Currently, all I/O from the scsi stack is serialized by default, as there * are some stress issues under investigation with deserialized I/O. To enable * deserialized I/O for testing, do "insmod sbp2 serialize_io=0" * * - Error Handling: SCSI aborts and bus reset requests are handled somewhat * but the code needs additional debugging. * * - The SBP-2 driver is currently only supported as a module. It would not take * much work to allow it to be compiled into the kernel, but you'd have to * add some init code to the kernel to support this... and modules are much * more flexible anyway. ;-) * * - The scsi stack in recent kernels pass down the data transfer * direction as scsicmd->sc_data_direction, which we should use * instead of the sbp2scsi_direction_table. * * * History: * * 07/25/00 - Initial revision (JSG) * 08/11/00 - Following changes/bug fixes were made (JSG): * * Bug fix to SCSI procfs code (still needs to be synched with 2.4 kernel). * * Bug fix where request sense commands were actually sent on the bus. * * Changed bus reset/abort code to deal with devices that spin up quite * slowly (which result in SCSI time-outs). * * "More" properly pull information from device's config rom, for enumeration * of SBP-2 devices, and determining SBP-2 register offsets. * * Change Simplified Direct Access Device type to Direct Access Device type in * returned inquiry data, in order to make the SCSI stack happy. * * Modified driver to register with the SCSI stack "before" enumerating any attached * SBP-2 devices. This means that you'll have to use procfs scsi-add-device or * some sort of script to discover new SBP-2 devices. * * Minor re-write of some code and other minor changes. * 08/28/00 - Following changes/bug fixes were made (JSG): * * Bug fixes to scatter/gather support (case of one s/g element) * * Updated direction table for scsi commands (mostly DVD commands) * * Retries when trying to detect SBP-2 devices (for slow devices) * * Slightly better error handling (previously none) when commands time-out. * * Misc. other bug fixes and code reorganization. * 09/13/00 - Following changes/bug fixes were made (JSG) * * Moved detection/enumeration code to a kernel thread which is woken up when IEEE-1394 * bus resets occur. * * Added code to handle bus resets and hot-plugging while devices are mounted, but full * hot-plug support is not quite there yet. * * Now use speed map to determine speed and max payload sizes for ORBs * * Clean-up of code and reorganization * 09/19/00 - Added better hot-plug support and other minor changes (JSG) * 10/15/00 - Fixes for latest 2.4.0 test kernel, minor fix for hot-plug race. (JSG) * 12/03/00 - Created pool of request packet structures for use in sending out sbp2 command * and agent reset requests. This removes the kmallocs/kfrees in the critical I/O paths, * and also deals with some subtle race conditions related to allocating and freeing * packets. (JSG) * 12/09/00 - Improved the sbp2 device detection by actually reading the root and unit * directory (khk@khk.net) * 12/23/00 - Following changes/enhancements were made (JSG) * * Only do SCSI to RBC command conversion for Direct Access and Simplified * Direct Access Devices (this is pulled from the config rom root directory). * This is needed because doing the conversion for all device types broke the * Epson scanner. Still looking for a better way of determining when to convert * commands (for RBC devices). Thanks to khk for helping on this! * * Added ability to "emulate" physical dma support, for host adapters such as TILynx. * * Determine max payload and speed by also looking at the host adapter's max_rec field. * 01/19/01 - Added checks to sbp2 login and made the login time-out longer. Also fixed a compile * problem for 2.4.0. (JSG) * 01/24/01 - Fixed problem when individual s/g elements are 64KB or larger. Needed to break * up these larger elements, since the sbp2 page table element size is only 16 bits. (JSG) * 01/29/01 - Minor byteswap fix for login response (used for reconnect and log out). * 03/07/01 - Following changes/enhancements were made (JSG) * * Changes to allow us to catch the initial scsi bus scan (for detecting sbp2 * devices when first loading sbp2.o). To disable this, un-define * SBP2_SUPPORT_INITIAL_BUS_SCAN. * * Temporary fix to deal with many sbp2 devices that do not support individual * transfers of greater than 128KB in size. * * Mode sense conversion from 6 byte to 10 byte versions for CDRW/DVD devices. (Mark Burton) * * Define allowing support for goofy sbp2 devices that do not support mode * sense command at all, allowing them to be mounted rw (such as 1394 memory * stick and compact flash readers). Define SBP2_MODE_SENSE_WRITE_PROTECT_HACK * if you need this fix. * 03/29/01 - Major performance enhancements and misc. other changes. Thanks to Daniel Berlin for many of * changes and suggestions for change: * * Now use sbp2 doorbell and link commands on the fly (instead of serializing requests) * * Removed all bit fields in an attempt to run on PPC machines (still needs a little more work) * * Added large request break-up/linking support for sbp2 chipsets that do not support transfers * greater than 128KB in size. * * Bumped up max commands per lun to two, and max total outstanding commands to eight. * 04/03/01 - Minor clean-up. Write orb pointer directly if no outstanding commands (saves one 1394 bus * transaction). Added module load options (bus scan, mode sense hack, max speed, serialize_io, * no_large_transfers). Better bus reset handling while I/O pending. Set serialize_io to 1 by * default (debugging of deserialized I/O in progress). * 04/04/01 - Added workaround for PPC Pismo firewire chipset. See #define below. (Daniel Berlin) * 04/20/01 - Minor clean-up. Allocate more orb structures when running with sbp2 target chipsets with * 128KB max transfer limit. * 06/16/01 - Converted DMA interfaces to pci_dma - Ben Collins * * * 11/17/01 - Various bugfixes/cleanups: * * Remember to logout of device in sbp2_disconnect. * * If we fail to reconnect to a device after bus reset * remember to release unit directory, so the ieee1394 * knows we no longer manage it. * * Unregister scsi hosts in sbp2_remove_host when a * hpsb_host goes away. * * Remove stupid hack in sbp2_remove_host. * * Switched to "manual" module initialization * (i.e. not scsi_module.c) and moved sbp2_cleanup * moved sbp2scsi_release to sbp2_module_ext. The * release function is called once pr. registered * scsi host, but sbp2_cleanup should only be called * upon module unload. Moved much initialization * from sbp2scsi_detect to sbp2_module_init. * Kristian Hogsberg */ /* * Includes */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee1394.h" #include "ieee1394_types.h" #include "ieee1394_core.h" #include "hosts.h" #include "nodemgr.h" #include "highlevel.h" #include "ieee1394_transactions.h" #include "ieee1394_hotplug.h" #include "../scsi/scsi.h" #include "../scsi/hosts.h" #include "../scsi/sd.h" #include "sbp2.h" /* * Module load parameter definitions */ /* * Set mode_sense_hack to 1 if you have some sort of unusual sbp2 device, * like a 1394 memory stick reader, compact flash reader, or MO drive that * does not support mode sense. Allows you to mount the media rw instead * of ro. */ MODULE_PARM(mode_sense_hack,"i"); MODULE_PARM_DESC(mode_sense_hack, "Emulate mode sense for devices like 1394 memory stick readers"); static int mode_sense_hack = 0; /* * Change max_speed on module load if you have a bad IEEE-1394 controller * that has trouble running 2KB packets at 400mb. * * NOTE: On certain OHCI parts I have seen short packets on async transmit * (probably due to PCI latency/throughput issues with the part). You can * bump down the speed if you are running into problems. * * Valid values: * max_speed = 2 (default: max speed 400mb) * max_speed = 1 (max speed 200mb) * max_speed = 0 (max speed 100mb) */ MODULE_PARM(max_speed,"i"); MODULE_PARM_DESC(max_speed, "Force down max speed (2 = 400mb default, 1 = 200mb, 0 = 100mb)"); static int max_speed = SPEED_400; /* * Set serialize_io to 1 if you'd like only one scsi command sent down to * us at a time (debugging). */ MODULE_PARM(serialize_io,"i"); MODULE_PARM_DESC(serialize_io, "Serialize all I/O coming down from the scsi drivers (debugging)"); static int serialize_io = 1; /* serialize I/O until stress issues are resolved */ /* * Set no_large_packets to 1 if you'd like to limit the size of requests * sent down to us (normally the sbp2 driver will break up any requests to * any individual devices with 128KB transfer size limits). Sets max s/g * list elements to 0x1f in size and disables s/g clustering. */ MODULE_PARM(no_large_packets,"i"); MODULE_PARM_DESC(no_large_packets, "Do not allow large transfers from scsi drivers (debugging)"); static int no_large_packets = 0; /* * Export information about protocols/devices supported by this driver. */ static struct ieee1394_device_id sbp2_id_table[] = { { match_flags: IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION, specifier_id: SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff, version: SBP2_SW_VERSION_ENTRY & 0xffffff }, { } }; MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); /* * Debug levels, configured via kernel config. */ #ifdef CONFIG_IEEE1394_SBP2_DEBUG_ORBS #define SBP2_ORB_DEBUG(fmt, args...) HPSB_ERR("sbp2("__FUNCTION__"): "fmt, ## args) static u32 global_outstanding_command_orbs = 0; #define outstanding_orb_incr global_outstanding_command_orbs++ #define outstanding_orb_decr global_outstanding_command_orbs-- #else #define SBP2_ORB_DEBUG(fmt, args...) #define outstanding_orb_incr #define outstanding_orb_decr #endif #ifdef CONFIG_IEEE1394_SBP2_DEBUG_DMA #define SBP2_DMA_ALLOC(fmt, args...) \ HPSB_ERR("sbp2("__FUNCTION__")alloc(%d): "fmt, \ ++global_outstanding_dmas, ## args) #define SBP2_DMA_FREE(fmt, args...) \ HPSB_ERR("sbp2("__FUNCTION__")free(%d): "fmt, \ --global_outstanding_dmas, ## args) static u32 global_outstanding_dmas = 0; #else #define SBP2_DMA_ALLOC(fmt, args...) #define SBP2_DMA_FREE(fmt, args...) #endif #if CONFIG_IEEE1394_SBP2_DEBUG >= 2 #define SBP2_DEBUG(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args) #define SBP2_INFO(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args) #define SBP2_NOTICE(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args) #define SBP2_WARN(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args) #elif CONFIG_IEEE1394_SBP2_DEBUG == 1 #define SBP2_DEBUG(fmt, args...) HPSB_DEBUG("sbp2: "fmt, ## args) #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args) #define SBP2_NOTICE(fmt, args...) HPSB_NOTICE("sbp2: "fmt, ## args) #define SBP2_WARN(fmt, args...) HPSB_WARN("sbp2: "fmt, ## args) #else #define SBP2_DEBUG(fmt, args...) #define SBP2_INFO(fmt, args...) #define SBP2_NOTICE(fmt, args...) #define SBP2_WARN(fmt, args...) #endif #define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args) /* * Spinlock debugging stuff. I'm playing it safe until the driver has been * debugged on SMP. (JSG) */ /* #define SBP2_USE_REAL_SPINLOCKS */ #ifdef SBP2_USE_REAL_SPINLOCKS #define sbp2_spin_lock(lock, flags) spin_lock_irqsave(lock, flags) #define sbp2_spin_unlock(lock, flags) spin_unlock_irqrestore(lock, flags); static spinlock_t sbp2_host_info_lock = SPIN_LOCK_UNLOCKED; #else #define sbp2_spin_lock(lock, flags) do {save_flags(flags); cli();} while (0) #define sbp2_spin_unlock(lock, flags) do {restore_flags(flags);} while (0) #endif /* * Globals */ static Scsi_Host_Template scsi_driver_template; static u8 sbp2_speedto_maxrec[] = { 0x7, 0x8, 0x9 }; static LIST_HEAD(sbp2_host_info_list); static int sbp2_host_count = 0; static struct hpsb_highlevel *sbp2_hl_handle = NULL; static struct hpsb_highlevel_ops sbp2_hl_ops = { add_host: sbp2_add_host, remove_host: sbp2_remove_host, }; static struct hpsb_address_ops sbp2_ops = { write: sbp2_handle_status_write }; static struct hpsb_protocol_driver sbp2_driver = { name: "SBP2 Driver", id_table: sbp2_id_table, probe: sbp2_probe, disconnect: sbp2_disconnect, update: sbp2_update }; /************************************** * General utility functions **************************************/ #ifndef __BIG_ENDIAN /* * Converts a buffer from be32 to cpu byte ordering. Length is in bytes. */ static __inline__ void sbp2util_be32_to_cpu_buffer(void *buffer, int length) { u32 *temp = buffer; for (length = (length >> 2); length--; ) temp[length] = be32_to_cpu(temp[length]); return; } /* * Converts a buffer from cpu to be32 byte ordering. Length is in bytes. */ static __inline__ void sbp2util_cpu_to_be32_buffer(void *buffer, int length) { u32 *temp = buffer; for (length = (length >> 2); length--; ) temp[length] = cpu_to_be32(temp[length]); return; } #else /* BIG_ENDIAN */ /* Why waste the cpu cycles? */ #define sbp2util_be32_to_cpu_buffer(x,y) #define sbp2util_cpu_to_be32_buffer(x,y) #endif /* * This function is called to initially create a packet pool for use in * sbp2 I/O requests. This packet pool is used when sending out sbp2 * command and agent reset requests, and allows us to remove all * kmallocs/kfrees from the critical I/O paths. */ static int sbp2util_create_request_packet_pool(struct sbp2scsi_host_info *hi) { struct hpsb_packet *packet; int i; /* Create SBP2_MAX_REQUEST_PACKETS number of request packets. */ for (i=0; irequest_packet[i].list); hi->request_packet[i].packet = packet; list_add_tail(&hi->request_packet[i].list, &hi->sbp2_req_free); } return(0); } /* * This function is called to remove the packet pool. It is called when * the sbp2 driver is unloaded. */ static void sbp2util_remove_request_packet_pool(struct sbp2scsi_host_info *hi) { struct list_head *lh; struct sbp2_request_packet *request_packet; unsigned long flags; /* * Go through free list releasing packets */ sbp2_spin_lock(&hi->sbp2_request_packet_lock, flags); while (!list_empty(&hi->sbp2_req_free)) { lh = hi->sbp2_req_free.next; list_del(lh); request_packet = list_entry(lh, struct sbp2_request_packet, list); /* * Free the hpsb packets that we allocated for the pool */ if (request_packet) { free_hpsb_packet(request_packet->packet); } } sbp2_spin_unlock(&hi->sbp2_request_packet_lock, flags); return; } /* * This function is called to retrieve a block write packet from our * packet pool. This function is used in place of calling * alloc_hpsb_packet (which costs us three kmallocs). Instead we just pull * out a free request packet and re-initialize values in it. I'm sure this * can still stand some more optimization. */ static struct sbp2_request_packet * sbp2util_allocate_write_request_packet(struct sbp2scsi_host_info *hi, nodeid_t node, u64 addr, size_t data_size, quadlet_t data) { struct list_head *lh; struct sbp2_request_packet *request_packet = NULL; struct hpsb_packet *packet; unsigned long flags; sbp2_spin_lock(&hi->sbp2_request_packet_lock, flags); if (!list_empty(&hi->sbp2_req_free)) { /* * Pull out a free request packet */ lh = hi->sbp2_req_free.next; list_del(lh); request_packet = list_entry(lh, struct sbp2_request_packet, list); packet = request_packet->packet; /* * Initialize the packet (this is really initialization * the core 1394 stack should do, but I'm doing it myself * to avoid the overhead). */ packet->data_size = data_size; INIT_LIST_HEAD(&packet->list); sema_init(&packet->state_change, 0); packet->state = hpsb_unused; packet->generation = get_hpsb_generation(hi->host); packet->data_be = 1; packet->host = hi->host; packet->tlabel = get_tlabel(hi->host, node, 1); packet->node_id = node; if (!data_size) { fill_async_writequad(packet, addr, data); } else { fill_async_writeblock(packet, addr, data_size); } /* * Set up a task queue completion routine, which returns * the packet to the free list and releases the tlabel. */ request_packet->tq.routine = (void (*)(void*))sbp2util_free_request_packet; request_packet->tq.data = request_packet; request_packet->hi_context = hi; queue_task(&request_packet->tq, &packet->complete_tq); /* * Now, put the packet on the in-use list. */ list_add_tail(&request_packet->list, &hi->sbp2_req_inuse); } else { SBP2_ERR("sbp2util_allocate_request_packet - no packets available!"); } sbp2_spin_unlock(&hi->sbp2_request_packet_lock, flags); return(request_packet); } /* * This function is called to return a packet to our packet pool. It is * also called as a completion routine when a request packet is completed. */ static void sbp2util_free_request_packet(struct sbp2_request_packet *request_packet) { unsigned long flags; struct sbp2scsi_host_info *hi = request_packet->hi_context; /* * Free the tlabel, and return the packet to the free pool. */ sbp2_spin_lock(&hi->sbp2_request_packet_lock, flags); free_tlabel(hi->host, LOCAL_BUS | request_packet->packet->node_id, request_packet->packet->tlabel); list_del(&request_packet->list); list_add_tail(&request_packet->list, &hi->sbp2_req_free); sbp2_spin_unlock(&hi->sbp2_request_packet_lock, flags); return; } /* * This function is called to create a pool of command orbs used for * command processing. It is called when a new sbp2 device is detected. */ static int sbp2util_create_command_orb_pool(struct scsi_id_instance_data *scsi_id, struct sbp2scsi_host_info *hi) { int i; unsigned long flags; struct sbp2_command_info *command; sbp2_spin_lock(&scsi_id->sbp2_command_orb_lock, flags); for (i = 0; i < scsi_id->sbp2_total_command_orbs; i++) { command = (struct sbp2_command_info *) kmalloc(sizeof(struct sbp2_command_info), GFP_KERNEL); if (!command) { sbp2_spin_unlock(&scsi_id->sbp2_command_orb_lock, flags); return(-ENOMEM); } memset(command, '\0', sizeof(struct sbp2_command_info)); command->command_orb_dma = pci_map_single (hi->host->pdev, &command->command_orb, sizeof(struct sbp2_command_orb), PCI_DMA_BIDIRECTIONAL); SBP2_DMA_ALLOC("single command orb DMA"); command->sge_dma = pci_map_single (hi->host->pdev, &command->scatter_gather_element, sizeof(command->scatter_gather_element), PCI_DMA_BIDIRECTIONAL); SBP2_DMA_ALLOC("scatter_gather_element"); INIT_LIST_HEAD(&command->list); list_add_tail(&command->list, &scsi_id->sbp2_command_orb_completed); } sbp2_spin_unlock(&scsi_id->sbp2_command_orb_lock, flags); return 0; } /* * This function is called to delete a pool of command orbs. */ static void sbp2util_remove_command_orb_pool(struct scsi_id_instance_data *scsi_id, struct sbp2scsi_host_info *hi) { struct list_head *lh, *next; struct sbp2_command_info *command; unsigned long flags; sbp2_spin_lock(&scsi_id->sbp2_command_orb_lock, flags); if (!list_empty(&scsi_id->sbp2_command_orb_completed)) { list_for_each_safe(lh, next, &scsi_id->sbp2_command_orb_completed) { command = list_entry(lh, struct sbp2_command_info, list); /* Release our generic DMA's */ pci_unmap_single(hi->host->pdev, command->command_orb_dma, sizeof(struct sbp2_command_orb), PCI_DMA_BIDIRECTIONAL); SBP2_DMA_FREE("single command orb DMA"); pci_unmap_single(hi->host->pdev, command->sge_dma, sizeof(command->scatter_gather_element), PCI_DMA_BIDIRECTIONAL); SBP2_DMA_FREE("scatter_gather_element"); kfree(command); } } sbp2_spin_unlock(&scsi_id->sbp2_command_orb_lock, flags); return; } /* * This functions finds the sbp2_command for a given outstanding command * orb. Only looks at the inuse list. */ static struct sbp2_command_info *sbp2util_find_command_for_orb( struct scsi_id_instance_data *scsi_id, dma_addr_t orb) { struct list_head *lh; struct sbp2_command_info *command; unsigned long flags; sbp2_spin_lock(&scsi_id->sbp2_command_orb_lock, flags); if (!list_empty(&scsi_id->sbp2_command_orb_inuse)) { list_for_each(lh, &scsi_id->sbp2_command_orb_inuse) { command = list_entry(lh, struct sbp2_command_info, list); if (command->command_orb_dma == orb) { sbp2_spin_unlock(&scsi_id->sbp2_command_orb_lock, flags); return (command); } } } sbp2_spin_unlock(&scsi_id->sbp2_command_orb_lock, flags); SBP2_ORB_DEBUG("could not match command orb %x", (unsigned int)orb); return(NULL); } /* * This functions finds the sbp2_command for a given outstanding SCpnt. * Only looks at the inuse list. */ static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(struct scsi_id_instance_data *scsi_id, void *SCpnt) { struct list_head *lh; struct sbp2_command_info *command; unsigned long flags; sbp2_spin_lock(&scsi_id->sbp2_command_orb_lock, flags); if (!list_empty(&scsi_id->sbp2_command_orb_inuse)) { list_for_each(lh, &scsi_id->sbp2_command_orb_inuse) { command = list_entry(lh, struct sbp2_command_info, list); if (command->Current_SCpnt == SCpnt) { sbp2_spin_unlock(&scsi_id->sbp2_command_orb_lock, flags); return (command); } } } sbp2_spin_unlock(&scsi_id->sbp2_command_orb_lock, flags); return(NULL); } /* * This function allocates a command orb used to send a scsi command. */ static struct sbp2_command_info *sbp2util_allocate_command_orb( struct scsi_id_instance_data *scsi_id, Scsi_Cmnd *Current_SCpnt, void (*Current_done)(Scsi_Cmnd *), struct sbp2scsi_host_info *hi) { struct list_head *lh; struct sbp2_command_info *command = NULL; unsigned long flags; sbp2_spin_lock(&scsi_id->sbp2_command_orb_lock, flags); if (!list_empty(&scsi_id->sbp2_command_orb_completed)) { lh = scsi_id->sbp2_command_orb_completed.next; list_del(lh); command = list_entry(lh, struct sbp2_command_info, list); command->Current_done = Current_done; command->Current_SCpnt = Current_SCpnt; command->linked = 0; list_add_tail(&command->list, &scsi_id->sbp2_command_orb_inuse); } else { SBP2_ERR("sbp2util_allocate_command_orb - No orbs available!"); } sbp2_spin_unlock(&scsi_id->sbp2_command_orb_lock, flags); return (command); } /* Free our DMA's */ static void sbp2util_free_command_dma(struct sbp2_command_info *command) { struct sbp2scsi_host_info *hi; hi = (struct sbp2scsi_host_info *) command->Current_SCpnt->host->hostdata[0]; if (hi == NULL) { printk(KERN_ERR __FUNCTION__": hi == NULL\n"); return; } if (command->cmd_dma) { pci_unmap_single(hi->host->pdev, command->cmd_dma, command->dma_size, command->dma_dir); SBP2_DMA_FREE("single bulk"); command->cmd_dma = 0; } if (command->sge_buffer) { pci_unmap_sg(hi->host->pdev, command->sge_buffer, command->dma_size, command->dma_dir); SBP2_DMA_FREE("scatter list"); command->sge_buffer = NULL; } } /* * This function moves a command to the completed orb list. */ static void sbp2util_mark_command_completed(struct scsi_id_instance_data *scsi_id, struct sbp2_command_info *command) { unsigned long flags; sbp2_spin_lock(&scsi_id->sbp2_command_orb_lock, flags); list_del(&command->list); sbp2util_free_command_dma(command); list_add_tail(&command->list, &scsi_id->sbp2_command_orb_completed); sbp2_spin_unlock(&scsi_id->sbp2_command_orb_lock, flags); } /********************************************* * IEEE-1394 core driver stack related section *********************************************/ /* * This function is called at SCSI init in order to register our driver * with the IEEE-1394 stack. */ int sbp2_init(void) { SBP2_DEBUG("sbp2_init"); /* * Register our high level driver with 1394 stack */ sbp2_hl_handle = hpsb_register_highlevel(SBP2_DEVICE_NAME, &sbp2_hl_ops); if (sbp2_hl_handle == NULL) { SBP2_ERR("sbp2 failed to register with ieee1394 highlevel"); return(-ENOMEM); } /* * Register our sbp2 status address space... */ hpsb_register_addrspace(sbp2_hl_handle, &sbp2_ops, SBP2_STATUS_FIFO_ADDRESS, SBP2_STATUS_FIFO_ADDRESS + sizeof(struct sbp2_status_block)); hpsb_register_protocol(&sbp2_driver); return 0; } /* * This function is called from cleanup module, or during shut-down, in * order to unregister our driver. */ void sbp2_cleanup(void) { SBP2_DEBUG("sbp2_cleanup"); hpsb_unregister_protocol(&sbp2_driver); if (sbp2_hl_handle) { hpsb_unregister_highlevel(sbp2_hl_handle); sbp2_hl_handle = NULL; } } static int sbp2_probe(struct unit_directory *ud) { struct sbp2scsi_host_info *hi; SBP2_DEBUG("sbp2_probe"); hi = sbp2_find_host_info(ud->ne->host); return sbp2_start_device(hi, ud); } static void sbp2_disconnect(struct unit_directory *ud) { struct sbp2scsi_host_info *hi; struct scsi_id_instance_data *scsi_id = ud->driver_data; SBP2_DEBUG("sbp2_disconnect"); hi = sbp2_find_host_info(ud->ne->host); if (hi != NULL) { sbp2_logout_device(hi, scsi_id); sbp2_remove_device(hi, scsi_id); } } static void sbp2_update(struct unit_directory *ud) { struct sbp2scsi_host_info *hi; struct scsi_id_instance_data *scsi_id = ud->driver_data; unsigned long flags; SBP2_DEBUG("sbp2_update"); hi = sbp2_find_host_info(ud->ne->host); if (sbp2_reconnect_device(hi, scsi_id)) { /* Ok, reconnect has failed. Perhaps we didn't * reconnect fast enough. Try doing a regular login. */ if (sbp2_login_device(hi, scsi_id)) { /* Login failed too, just remove the device. */ SBP2_ERR("sbp2_reconnect_device failed!"); sbp2_remove_device(hi, scsi_id); hpsb_release_unit_directory(ud); return; } } /* Set max retries to something large on the device. */ sbp2_set_busy_timeout(hi, scsi_id); /* Do a SBP-2 fetch agent reset. */ sbp2_agent_reset(hi, scsi_id, 0); /* Get the max speed and packet size that we can use. */ sbp2_max_speed_and_size(hi, scsi_id); /* Complete any pending commands with busy (so they get * retried) and remove them from our queue */ sbp2_spin_lock(&hi->sbp2_command_lock, flags); sbp2scsi_complete_all_commands(hi, scsi_id, DID_BUS_BUSY); sbp2_spin_unlock(&hi->sbp2_command_lock, flags); } /* * This function is called after registering our operations in sbp2_init. * We go ahead and allocate some memory for our host info structure, and * init some structures. */ static void sbp2_add_host(struct hpsb_host *host) { struct sbp2scsi_host_info *hi; unsigned long flags; SBP2_DEBUG("sbp2_add_host"); /* Allocate some memory for our host info structure */ hi = (struct sbp2scsi_host_info *)kmalloc(sizeof(struct sbp2scsi_host_info), GFP_KERNEL); if (hi == NULL) { SBP2_ERR("out of memory in sbp2_add_host"); return; } /* Initialize some host stuff */ memset(hi, 0, sizeof(struct sbp2scsi_host_info)); INIT_LIST_HEAD(&hi->list); INIT_LIST_HEAD(&hi->sbp2_req_inuse); INIT_LIST_HEAD(&hi->sbp2_req_free); hi->host = host; hi->sbp2_command_lock = SPIN_LOCK_UNLOCKED; hi->sbp2_request_packet_lock = SPIN_LOCK_UNLOCKED; /* Create our request packet pool (pool of packets for use in I/O) */ if (sbp2util_create_request_packet_pool(hi)) { SBP2_ERR("sbp2util_create_request_packet_pool failed!"); return; } sbp2_spin_lock(&sbp2_host_info_lock, flags); list_add_tail(&hi->list, &sbp2_host_info_list); sbp2_host_count++; sbp2_spin_unlock(&sbp2_host_info_lock, flags); /* Register our host with the SCSI stack. */ hi->scsi_host = scsi_register (&scsi_driver_template, sizeof(void *)); if (hi->scsi_host) hi->scsi_host->hostdata[0] = (unsigned long)hi; scsi_driver_template.present++; return; } /* * This fuction returns a host info structure from the host structure, in * case we have multiple hosts. */ static struct sbp2scsi_host_info *sbp2_find_host_info(struct hpsb_host *host) { struct list_head *lh; struct sbp2scsi_host_info *hi; list_for_each (lh, &sbp2_host_info_list) { hi = list_entry(lh, struct sbp2scsi_host_info, list); if (hi->host == host) { return hi; } } return(NULL); } /* * This function is called when a host is removed. */ static void sbp2_remove_host(struct hpsb_host *host) { struct sbp2scsi_host_info *hi; unsigned long flags; SBP2_DEBUG("sbp2_remove_host"); sbp2_spin_lock(&sbp2_host_info_lock, flags); hi = sbp2_find_host_info(host); if (hi != NULL) { sbp2util_remove_request_packet_pool(hi); sbp2_host_count--; list_del(&hi->list); scsi_unregister(hi->scsi_host); scsi_driver_template.present--; kfree(hi); } else SBP2_ERR("attempt to remove unknown host %p", host); sbp2_spin_unlock(&sbp2_host_info_lock, flags); } /* * This function is where we first pull the node unique ids, and then * allocate memory and register a SBP-2 device. */ static int sbp2_start_device(struct sbp2scsi_host_info *hi, struct unit_directory *ud) { struct scsi_id_instance_data *scsi_id = NULL; struct node_entry *ne; int i; SBP2_DEBUG("sbp2_start_device"); ne = ud->ne; /* * This really is a "new" device plugged in. Let's allocate memory * for our scsi id instance data. */ scsi_id = (struct scsi_id_instance_data *)kmalloc(sizeof(struct scsi_id_instance_data), GFP_KERNEL); if (!scsi_id) goto alloc_fail_first; memset(scsi_id, 0, sizeof(struct scsi_id_instance_data)); /* Login FIFO DMA */ scsi_id->login_response = pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_login_response), &scsi_id->login_response_dma); if (!scsi_id->login_response) goto alloc_fail; SBP2_DMA_ALLOC("consistent DMA region for login FIFO"); /* Reconnect ORB DMA */ scsi_id->reconnect_orb = pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_reconnect_orb), &scsi_id->reconnect_orb_dma); if (!scsi_id->reconnect_orb) goto alloc_fail; SBP2_DMA_ALLOC("consistent DMA region for reconnect ORB"); /* Logout ORB DMA */ scsi_id->logout_orb = pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_logout_orb), &scsi_id->logout_orb_dma); if (!scsi_id->logout_orb) goto alloc_fail; SBP2_DMA_ALLOC("consistent DMA region for logout ORB"); /* Login ORB DMA */ scsi_id->login_orb = pci_alloc_consistent(hi->host->pdev, sizeof(struct sbp2_login_orb), &scsi_id->login_orb_dma); if (scsi_id->login_orb == NULL) { alloc_fail: if (scsi_id->logout_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_logout_orb), scsi_id->logout_orb, scsi_id->logout_orb_dma); SBP2_DMA_FREE("logout ORB DMA"); } if (scsi_id->reconnect_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_reconnect_orb), scsi_id->reconnect_orb, scsi_id->reconnect_orb_dma); SBP2_DMA_FREE("reconnect ORB DMA"); } if (scsi_id->login_response) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_login_response), scsi_id->login_response, scsi_id->login_response_dma); SBP2_DMA_FREE("login FIFO DMA"); } kfree(scsi_id); alloc_fail_first: SBP2_ERR ("Could not allocate memory for scsi_id"); return(-ENOMEM); } SBP2_DMA_ALLOC("consistent DMA region for login ORB"); /* * Initialize some of the fields in this structure */ scsi_id->ne = ne; scsi_id->ud = ud; scsi_id->speed_code = SPEED_100; scsi_id->max_payload_size = sbp2_speedto_maxrec[SPEED_100]; ud->driver_data = scsi_id; init_waitqueue_head(&scsi_id->sbp2_login_wait); /* * Initialize structures needed for the command orb pool. */ INIT_LIST_HEAD(&scsi_id->sbp2_command_orb_inuse); INIT_LIST_HEAD(&scsi_id->sbp2_command_orb_completed); scsi_id->sbp2_command_orb_lock = SPIN_LOCK_UNLOCKED; scsi_id->sbp2_total_command_orbs = 0; /* * Make sure that we've gotten ahold of the sbp2 management agent * address. Also figure out the command set being used (SCSI or * RBC). */ sbp2_parse_unit_directory(scsi_id); scsi_id->sbp2_total_command_orbs = SBP2_MAX_COMMAND_ORBS; /* * Knock the total command orbs down if we are serializing I/O */ if (serialize_io) { scsi_id->sbp2_total_command_orbs = 2; /* one extra for good measure */ } /* * Allocate some extra command orb structures for devices with * 128KB limit. */ if (scsi_id->sbp2_firmware_revision == SBP2_128KB_BROKEN_FIRMWARE) { scsi_id->sbp2_total_command_orbs *= 4; } /* * Find an empty spot to stick our scsi id instance data. */ for (i = 0; i < SBP2SCSI_MAX_SCSI_IDS; i++) { if (!hi->scsi_id[i]) { hi->scsi_id[i] = scsi_id; scsi_id->id = i; SBP2_DEBUG("New SBP-2 device inserted, SCSI ID = %x", (unsigned int) i); break; } } /* * Create our command orb pool */ if (sbp2util_create_command_orb_pool(scsi_id, hi)) { SBP2_ERR("sbp2util_create_command_orb_pool failed!"); sbp2_remove_device(hi, scsi_id); return -ENOMEM; } /* * Make sure we are not out of space */ if (i == SBP2SCSI_MAX_SCSI_IDS) { SBP2_ERR("No slots left for SBP-2 device"); sbp2_remove_device(hi, scsi_id); return -EBUSY; } /* * Login to the sbp-2 device */ if (sbp2_login_device(hi, scsi_id)) { /* Login failed, just remove the device. */ SBP2_ERR("sbp2_login_device failed"); sbp2_remove_device(hi, scsi_id); return -EBUSY; } /* * Set max retries to something large on the device */ sbp2_set_busy_timeout(hi, scsi_id); /* * Do a SBP-2 fetch agent reset */ sbp2_agent_reset(hi, scsi_id, 0); /* * Get the max speed and packet size that we can use */ sbp2_max_speed_and_size(hi, scsi_id); return 0; } /* * This function removes an sbp2 device from the sbp2scsi_host_info struct. */ static void sbp2_remove_device(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id) { SBP2_DEBUG("sbp2_remove_device"); /* Complete any pending commands with selection timeout */ sbp2scsi_complete_all_commands(hi, scsi_id, DID_NO_CONNECT); /* Clean up any other structures */ if (scsi_id->sbp2_total_command_orbs) { sbp2util_remove_command_orb_pool(scsi_id, hi); } if (scsi_id->login_response) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_login_response), scsi_id->login_response, scsi_id->login_response_dma); SBP2_DMA_FREE("single login FIFO"); } if (scsi_id->login_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_login_orb), scsi_id->login_orb, scsi_id->login_orb_dma); SBP2_DMA_FREE("single login ORB"); } if (scsi_id->reconnect_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_reconnect_orb), scsi_id->reconnect_orb, scsi_id->reconnect_orb_dma); SBP2_DMA_FREE("single reconnect orb"); } if (scsi_id->logout_orb) { pci_free_consistent(hi->host->pdev, sizeof(struct sbp2_logout_orb), scsi_id->logout_orb, scsi_id->reconnect_orb_dma); SBP2_DMA_FREE("single logout orb"); } SBP2_DEBUG("SBP-2 device removed, SCSI ID = %d", scsi_id->id); hi->scsi_id[scsi_id->id] = NULL; kfree(scsi_id); } /************************************** * SBP-2 protocol related section **************************************/ /* * This function is called in order to login to a particular SBP-2 device, * after a bus reset. */ static int sbp2_login_device(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id) { quadlet_t data[2]; unsigned long flags; SBP2_DEBUG("sbp2_login_device"); if (!scsi_id->login_orb) { SBP2_DEBUG("sbp2_login_device: login_orb not alloc'd!"); return(-EIO); } /* Set-up login ORB, assume no password */ scsi_id->login_orb->password_hi = 0; scsi_id->login_orb->password_lo = 0; SBP2_DEBUG("sbp2_login_device: password_hi/lo initialized"); scsi_id->login_orb->login_response_lo = scsi_id->login_response_dma; scsi_id->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id); SBP2_DEBUG("sbp2_login_device: login_response_hi/lo initialized"); scsi_id->login_orb->lun_misc = ORB_SET_FUNCTION(LOGIN_REQUEST); scsi_id->login_orb->lun_misc |= ORB_SET_RECONNECT(0); /* One second reconnect time */ scsi_id->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(1); /* Exclusive access to device */ scsi_id->login_orb->lun_misc |= ORB_SET_NOTIFY(1); /* Notify us of login complete */ SBP2_DEBUG("sbp2_login_device: lun_misc initialized"); scsi_id->login_orb->passwd_resp_lengths = ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response)); SBP2_DEBUG("sbp2_login_device: passwd_resp_lengths initialized"); scsi_id->login_orb->status_FIFO_lo = SBP2_STATUS_FIFO_ADDRESS_LO; scsi_id->login_orb->status_FIFO_hi = (ORB_SET_NODE_ID(hi->host->node_id) | SBP2_STATUS_FIFO_ADDRESS_HI); SBP2_DEBUG("sbp2_login_device: status FIFO initialized"); /* * Byte swap ORB if necessary */ sbp2util_cpu_to_be32_buffer(scsi_id->login_orb, sizeof(struct sbp2_login_orb)); SBP2_DEBUG("sbp2_login_device: orb byte-swapped"); /* * Initialize login response and status fifo */ memset(scsi_id->login_response, 0, sizeof(struct sbp2_login_response)); memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block)); SBP2_DEBUG("sbp2_login_device: login_response/status FIFO memset"); /* * Ok, let's write to the target's management agent register */ data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = scsi_id->login_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); SBP2_DEBUG("sbp2_login_device: prepared to write"); hpsb_write(hi->host, LOCAL_BUS | scsi_id->ne->nodeid, scsi_id->sbp2_management_agent_addr, data, 8); SBP2_DEBUG("sbp2_login_device: written"); /* * Wait for login status... but, only if the device has not * already logged-in (some devices are fast) */ save_flags(flags); cli(); /* 10 second timeout */ if (scsi_id->status_block.ORB_offset_lo != scsi_id->login_orb_dma) sleep_on_timeout(&scsi_id->sbp2_login_wait, 10*HZ); restore_flags(flags); SBP2_DEBUG("sbp2_login_device: initial check"); /* * Match status to the login orb. If they do not match, it's * probably because the login timed-out. */ if (scsi_id->status_block.ORB_offset_lo != scsi_id->login_orb_dma) { SBP2_ERR("Error logging into SBP-2 device - login timed-out"); return(-EIO); } SBP2_DEBUG("sbp2_login_device: second check"); /* * Check status */ if (STATUS_GET_RESP(scsi_id->status_block.ORB_offset_hi_misc) || STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc) || STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) { SBP2_ERR("Error logging into SBP-2 device - login failed"); return(-EIO); } /* * Byte swap the login response, for use when reconnecting or * logging out. */ sbp2util_cpu_to_be32_buffer(scsi_id->login_response, sizeof(struct sbp2_login_response)); /* * Grab our command block agent address from the login response. */ SBP2_DEBUG("command_block_agent_hi = %x", (unsigned int)scsi_id->login_response->command_block_agent_hi); SBP2_DEBUG("command_block_agent_lo = %x", (unsigned int)scsi_id->login_response->command_block_agent_lo); scsi_id->sbp2_command_block_agent_addr = ((u64)scsi_id->login_response->command_block_agent_hi) << 32; scsi_id->sbp2_command_block_agent_addr |= ((u64)scsi_id->login_response->command_block_agent_lo); scsi_id->sbp2_command_block_agent_addr &= 0x0000ffffffffffffULL; SBP2_INFO("Logged into SBP-2 device"); return(0); } /* * This function is called in order to logout from a particular SBP-2 * device, usually called during driver unload. */ static int sbp2_logout_device(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id) { quadlet_t data[2]; SBP2_DEBUG("sbp2_logout_device"); /* * Set-up logout ORB */ scsi_id->logout_orb->reserved1 = 0x0; scsi_id->logout_orb->reserved2 = 0x0; scsi_id->logout_orb->reserved3 = 0x0; scsi_id->logout_orb->reserved4 = 0x0; scsi_id->logout_orb->login_ID_misc = ORB_SET_FUNCTION(LOGOUT_REQUEST); scsi_id->logout_orb->login_ID_misc |= ORB_SET_LOGIN_ID(scsi_id->login_response->length_login_ID); /* Notify us when complete */ scsi_id->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1); scsi_id->logout_orb->reserved5 = 0x0; scsi_id->logout_orb->status_FIFO_lo = SBP2_STATUS_FIFO_ADDRESS_LO; scsi_id->logout_orb->status_FIFO_hi = (ORB_SET_NODE_ID(hi->host->node_id) | SBP2_STATUS_FIFO_ADDRESS_HI); /* * Byte swap ORB if necessary */ sbp2util_cpu_to_be32_buffer(scsi_id->logout_orb, sizeof(struct sbp2_logout_orb)); /* * Ok, let's write to the target's management agent register */ data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = scsi_id->logout_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); hpsb_write(hi->host, LOCAL_BUS | scsi_id->ne->nodeid, scsi_id->sbp2_management_agent_addr, data, 8); /* Wait for device to logout...1 second. */ sleep_on_timeout(&scsi_id->sbp2_login_wait, HZ); SBP2_INFO("Logged out of SBP-2 device"); return(0); } /* * This function is called in order to reconnect to a particular SBP-2 * device, after a bus reset. */ static int sbp2_reconnect_device(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id) { quadlet_t data[2]; unsigned long flags; SBP2_DEBUG("sbp2_reconnect_device"); /* * Set-up reconnect ORB */ scsi_id->reconnect_orb->reserved1 = 0x0; scsi_id->reconnect_orb->reserved2 = 0x0; scsi_id->reconnect_orb->reserved3 = 0x0; scsi_id->reconnect_orb->reserved4 = 0x0; scsi_id->reconnect_orb->login_ID_misc = ORB_SET_FUNCTION(RECONNECT_REQUEST); scsi_id->reconnect_orb->login_ID_misc |= ORB_SET_LOGIN_ID(scsi_id->login_response->length_login_ID); /* Notify us when complete */ scsi_id->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1); scsi_id->reconnect_orb->reserved5 = 0x0; scsi_id->reconnect_orb->status_FIFO_lo = SBP2_STATUS_FIFO_ADDRESS_LO; scsi_id->reconnect_orb->status_FIFO_hi = (ORB_SET_NODE_ID(hi->host->node_id) | SBP2_STATUS_FIFO_ADDRESS_HI); /* * Byte swap ORB if necessary */ sbp2util_cpu_to_be32_buffer(scsi_id->reconnect_orb, sizeof(struct sbp2_reconnect_orb)); /* * Initialize status fifo */ memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block)); /* * Ok, let's write to the target's management agent register */ data[0] = ORB_SET_NODE_ID(hi->host->node_id); data[1] = scsi_id->reconnect_orb_dma; sbp2util_cpu_to_be32_buffer(data, 8); hpsb_write(hi->host, LOCAL_BUS | scsi_id->ne->nodeid, scsi_id->sbp2_management_agent_addr, data, 8); /* * Wait for reconnect status... but, only if the device has not * already reconnected (some devices are fast). */ save_flags(flags); cli(); /* One second timout */ if (scsi_id->status_block.ORB_offset_lo != scsi_id->reconnect_orb_dma) sleep_on_timeout(&scsi_id->sbp2_login_wait, HZ); restore_flags(flags); /* * Match status to the reconnect orb. If they do not match, it's * probably because the reconnect timed-out. */ if (scsi_id->status_block.ORB_offset_lo != scsi_id->reconnect_orb_dma) { SBP2_ERR("Error reconnecting to SBP-2 device - reconnect timed-out"); return(-EIO); } /* * Check status */ if (STATUS_GET_RESP(scsi_id->status_block.ORB_offset_hi_misc) || STATUS_GET_DEAD_BIT(scsi_id->status_block.ORB_offset_hi_misc) || STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) { SBP2_ERR("Error reconnecting to SBP-2 device - reconnect failed"); return(-EIO); } SBP2_INFO("Reconnected to SBP-2 device"); return(0); } /* * This function is called in order to set the busy timeout (number of * retries to attempt) on the sbp2 device. */ static int sbp2_set_busy_timeout(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id) { quadlet_t data; SBP2_DEBUG("sbp2_set_busy_timeout"); /* * Ok, let's write to the target's busy timeout register */ data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE); if (hpsb_write(hi->host, LOCAL_BUS | scsi_id->ne->nodeid, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4)) { SBP2_ERR("sbp2_set_busy_timeout error"); } return(0); } /* * This function is called to parse sbp2 device's config rom unit * directory. Used to determine things like sbp2 management agent offset, * and command set used (SCSI or RBC). */ static void sbp2_parse_unit_directory(struct scsi_id_instance_data *scsi_id) { struct unit_directory *ud; int i; SBP2_DEBUG("sbp2_parse_unit_directory"); ud = scsi_id->ud; /* Handle different fields in the unit directory, based on keys */ for (i = 0; i < ud->arb_count; i++) { switch (ud->arb_keys[i]) { case SBP2_CSR_OFFSET_KEY: /* Save off the management agent address */ scsi_id->sbp2_management_agent_addr = CONFIG_ROM_INITIAL_MEMORY_SPACE + (ud->arb_values[i] << 2); SBP2_DEBUG("sbp2_management_agent_addr = %x", (unsigned int) scsi_id->sbp2_management_agent_addr); break; case SBP2_COMMAND_SET_SPEC_ID_KEY: /* Command spec organization */ scsi_id->sbp2_command_set_spec_id = ud->arb_values[i]; SBP2_DEBUG("sbp2_command_set_spec_id = %x", (unsigned int) scsi_id->sbp2_command_set_spec_id); break; case SBP2_COMMAND_SET_KEY: /* Command set used by sbp2 device */ scsi_id->sbp2_command_set = ud->arb_values[i]; SBP2_DEBUG("sbp2_command_set = %x", (unsigned int) scsi_id->sbp2_command_set); break; case SBP2_UNIT_CHARACTERISTICS_KEY: /* * Unit characterisitcs (orb related stuff * that I'm not yet paying attention to) */ scsi_id->sbp2_unit_characteristics = ud->arb_values[i]; SBP2_DEBUG("sbp2_unit_characteristics = %x", (unsigned int) scsi_id->sbp2_unit_characteristics); break; case SBP2_DEVICE_TYPE_AND_LUN_KEY: /* * Device type and lun (used for * detemining type of sbp2 device) */ scsi_id->sbp2_device_type_and_lun = ud->arb_values[i]; SBP2_DEBUG("sbp2_device_type_and_lun = %x", (unsigned int) scsi_id->sbp2_device_type_and_lun); break; case SBP2_FIRMWARE_REVISION_KEY: /* * Firmware revision (used to find broken * devices). If the vendor id is 0xa0b8 * (Symbios vendor id), then we have a * bridge with 128KB max transfer size * limitation. */ scsi_id->sbp2_firmware_revision = ud->arb_values[i]; if (scsi_id->sbp2_firmware_revision == SBP2_128KB_BROKEN_FIRMWARE) { SBP2_WARN("warning: Bridge chipset supports 128KB max transfer size"); } break; default: break; } } } /* * This function is called in order to determine the max speed and packet * size we can use in our ORBs. Note, that we (the driver and host) only * initiate the transaction. The SBP-2 device actually transfers the data * (by reading from the DMA area we tell it). This means that the SBP-2 * device decides the actual maximum data it can transfer. We just tell it * the speed that it needs to use, and the max_rec the host supports, and * it takes care of the rest. */ static int sbp2_max_speed_and_size(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id) { SBP2_DEBUG("sbp2_max_speed_and_size"); /* Initial setting comes from the hosts speed map */ scsi_id->speed_code = hi->host->speed_map[(hi->host->node_id & NODE_MASK) * 64 + (scsi_id->ne->nodeid & NODE_MASK)]; /* Bump down our speed if the user requested it */ if (scsi_id->speed_code > max_speed) { scsi_id->speed_code = max_speed; SBP2_ERR("Forcing SBP-2 max speed down to %s", hpsb_speedto_str[scsi_id->speed_code]); } /* Payload size is the lesser of what our speed supports and what * our host supports. */ scsi_id->max_payload_size = min(sbp2_speedto_maxrec[scsi_id->speed_code], (u8)(((be32_to_cpu(hi->host->csr.rom[2]) >> 12) & 0xf) - 1)); SBP2_ERR("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]", NODE_BUS_ARGS(scsi_id->ne->nodeid), hpsb_speedto_str[scsi_id->speed_code], 1 << ((u32)scsi_id->max_payload_size + 2)); return(0); } /* * This function is called in order to perform a SBP-2 agent reset. */ static int sbp2_agent_reset(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id, u32 flags) { struct sbp2_request_packet *agent_reset_request_packet; SBP2_DEBUG("sbp2_agent_reset"); /* * Ok, let's write to the target's management agent register */ agent_reset_request_packet = sbp2util_allocate_write_request_packet(hi, LOCAL_BUS | scsi_id->ne->nodeid, scsi_id->sbp2_command_block_agent_addr + SBP2_AGENT_RESET_OFFSET, 0, ntohl(SBP2_AGENT_RESET_DATA)); if (!agent_reset_request_packet) { SBP2_ERR("sbp2util_allocate_write_request_packet failed"); return(-EIO); } if (!hpsb_send_packet(agent_reset_request_packet->packet)) { SBP2_ERR("hpsb_send_packet failed"); sbp2util_free_request_packet(agent_reset_request_packet); return(-EIO); } if (!(flags & SBP2_SEND_NO_WAIT)) { down(&agent_reset_request_packet->packet->state_change); down(&agent_reset_request_packet->packet->state_change); } /* * Need to make sure orb pointer is written on next command */ scsi_id->last_orb = NULL; return(0); } /* * This function is called to create the actual command orb and s/g list * out of the scsi command itself. */ static int sbp2_create_command_orb(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id, struct sbp2_command_info *command, unchar *scsi_cmd, unsigned int scsi_use_sg, unsigned int scsi_request_bufflen, void *scsi_request_buffer, int dma_dir) { struct scatterlist *sgpnt = (struct scatterlist *) scsi_request_buffer; struct sbp2_command_orb *command_orb = &command->command_orb; struct sbp2_unrestricted_page_table *scatter_gather_element = &command->scatter_gather_element[0]; u32 sg_count, sg_len; dma_addr_t sg_addr; int i; /* * Set-up our command ORB.. * * NOTE: We're doing unrestricted page tables (s/g), as this is * best performance (at least with the devices I have). This means * that data_size becomes the number of s/g elements, and * page_size should be zero (for unrestricted). */ command_orb->next_ORB_hi = 0xffffffff; command_orb->next_ORB_lo = 0xffffffff; command_orb->misc = ORB_SET_MAX_PAYLOAD(scsi_id->max_payload_size); command_orb->misc |= ORB_SET_SPEED(scsi_id->speed_code); command_orb->misc |= ORB_SET_NOTIFY(1); /* Notify us when complete */ /* * Set-up our pagetable stuff... unfortunately, this has become * messier than I'd like. Need to clean this up a bit. ;-) */ if (sbp2scsi_direction_table[*scsi_cmd] == ORB_DIRECTION_NO_DATA_TRANSFER) { SBP2_DEBUG("No data transfer"); /* * Handle no data transfer */ command_orb->data_descriptor_hi = 0xffffffff; command_orb->data_descriptor_lo = 0xffffffff; command_orb->misc |= ORB_SET_DIRECTION(1); } else if (scsi_use_sg) { SBP2_DEBUG("Use scatter/gather"); /* * Special case if only one element (and less than 64KB in size) */ if ((scsi_use_sg == 1) && (sgpnt[0].length <= SBP2_MAX_SG_ELEMENT_LENGTH)) { SBP2_DEBUG("Only one s/g element"); command->dma_dir = dma_dir; command->dma_size = sgpnt[0].length; command->cmd_dma = pci_map_single (hi->host->pdev, sgpnt[0].address, command->dma_size, command->dma_dir); SBP2_DMA_ALLOC("single scatter element"); command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id); command_orb->data_descriptor_lo = command->cmd_dma; command_orb->misc |= ORB_SET_DATA_SIZE(command->dma_size); command_orb->misc |= ORB_SET_DIRECTION(sbp2scsi_direction_table[*scsi_cmd]); } else { int count = pci_map_sg(hi->host->pdev, sgpnt, scsi_use_sg, dma_dir); SBP2_DMA_ALLOC("scatter list"); command->dma_size = scsi_use_sg; command->dma_dir = dma_dir; command->sge_buffer = sgpnt; /* use page tables (s/g) */ command_orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1); command_orb->misc |= ORB_SET_DIRECTION(sbp2scsi_direction_table[*scsi_cmd]); command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id); command_orb->data_descriptor_lo = command->sge_dma; /* * Loop through and fill out our sbp-2 page tables * (and split up anything too large) */ for (i = 0, sg_count = 0 ; i < count; i++, sgpnt++) { sg_len = sg_dma_len(sgpnt); sg_addr = sg_dma_address(sgpnt); while (sg_len) { scatter_gather_element[sg_count].segment_base_lo = sg_addr; if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) { scatter_gather_element[sg_count].length_segment_base_hi = PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH); sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH; sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH; } else { scatter_gather_element[sg_count].length_segment_base_hi = PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len); sg_len = 0; } sg_count++; } } /* Number of page table (s/g) elements */ command_orb->misc |= ORB_SET_DATA_SIZE(sg_count); /* * Byte swap page tables if necessary */ sbp2util_cpu_to_be32_buffer(scatter_gather_element, (sizeof(struct sbp2_unrestricted_page_table)) * sg_count); } } else { SBP2_DEBUG("No scatter/gather"); command->dma_dir = dma_dir; command->dma_size = scsi_request_bufflen; command->cmd_dma = pci_map_single (hi->host->pdev, scsi_request_buffer, command->dma_size, command->dma_dir); SBP2_DMA_ALLOC("single bulk"); /* * Handle case where we get a command w/o s/g enabled (but * check for transfers larger than 64K) */ if (scsi_request_bufflen <= SBP2_MAX_SG_ELEMENT_LENGTH) { command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id); command_orb->data_descriptor_lo = command->cmd_dma; command_orb->misc |= ORB_SET_DATA_SIZE(scsi_request_bufflen); command_orb->misc |= ORB_SET_DIRECTION(sbp2scsi_direction_table[*scsi_cmd]); /* * Sanity, in case our direction table is not * up-to-date */ if (!scsi_request_bufflen) { command_orb->data_descriptor_hi = 0xffffffff; command_orb->data_descriptor_lo = 0xffffffff; command_orb->misc |= ORB_SET_DIRECTION(1); } } else { /* * Need to turn this into page tables, since the * buffer is too large. */ command_orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id); command_orb->data_descriptor_lo = command->sge_dma; /* Use page tables (s/g) */ command_orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1); command_orb->misc |= ORB_SET_DIRECTION(sbp2scsi_direction_table[*scsi_cmd]); /* * fill out our sbp-2 page tables (and split up * the large buffer) */ sg_count = 0; sg_len = scsi_request_bufflen; sg_addr = command->cmd_dma; while (sg_len) { scatter_gather_element[sg_count].segment_base_lo = sg_addr; if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) { scatter_gather_element[sg_count].length_segment_base_hi = PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH); sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH; sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH; } else { scatter_gather_element[sg_count].length_segment_base_hi = PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len); sg_len = 0; } sg_count++; } /* Number of page table (s/g) elements */ command_orb->misc |= ORB_SET_DATA_SIZE(sg_count); /* * Byte swap page tables if necessary */ sbp2util_cpu_to_be32_buffer(scatter_gather_element, (sizeof(struct sbp2_unrestricted_page_table)) * sg_count); } } /* * Byte swap command ORB if necessary */ sbp2util_cpu_to_be32_buffer(command_orb, sizeof(struct sbp2_command_orb)); /* * Put our scsi command in the command ORB */ memset(command_orb->cdb, 0, 12); memcpy(command_orb->cdb, scsi_cmd, COMMAND_SIZE(*scsi_cmd)); return(0); } /* * This function is called in order to begin a regular SBP-2 command. */ static int sbp2_link_orb_command(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id, struct sbp2_command_info *command) { struct sbp2_request_packet *command_request_packet; struct sbp2_command_orb *command_orb = &command->command_orb; outstanding_orb_incr; SBP2_ORB_DEBUG("sending command orb %p, linked = %x, total orbs = %x", command_orb, command->linked, global_outstanding_command_orbs); /* * Check to see if there are any previous orbs to use */ if (scsi_id->last_orb == NULL) { /* * Ok, let's write to the target's management agent register */ if (hpsb_node_entry_valid(scsi_id->ne)) { command_request_packet = sbp2util_allocate_write_request_packet(hi, LOCAL_BUS | scsi_id->ne->nodeid, scsi_id->sbp2_command_block_agent_addr + SBP2_ORB_POINTER_OFFSET, 8, 0); if (!command_request_packet) { SBP2_ERR("sbp2util_allocate_write_request_packet failed"); return(-EIO); } command_request_packet->packet->data[0] = ORB_SET_NODE_ID(hi->host->node_id); command_request_packet->packet->data[1] = command->command_orb_dma; sbp2util_cpu_to_be32_buffer(command_request_packet->packet->data, 8); SBP2_ORB_DEBUG("write command agent, command orb %p", command_orb); if (!hpsb_send_packet(command_request_packet->packet)) { SBP2_ERR("hpsb_send_packet failed"); sbp2util_free_request_packet(command_request_packet); return(-EIO); } SBP2_ORB_DEBUG("write command agent complete"); } scsi_id->last_orb = command_orb; } else { /* * We have an orb already sent (maybe or maybe not * processed) that we can append this orb to. So do so, * and ring the doorbell. Have to be very careful * modifying these next orb pointers, as they are accessed * both by the sbp2 device and us. */ scsi_id->last_orb->next_ORB_lo = cpu_to_be32(command->command_orb_dma); /* Tells hardware that this pointer is valid */ scsi_id->last_orb->next_ORB_hi = 0x0; /* * Only ring the doorbell if we need to (first parts of * linked orbs don't need this). */ if (!command->linked && hpsb_node_entry_valid(scsi_id->ne)) { command_request_packet = sbp2util_allocate_write_request_packet(hi, LOCAL_BUS | scsi_id->ne->nodeid, scsi_id->sbp2_command_block_agent_addr + SBP2_DOORBELL_OFFSET, 0, cpu_to_be32(command->command_orb_dma)); if (!command_request_packet) { SBP2_ERR("sbp2util_allocate_write_request_packet failed"); return(-EIO); } SBP2_ORB_DEBUG("ring doorbell, command orb %p", command_orb); if (!hpsb_send_packet(command_request_packet->packet)) { SBP2_ERR("hpsb_send_packet failed"); sbp2util_free_request_packet(command_request_packet); return(-EIO); } } scsi_id->last_orb = command_orb; } return(0); } /* * This function is called in order to begin a regular SBP-2 command. */ static int sbp2_send_command(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id, Scsi_Cmnd *SCpnt, void (*done)(Scsi_Cmnd *)) { unchar *cmd = (unchar *) SCpnt->cmnd; u32 device_type = (scsi_id->sbp2_device_type_and_lun & 0x00ff0000) >> 16; struct sbp2_command_info *command; SBP2_DEBUG("sbp2_send_command"); SBP2_DEBUG("SCSI command = %02x", *cmd); SBP2_DEBUG("SCSI transfer size = %x", SCpnt->request_bufflen); SBP2_DEBUG("SCSI s/g elements = %x", (unsigned int)SCpnt->use_sg); /* * Check for broken devices that can't handle greater than 128K * transfers, and deal with them in a hacked ugly way. */ if ((scsi_id->sbp2_firmware_revision == SBP2_128KB_BROKEN_FIRMWARE) && (SCpnt->request_bufflen > SBP2_BROKEN_FIRMWARE_MAX_TRANSFER) && (device_type == TYPE_DISK) && (SCpnt->use_sg) && (*cmd == 0x28 || *cmd == 0x2a || *cmd == 0x0a || *cmd == 0x08)) { /* * Darn, a broken device. We'll need to split up the * transfer ourselves. */ sbp2_send_split_command(hi, scsi_id, SCpnt, done); return(0); } /* * Allocate a command orb and s/g structure */ command = sbp2util_allocate_command_orb(scsi_id, SCpnt, done, hi); if (!command) { return(-EIO); } /* * Now actually fill in the comamnd orb and sbp2 s/g list */ sbp2_create_command_orb(hi, scsi_id, command, cmd, SCpnt->use_sg, SCpnt->request_bufflen, SCpnt->request_buffer, scsi_to_pci_dma_dir(SCpnt->sc_data_direction)); /* * Update our cdb if necessary (to handle sbp2 RBC command set * differences). This is where the command set hacks go! =) */ if ((device_type == TYPE_DISK) || (device_type == TYPE_SDAD) || (device_type == TYPE_ROM)) { sbp2_check_sbp2_command(command->command_orb.cdb); } /* * Initialize status fifo */ memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block)); /* * Link up the orb, and ring the doorbell if needed */ sbp2_link_orb_command(hi, scsi_id, command); return(0); } /* * This function is called for broken sbp2 device, where we have to break * up large transfers. */ static int sbp2_send_split_command(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id, Scsi_Cmnd *SCpnt, void (*done)(Scsi_Cmnd *)) { unchar *cmd = (unchar *) SCpnt->cmnd; struct scatterlist *sgpnt = (struct scatterlist *) SCpnt->request_buffer; struct sbp2_command_info *command; unsigned int i, block_count, block_address, block_size; unsigned int current_sg = 0; unsigned int total_transfer = 0; unsigned int total_sg = 0; unchar new_cmd[12]; memset(new_cmd, 0, 12); memcpy(new_cmd, cmd, COMMAND_SIZE(*cmd)); /* * Turns command into 10 byte version */ sbp2_check_sbp2_command(new_cmd); /* * Pull block size, block address, block count from command sent down */ block_count = (cmd[7] << 8) | cmd[8]; block_address = (cmd[2] << 24) | (cmd[3] << 16) | (cmd[4] << 8) | cmd[5]; block_size = SCpnt->request_bufflen/block_count; /* * Walk the scsi s/g list to determine how much we can transfer in one pop */ for (i=0; iuse_sg; i++) { total_transfer+=sgpnt[i].length; total_sg++; if (total_transfer > SBP2_BROKEN_FIRMWARE_MAX_TRANSFER) { /* * Back everything up one, so that we're less than 128KB */ total_transfer-=sgpnt[i].length; total_sg--; i--; command = sbp2util_allocate_command_orb(scsi_id, SCpnt, done, hi); if (!command) { return(-EIO); } /* * This is not the final piece, so mark it as linked */ command->linked = 1; block_count = total_transfer/block_size; new_cmd[2] = (unchar) (block_address >> 24) & 0xff; new_cmd[3] = (unchar) (block_address >> 16) & 0xff; new_cmd[4] = (unchar) (block_address >> 8) & 0xff; new_cmd[5] = (unchar) block_address & 0xff; new_cmd[7] = (unchar) (block_count >> 8) & 0xff; new_cmd[8] = (unchar) block_count & 0xff; block_address+=block_count; sbp2_create_command_orb(hi, scsi_id, command, new_cmd, total_sg, total_transfer, &sgpnt[current_sg], scsi_to_pci_dma_dir(SCpnt->sc_data_direction)); /* * Link up the orb, and ring the doorbell if needed */ memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block)); sbp2_link_orb_command(hi, scsi_id, command); current_sg += total_sg; total_sg = 0; total_transfer = 0; } } /* * Get the last piece... */ command = sbp2util_allocate_command_orb(scsi_id, SCpnt, done, hi); if (!command) { return(-EIO); } block_count = total_transfer/block_size; new_cmd[2] = (unchar) (block_address >> 24) & 0xff; new_cmd[3] = (unchar) (block_address >> 16) & 0xff; new_cmd[4] = (unchar) (block_address >> 8) & 0xff; new_cmd[5] = (unchar) block_address & 0xff; new_cmd[7] = (unchar) (block_count >> 8) & 0xff; new_cmd[8] = (unchar) block_count & 0xff; sbp2_create_command_orb(hi, scsi_id, command, new_cmd, total_sg, total_transfer, &sgpnt[current_sg], scsi_to_pci_dma_dir(SCpnt->sc_data_direction)); /* * Link up the orb, and ring the doorbell if needed */ memset(&scsi_id->status_block, 0, sizeof(struct sbp2_status_block)); sbp2_link_orb_command(hi, scsi_id, command); return(0); } /* * This function deals with command set differences between Linux scsi * command set and sbp2 RBC command set. */ static void sbp2_check_sbp2_command(unchar *cmd) { unchar new_cmd[16]; SBP2_DEBUG("sbp2_check_sbp2_command"); switch (*cmd) { case READ_6: SBP2_DEBUG("Convert READ_6 to READ_10"); /* * Need to turn read_6 into read_10 */ new_cmd[0] = 0x28; new_cmd[1] = (cmd[1] & 0xe0); new_cmd[2] = 0x0; new_cmd[3] = (cmd[1] & 0x1f); new_cmd[4] = cmd[2]; new_cmd[5] = cmd[3]; new_cmd[6] = 0x0; new_cmd[7] = 0x0; new_cmd[8] = cmd[4]; new_cmd[9] = cmd[5]; memcpy(cmd, new_cmd, 10); break; case WRITE_6: SBP2_DEBUG("Convert WRITE_6 to WRITE_10"); /* * Need to turn write_6 into write_10 */ new_cmd[0] = 0x2a; new_cmd[1] = (cmd[1] & 0xe0); new_cmd[2] = 0x0; new_cmd[3] = (cmd[1] & 0x1f); new_cmd[4] = cmd[2]; new_cmd[5] = cmd[3]; new_cmd[6] = 0x0; new_cmd[7] = 0x0; new_cmd[8] = cmd[4]; new_cmd[9] = cmd[5]; memcpy(cmd, new_cmd, 10); break; case MODE_SENSE: SBP2_DEBUG("Convert MODE_SENSE_6 to MOSE_SENSE_10"); /* * Need to turn mode_sense_6 into mode_sense_10 */ new_cmd[0] = 0x5a; new_cmd[1] = cmd[1]; new_cmd[2] = cmd[2]; new_cmd[3] = 0x0; new_cmd[4] = 0x0; new_cmd[5] = 0x0; new_cmd[6] = 0x0; new_cmd[7] = 0x0; new_cmd[8] = cmd[4]; new_cmd[9] = cmd[5]; memcpy(cmd, new_cmd, 10); break; case MODE_SELECT: /* * TODO. Probably need to change mode select to 10 byte version */ default: break; } return; } /* * Translates SBP-2 status into SCSI sense data for check conditions */ static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status, unchar *sense_data) { SBP2_DEBUG("sbp2_status_to_sense_data"); /* * Ok, it's pretty ugly... ;-) */ sense_data[0] = 0x70; sense_data[1] = 0x0; sense_data[2] = sbp2_status[9]; sense_data[3] = sbp2_status[12]; sense_data[4] = sbp2_status[13]; sense_data[5] = sbp2_status[14]; sense_data[6] = sbp2_status[15]; sense_data[7] = 10; sense_data[8] = sbp2_status[16]; sense_data[9] = sbp2_status[17]; sense_data[10] = sbp2_status[18]; sense_data[11] = sbp2_status[19]; sense_data[12] = sbp2_status[10]; sense_data[13] = sbp2_status[11]; sense_data[14] = sbp2_status[20]; sense_data[15] = sbp2_status[21]; return(sbp2_status[8] & 0x3f); /* return scsi status */ } /* * This function is called after a command is completed, in order to do any necessary SBP-2 * response data translations for the SCSI stack */ static void sbp2_check_sbp2_response(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id, Scsi_Cmnd *SCpnt) { u8 *scsi_buf = SCpnt->request_buffer; u32 device_type = (scsi_id->sbp2_device_type_and_lun & 0x00ff0000) >> 16; SBP2_DEBUG("sbp2_check_sbp2_response"); switch (SCpnt->cmnd[0]) { case INQUIRY: SBP2_DEBUG("Check Inquiry data"); /* * Check for Simple Direct Access Device and change it to TYPE_DISK */ if ((scsi_buf[0] & 0x1f) == TYPE_SDAD) { SBP2_DEBUG("Changing TYPE_SDAD to TYPE_DISK"); scsi_buf[0] &= 0xe0; } /* * Fix ansi revision and response data format */ scsi_buf[2] |= 2; scsi_buf[3] = (scsi_buf[3] & 0xf0) | 2; break; case MODE_SENSE: if ((device_type == TYPE_DISK) || (device_type == TYPE_SDAD) || (device_type == TYPE_ROM)) { SBP2_DEBUG("Modify mode sense response (10 byte version)"); scsi_buf[0] = scsi_buf[1]; /* Mode data length */ scsi_buf[1] = scsi_buf[2]; /* Medium type */ scsi_buf[2] = scsi_buf[3]; /* Device specific parameter */ scsi_buf[3] = scsi_buf[7]; /* Block descriptor length */ memcpy(scsi_buf + 4, scsi_buf + 8, scsi_buf[0]); } break; case MODE_SELECT: /* * TODO. Probably need to change mode select to 10 byte version */ default: break; } return; } /* * This function deals with status writes from the SBP-2 device */ static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid, int destid, quadlet_t *data, u64 addr, unsigned int length) { struct sbp2scsi_host_info *hi = NULL; struct scsi_id_instance_data *scsi_id = NULL; int i; unsigned long flags; Scsi_Cmnd *SCpnt = NULL; u32 scsi_status = SBP2_SCSI_STATUS_GOOD; struct sbp2_command_info *command; SBP2_DEBUG("sbp2_handle_status_write"); if (!host) { SBP2_ERR("host is NULL - this is bad!"); return(RCODE_ADDRESS_ERROR); } sbp2_spin_lock(&sbp2_host_info_lock, flags); hi = sbp2_find_host_info(host); sbp2_spin_unlock(&sbp2_host_info_lock, flags); if (!hi) { SBP2_ERR("host info is NULL - this is bad!"); return(RCODE_ADDRESS_ERROR); } sbp2_spin_lock(&hi->sbp2_command_lock, flags); /* * Find our scsi_id structure */ for (i=0; iscsi_id[i]) { if ((hi->scsi_id[i]->ne->nodeid & NODE_MASK) == (nodeid & NODE_MASK)) { scsi_id = hi->scsi_id[i]; SBP2_DEBUG("SBP-2 status write from node %x", scsi_id->ne->nodeid); break; } } } if (!scsi_id) { SBP2_ERR("scsi_id is NULL - device is gone?"); sbp2_spin_unlock(&hi->sbp2_command_lock, flags); return(RCODE_ADDRESS_ERROR); } /* * Put response into scsi_id status fifo... */ memcpy(&scsi_id->status_block, data, length); /* * Byte swap first two quadlets (8 bytes) of status for processing */ sbp2util_be32_to_cpu_buffer(&scsi_id->status_block, 8); /* * Handle command ORB status here if necessary. First, need to match status with command. */ command = sbp2util_find_command_for_orb(scsi_id, scsi_id->status_block.ORB_offset_lo); if (command) { SBP2_DEBUG("Found status for command ORB"); SBP2_ORB_DEBUG("matched command orb %p", &command->command_orb); outstanding_orb_decr; /* * Matched status with command, now grab scsi command pointers and check status */ SCpnt = command->Current_SCpnt; sbp2util_mark_command_completed(scsi_id, command); if (SCpnt && !command->linked) { /* * Handle check conditions */ if (STATUS_GET_SBP_STATUS(scsi_id->status_block.ORB_offset_hi_misc)) { SBP2_DEBUG("CHECK CONDITION"); /* * Translate SBP-2 status to SCSI sense data */ scsi_status = sbp2_status_to_sense_data((unchar *)&scsi_id->status_block, SCpnt->sense_buffer); /* * Initiate a fetch agent reset. */ sbp2_agent_reset(hi, scsi_id, SBP2_SEND_NO_WAIT); } SBP2_ORB_DEBUG("completing command orb %p", &command->command_orb); /* * Complete the SCSI command */ SBP2_DEBUG("Completing SCSI command"); sbp2scsi_complete_command(hi, scsi_id, scsi_status, SCpnt, command->Current_done); SBP2_ORB_DEBUG("command orb completed"); } /* * Check here to see if there are no commands in-use. If there are none, we can * null out last orb so that next time around we write directly to the orb pointer... * Quick start saves one 1394 bus transaction. */ if (list_empty(&scsi_id->sbp2_command_orb_inuse)) { scsi_id->last_orb = NULL; } } sbp2_spin_unlock(&hi->sbp2_command_lock, flags); wake_up(&scsi_id->sbp2_login_wait); return(RCODE_COMPLETE); } /************************************** * SCSI interface related section **************************************/ /* * This routine is the main request entry routine for doing I/O. It is * called from the scsi stack directly. */ static int sbp2scsi_queuecommand (Scsi_Cmnd *SCpnt, void (*done)(Scsi_Cmnd *)) { struct sbp2scsi_host_info *hi = NULL; struct scsi_id_instance_data *scsi_id = NULL; unsigned long flags; SBP2_DEBUG("sbp2scsi_queuecommand"); /* * Pull our host info and scsi id instance data from the scsi command */ hi = (struct sbp2scsi_host_info *) SCpnt->host->hostdata[0]; if (!hi) { SBP2_ERR("sbp2scsi_host_info is NULL - this is bad!"); SCpnt->result = DID_NO_CONNECT << 16; done (SCpnt); return(0); } scsi_id = hi->scsi_id[SCpnt->target]; /* * If scsi_id is null, it means there is no device in this slot, * so we should return selection timeout. */ if (!scsi_id) { SCpnt->result = DID_NO_CONNECT << 16; done (SCpnt); return(0); } /* * Until we handle multiple luns, just return selection time-out * to any IO directed at non-zero LUNs */ if (SCpnt->lun) { SCpnt->result = DID_NO_CONNECT << 16; done (SCpnt); return(0); } /* * Check for request sense command, and handle it here * (autorequest sense) */ if (SCpnt->cmnd[0] == REQUEST_SENSE) { SBP2_DEBUG("REQUEST_SENSE"); memcpy(SCpnt->request_buffer, SCpnt->sense_buffer, SCpnt->request_bufflen); memset(SCpnt->sense_buffer, 0, sizeof(SCpnt->sense_buffer)); sbp2scsi_complete_command(hi, scsi_id, SBP2_SCSI_STATUS_GOOD, SCpnt, done); return(0); } /* * Check to see if there is a command in progress and just return * busy (to be queued later) */ if (!hpsb_node_entry_valid(scsi_id->ne)) { SBP2_ERR("Bus reset in progress - rejecting command"); SCpnt->result = DID_BUS_BUSY << 16; done (SCpnt); return(0); } /* * Try and send our SCSI command */ sbp2_spin_lock(&hi->sbp2_command_lock, flags); if (sbp2_send_command(hi, scsi_id, SCpnt, done)) { SBP2_ERR("Error sending SCSI command"); sbp2scsi_complete_command(hi, scsi_id, SBP2_SCSI_STATUS_SELECTION_TIMEOUT, SCpnt, done); } sbp2_spin_unlock(&hi->sbp2_command_lock, flags); return(0); } /* * This function is called in order to complete all outstanding SBP-2 * commands (in case of resets, etc.). */ static void sbp2scsi_complete_all_commands(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id, u32 status) { struct list_head *lh; struct sbp2_command_info *command; SBP2_DEBUG("sbp2_complete_all_commands"); while (!list_empty(&scsi_id->sbp2_command_orb_inuse)) { SBP2_DEBUG("Found pending command to complete"); lh = scsi_id->sbp2_command_orb_inuse.next; command = list_entry(lh, struct sbp2_command_info, list); sbp2util_mark_command_completed(scsi_id, command); if (command->Current_SCpnt && !command->linked) { void (*done)(Scsi_Cmnd *) = command->Current_done; command->Current_SCpnt->result = status << 16; done (command->Current_SCpnt); } } return; } /* * This function is called in order to complete a regular SBP-2 command. */ static void sbp2scsi_complete_command(struct sbp2scsi_host_info *hi, struct scsi_id_instance_data *scsi_id, u32 scsi_status, Scsi_Cmnd *SCpnt, void (*done)(Scsi_Cmnd *)) { SBP2_DEBUG("sbp2scsi_complete_command"); /* * Sanity */ if (!SCpnt) { SBP2_ERR("SCpnt is NULL"); return; } /* * If a bus reset is in progress and there was an error, don't * complete the command, just let it get retried at the end of the * bus reset. */ if (!hpsb_node_entry_valid(scsi_id->ne) && (scsi_status != SBP2_SCSI_STATUS_GOOD)) { SBP2_ERR("Bus reset in progress - retry command later"); return; } /* * Switch on scsi status */ switch (scsi_status) { case SBP2_SCSI_STATUS_GOOD: SCpnt->result = DID_OK; break; case SBP2_SCSI_STATUS_BUSY: SBP2_ERR("SBP2_SCSI_STATUS_BUSY"); SCpnt->result = DID_BUS_BUSY << 16; break; case SBP2_SCSI_STATUS_CHECK_CONDITION: SBP2_DEBUG("SBP2_SCSI_STATUS_CHECK_CONDITION"); SCpnt->result = CHECK_CONDITION << 1; /* * Debug stuff */ print_sense("bh", SCpnt); break; case SBP2_SCSI_STATUS_SELECTION_TIMEOUT: SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT"); SCpnt->result = DID_NO_CONNECT << 16; break; case SBP2_SCSI_STATUS_CONDITION_MET: case SBP2_SCSI_STATUS_RESERVATION_CONFLICT: case SBP2_SCSI_STATUS_COMMAND_TERMINATED: SBP2_ERR("Bad SCSI status = %x", scsi_status); SCpnt->result = DID_ERROR << 16; break; default: SBP2_ERR("Unsupported SCSI status = %x", scsi_status); SCpnt->result = DID_ERROR << 16; } /* * Take care of any sbp2 response data mucking here (RBC stuff, etc.) */ if (SCpnt->result == DID_OK) { sbp2_check_sbp2_response(hi, scsi_id, SCpnt); } /* * One more quick hack (not enabled by default). Some sbp2 devices * do not support mode sense. Turn-on this hack to allow the * device to pass the sd driver's write-protect test (so that you * can mount the device rw). */ if (mode_sense_hack && SCpnt->result != DID_OK && SCpnt->cmnd[0] == MODE_SENSE) { SBP2_INFO("Returning success to mode sense command"); SCpnt->result = DID_OK; SCpnt->sense_buffer[0] = 0; memset (SCpnt->request_buffer, 0, 8); } /* * If a bus reset is in progress and there was an error, complete * the command as busy so that it will get retried. */ if (!hpsb_node_entry_valid(scsi_id->ne) && (scsi_status != SBP2_SCSI_STATUS_GOOD)) { SBP2_ERR("Completing command with busy (bus reset)"); SCpnt->result = DID_BUS_BUSY << 16; } /* * If a unit attention occurs, return busy status so it gets * retried... it could have happened because of a 1394 bus reset * or hot-plug... */ if ((scsi_status == SBP2_SCSI_STATUS_CHECK_CONDITION) && (SCpnt->sense_buffer[2] == UNIT_ATTENTION)) { SBP2_INFO("UNIT ATTENTION - return busy"); SCpnt->result = DID_BUS_BUSY << 16; } /* * Tell scsi stack that we're done with this command */ spin_lock_irq(&io_request_lock); done (SCpnt); spin_unlock_irq(&io_request_lock); return; } /* * Called by scsi stack when something has really gone wrong. Usually * called when a command has timed-out for some reason. */ static int sbp2scsi_abort (Scsi_Cmnd *SCpnt) { struct sbp2scsi_host_info *hi = (struct sbp2scsi_host_info *) SCpnt->host->hostdata[0]; struct scsi_id_instance_data *scsi_id = hi->scsi_id[SCpnt->target]; struct sbp2_command_info *command; unsigned long flags; SBP2_ERR("aborting sbp2 command"); if (scsi_id) { /* * Right now, just return any matching command structures * to the free pool (there may be more than one because of * broken up/linked commands). */ sbp2_spin_lock(&hi->sbp2_command_lock, flags); do { command = sbp2util_find_command_for_SCpnt(scsi_id, SCpnt); if (command) { SBP2_DEBUG("Found command to abort"); sbp2util_mark_command_completed(scsi_id, command); if (command->Current_SCpnt && !command->linked) { void (*done)(Scsi_Cmnd *) = command->Current_done; command->Current_SCpnt->result = DID_ABORT << 16; done (command->Current_SCpnt); } } } while (command); /* * Initiate a fetch agent reset. */ sbp2_agent_reset(hi, scsi_id, SBP2_SEND_NO_WAIT); sbp2scsi_complete_all_commands(hi, scsi_id, DID_BUS_BUSY); sbp2_spin_unlock(&hi->sbp2_command_lock, flags); } return(SCSI_ABORT_SUCCESS); } /* * Called by scsi stack when something has really gone wrong. */ static int sbp2scsi_reset (Scsi_Cmnd *SCpnt, unsigned int reset_flags) { struct sbp2scsi_host_info *hi = (struct sbp2scsi_host_info *) SCpnt->host->hostdata[0]; SBP2_ERR("reset requested"); if (hi) { SBP2_ERR("Generating IEEE-1394 bus reset"); hpsb_reset_bus(hi->host, LONG_RESET); } return(SCSI_RESET_SUCCESS); } /* * Called by scsi stack to get bios parameters (used by fdisk, and at boot). */ static int sbp2scsi_biosparam (Scsi_Disk *disk, kdev_t dev, int geom[]) { int heads, sectors, cylinders; SBP2_DEBUG("Request for bios parameters"); heads = 64; sectors = 32; cylinders = disk->capacity / (heads * sectors); if (cylinders > 1024) { heads = 255; sectors = 63; cylinders = disk->capacity / (heads * sectors); } geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; return(0); } static int sbp2scsi_detect (Scsi_Host_Template *tpnt) { SBP2_DEBUG("sbp2scsi_detect"); /* * Call sbp2_init to register with the ieee1394 stack. This * results in a callback to sbp2_add_host for each ieee1394 * host controller currently registered, and for each of those * we register a scsi host with the scsi stack. */ sbp2_init(); /* We return the number of hosts registered. */ return sbp2_host_count; } MODULE_AUTHOR("James Goodwin "); MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver"); MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME); MODULE_LICENSE("GPL"); /* SCSI host template */ static Scsi_Host_Template scsi_driver_template = { name: "IEEE-1394 SBP-2 protocol driver", detect: sbp2scsi_detect, queuecommand: sbp2scsi_queuecommand, abort: sbp2scsi_abort, reset: sbp2scsi_reset, bios_param: sbp2scsi_biosparam, can_queue: SBP2SCSI_MAX_OUTSTANDING_CMDS, this_id: -1, sg_tablesize: SBP2_MAX_SG_ELEMENTS, cmd_per_lun: SBP2SCSI_MAX_CMDS_PER_LUN, use_clustering: SBP2_CLUSTERING, emulated: 1, module: THIS_MODULE, #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,26) proc_name: SBP2_DEVICE_NAME #endif }; static int sbp2_module_init(void) { SBP2_DEBUG("sbp2_module_init"); /* * Module load option for force one command at a time */ if (serialize_io) { SBP2_ERR("Driver forced to serialize I/O (serialize_io = 1)"); scsi_driver_template.can_queue = 1; scsi_driver_template.cmd_per_lun = 1; } /* * Module load option to limit max size of requests from the * scsi drivers */ if (no_large_packets) { SBP2_ERR("Driver forced to limit max transfer size " "(no_large_packets = 1)"); scsi_driver_template.sg_tablesize = 0x1f; scsi_driver_template.use_clustering = DISABLE_CLUSTERING; } if (mode_sense_hack) { SBP2_ERR("Mode sense emulation enabled (mode_sense_hack = 1)"); } /* * Ideally we would register our scsi_driver_template with the * scsi stack and after that register with the ieee1394 stack * and process the add_host callbacks. However, the detect * function in the scsi host template requires that we find at * least one host, so we "nest" the registrations by calling * sbp2_init from the detect function. */ if (scsi_register_module(MODULE_SCSI_HA, &scsi_driver_template) || !scsi_driver_template.present) { SBP2_ERR("Please load the lower level IEEE-1394 driver " "(e.g. ohci1394) before sbp2..."); sbp2_cleanup(); return -ENODEV; } return 0; } static void __exit sbp2_module_exit(void) { SBP2_DEBUG("sbp2_module_exit"); /* * On module unload we unregister with the ieee1394 stack * which results in remove_host callbacks for all ieee1394 * host controllers. In the callbacks we unregister the * corresponding scsi hosts. */ sbp2_cleanup(); if (scsi_unregister_module(MODULE_SCSI_HA, &scsi_driver_template)) SBP2_ERR("sbp2_module_exit: couldn't unregister scsi driver"); } module_init(sbp2_module_init); module_exit(sbp2_module_exit);