/* * IEEE 1394 for Linux * * Transaction support. * * Copyright (C) 1999 Andreas E. Bombe * * This code is licensed under the GPL. See the file COPYING in the root * directory of the kernel sources for details. */ #include #include #include #include "ieee1394.h" #include "ieee1394_types.h" #include "hosts.h" #include "ieee1394_core.h" #include "highlevel.h" #define PREP_ASYNC_HEAD_ADDRESS(tc) \ packet->tcode = tc; \ packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \ | (1 << 8) | (tc << 4); \ packet->header[1] = (packet->host->node_id << 16) | (addr >> 32); \ packet->header[2] = addr & 0xffffffff #define PREP_ASYNC_HEAD_RCODE(tc) \ packet->tcode = tc; \ packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \ | (1 << 8) | (tc << 4); \ packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \ packet->header[2] = 0 void fill_async_readquad(struct hpsb_packet *packet, u64 addr) { PREP_ASYNC_HEAD_ADDRESS(TCODE_READQ); packet->header_size = 12; packet->data_size = 0; packet->expect_response = 1; } void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode, quadlet_t data) { PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE); packet->header[3] = data; packet->header_size = 16; packet->data_size = 0; } void fill_async_readblock(struct hpsb_packet *packet, u64 addr, int length) { PREP_ASYNC_HEAD_ADDRESS(TCODE_READB); packet->header[3] = length << 16; packet->header_size = 16; packet->data_size = 0; packet->expect_response = 1; } void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode, int length) { if (rcode != RCODE_COMPLETE) { length = 0; } PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE); packet->header[3] = length << 16; packet->header_size = 16; packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0); } void fill_async_writequad(struct hpsb_packet *packet, u64 addr, quadlet_t data) { PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEQ); packet->header[3] = data; packet->header_size = 16; packet->data_size = 0; packet->expect_response = 1; } void fill_async_writeblock(struct hpsb_packet *packet, u64 addr, int length) { PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEB); packet->header[3] = length << 16; packet->header_size = 16; packet->expect_response = 1; packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0); } void fill_async_write_resp(struct hpsb_packet *packet, int rcode) { PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE); packet->header[2] = 0; packet->header_size = 12; packet->data_size = 0; } void fill_async_lock(struct hpsb_packet *packet, u64 addr, int extcode, int length) { PREP_ASYNC_HEAD_ADDRESS(TCODE_LOCK_REQUEST); packet->header[3] = (length << 16) | extcode; packet->header_size = 16; packet->data_size = length; packet->expect_response = 1; } void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode, int length) { if (rcode != RCODE_COMPLETE) { length = 0; } PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE); packet->header[3] = (length << 16) | extcode; packet->header_size = 16; packet->data_size = length; } void fill_iso_packet(struct hpsb_packet *packet, int length, int channel, int tag, int sync) { packet->header[0] = (length << 16) | (tag << 14) | (channel << 8) | (TCODE_ISO_DATA << 4) | sync; packet->header_size = 4; packet->data_size = length; packet->type = hpsb_iso; packet->tcode = TCODE_ISO_DATA; } void fill_phy_packet(struct hpsb_packet *packet, quadlet_t data) { packet->header[0] = data; packet->header[1] = ~data; packet->header_size = 8; packet->data_size = 0; packet->expect_response = 0; packet->type = hpsb_raw; /* No CRC added */ packet->speed_code = SPEED_100; /* Force speed to be 100Mbps */ } /** * get_tlabel - allocate a transaction label * @host: host to be used for transmission * @nodeid: the node ID of the transmission target * @wait: whether to sleep if no tlabel is available * * Every asynchronous transaction on the 1394 bus needs a transaction label to * match the response to the request. This label has to be different from any * other transaction label in an outstanding request to the same node to make * matching possible without ambiguity. * * There are 64 different tlabels, so an allocated tlabel has to be freed with * free_tlabel() after the transaction is complete (unless it's reused again for * the same target node). * * @wait must not be set to true if you are calling from interrupt context. * * Return value: The allocated transaction label or -1 if there was no free * tlabel and @wait is false. */ int get_tlabel(struct hpsb_host *host, nodeid_t nodeid, int wait) { int tlabel; unsigned long flags; if (wait) { down(&host->tlabel_count); } else { if (down_trylock(&host->tlabel_count)) return -1; } spin_lock_irqsave(&host->tlabel_lock, flags); if (host->tlabel_pool[0] != ~0) { tlabel = ffz(host->tlabel_pool[0]); host->tlabel_pool[0] |= 1 << tlabel; } else { tlabel = ffz(host->tlabel_pool[1]); host->tlabel_pool[1] |= 1 << tlabel; tlabel += 32; } spin_unlock_irqrestore(&host->tlabel_lock, flags); return tlabel; } /** * free_tlabel - free an allocated transaction label * @host: host to be used for transmission * @nodeid: the node ID of the transmission target * @tlabel: the transaction label to free * * Frees the transaction label allocated with get_tlabel(). The tlabel has to * be freed after the transaction is complete (i.e. response was received for a * split transaction or packet was sent for a unified transaction). * * A tlabel must not be freed twice. */ void free_tlabel(struct hpsb_host *host, nodeid_t nodeid, int tlabel) { unsigned long flags; spin_lock_irqsave(&host->tlabel_lock, flags); if (tlabel < 32) { host->tlabel_pool[0] &= ~(1 << tlabel); } else { host->tlabel_pool[1] &= ~(1 << (tlabel-32)); } spin_unlock_irqrestore(&host->tlabel_lock, flags); up(&host->tlabel_count); } int hpsb_packet_success(struct hpsb_packet *packet) { switch (packet->ack_code) { case ACK_PENDING: switch ((packet->header[1] >> 12) & 0xf) { case RCODE_COMPLETE: return 0; case RCODE_CONFLICT_ERROR: return -EAGAIN; case RCODE_DATA_ERROR: return -EREMOTEIO; case RCODE_TYPE_ERROR: return -EACCES; case RCODE_ADDRESS_ERROR: return -EINVAL; default: HPSB_ERR("received reserved rcode %d from node %d", (packet->header[1] >> 12) & 0xf, packet->node_id); return -EAGAIN; } HPSB_PANIC("reached unreachable code 1 in " __FUNCTION__); case ACK_BUSY_X: case ACK_BUSY_A: case ACK_BUSY_B: return -EBUSY; case ACK_TYPE_ERROR: return -EACCES; case ACK_COMPLETE: if (packet->tcode == TCODE_WRITEQ || packet->tcode == TCODE_WRITEB) { return 0; } else { HPSB_ERR("impossible ack_complete from node %d " "(tcode %d)", packet->node_id, packet->tcode); return -EAGAIN; } case ACK_DATA_ERROR: if (packet->tcode == TCODE_WRITEB || packet->tcode == TCODE_LOCK_REQUEST) { return -EAGAIN; } else { HPSB_ERR("impossible ack_data_error from node %d " "(tcode %d)", packet->node_id, packet->tcode); return -EAGAIN; } case ACKX_NONE: case ACKX_SEND_ERROR: case ACKX_ABORTED: case ACKX_TIMEOUT: /* error while sending */ return -EAGAIN; default: HPSB_ERR("got invalid ack %d from node %d (tcode %d)", packet->ack_code, packet->node_id, packet->tcode); return -EAGAIN; } HPSB_PANIC("reached unreachable code 2 in " __FUNCTION__); } int hpsb_read_trylocal(struct hpsb_host *host, nodeid_t node, u64 addr, quadlet_t *buffer, size_t length) { if (host->node_id != node) return -1; return highlevel_read(host, node, buffer, addr, length); } struct hpsb_packet *hpsb_make_readqpacket(struct hpsb_host *host, nodeid_t node, u64 addr) { struct hpsb_packet *p; p = alloc_hpsb_packet(0); if (!p) return NULL; p->host = host; p->tlabel = get_tlabel(host, node, 1); p->node_id = node; fill_async_readquad(p, addr); return p; } struct hpsb_packet *hpsb_make_readbpacket(struct hpsb_host *host, nodeid_t node, u64 addr, size_t length) { struct hpsb_packet *p; p = alloc_hpsb_packet(length + (length % 4 ? 4 - (length % 4) : 0)); if (!p) return NULL; p->host = host; p->tlabel = get_tlabel(host, node, 1); p->node_id = node; fill_async_readblock(p, addr, length); return p; } struct hpsb_packet *hpsb_make_writeqpacket(struct hpsb_host *host, nodeid_t node, u64 addr, quadlet_t data) { struct hpsb_packet *p; p = alloc_hpsb_packet(0); if (!p) return NULL; p->host = host; p->tlabel = get_tlabel(host, node, 1); p->node_id = node; fill_async_writequad(p, addr, data); return p; } struct hpsb_packet *hpsb_make_writebpacket(struct hpsb_host *host, nodeid_t node, u64 addr, size_t length) { struct hpsb_packet *p; p = alloc_hpsb_packet(length + (length % 4 ? 4 - (length % 4) : 0)); if (!p) return NULL; if (length % 4) { p->data[length / 4] = 0; } p->host = host; p->tlabel = get_tlabel(host, node, 1); p->node_id = node; fill_async_writeblock(p, addr, length); return p; } struct hpsb_packet *hpsb_make_lockpacket(struct hpsb_host *host, nodeid_t node, u64 addr, int extcode) { struct hpsb_packet *p; p = alloc_hpsb_packet(8); if (!p) return NULL; p->host = host; p->tlabel = get_tlabel(host, node, 1); p->node_id = node; switch (extcode) { case EXTCODE_FETCH_ADD: case EXTCODE_LITTLE_ADD: fill_async_lock(p, addr, extcode, 4); break; default: fill_async_lock(p, addr, extcode, 8); break; } return p; } struct hpsb_packet *hpsb_make_phypacket(struct hpsb_host *host, quadlet_t data) { struct hpsb_packet *p; p = alloc_hpsb_packet(0); if (!p) return NULL; p->host = host; fill_phy_packet(p, data); return p; } /* * FIXME - these functions should probably read from / write to user space to * avoid in kernel buffers for user space callers */ int hpsb_read(struct hpsb_host *host, nodeid_t node, u64 addr, quadlet_t *buffer, size_t length) { struct hpsb_packet *packet; int retval = 0; if (length == 0) { return -EINVAL; } if (host->node_id == node) { switch(highlevel_read(host, node, buffer, addr, length)) { case RCODE_COMPLETE: return 0; case RCODE_TYPE_ERROR: return -EACCES; case RCODE_ADDRESS_ERROR: default: return -EINVAL; } } if (length == 4) { packet = hpsb_make_readqpacket(host, node, addr); } else { packet = hpsb_make_readbpacket(host, node, addr, length); } if (!packet) { return -ENOMEM; } packet->generation = get_hpsb_generation(host); if (!hpsb_send_packet(packet)) { retval = -EINVAL; goto hpsb_read_fail; } down(&packet->state_change); down(&packet->state_change); retval = hpsb_packet_success(packet); if (retval == 0) { if (length == 4) { *buffer = packet->header[3]; } else { memcpy(buffer, packet->data, length); } } hpsb_read_fail: free_tlabel(host, node, packet->tlabel); free_hpsb_packet(packet); return retval; } struct hpsb_packet *hpsb_make_packet (struct hpsb_host *host, nodeid_t node, u64 addr, quadlet_t *buffer, size_t length) { struct hpsb_packet *packet; if (length == 0) return NULL; if (length == 4) packet = hpsb_make_writeqpacket(host, node, addr, *buffer); else packet = hpsb_make_writebpacket(host, node, addr, length); if (!packet) return NULL; /* Sometimes this may be called without data, just to allocate the * packet. */ if (length != 4 && buffer) memcpy(packet->data, buffer, length); return packet; } int hpsb_write(struct hpsb_host *host, nodeid_t node, u64 addr, quadlet_t *buffer, size_t length) { struct hpsb_packet *packet; int retval; if (length == 0) return -EINVAL; if (host->node_id == node) { switch(highlevel_write(host, node, node, buffer, addr, length)) { case RCODE_COMPLETE: return 0; case RCODE_TYPE_ERROR: return -EACCES; case RCODE_ADDRESS_ERROR: default: return -EINVAL; } } packet = hpsb_make_packet (host, node, addr, buffer, length); if (!packet) return -ENOMEM; packet->generation = get_hpsb_generation(host); if (!hpsb_send_packet(packet)) { retval = -EINVAL; goto hpsb_write_fail; } down(&packet->state_change); down(&packet->state_change); retval = hpsb_packet_success(packet); hpsb_write_fail: free_tlabel(host, node, packet->tlabel); free_hpsb_packet(packet); return retval; } /* We need a hpsb_lock64 function for the 64 bit equivalent. Probably. */ int hpsb_lock(struct hpsb_host *host, nodeid_t node, u64 addr, int extcode, quadlet_t *data, quadlet_t arg) { struct hpsb_packet *packet; int retval = 0, length; if (host->node_id == node) { switch(highlevel_lock(host, node, data, addr, *data, arg, extcode)) { case RCODE_COMPLETE: return 0; case RCODE_TYPE_ERROR: return -EACCES; case RCODE_ADDRESS_ERROR: default: return -EINVAL; } } packet = alloc_hpsb_packet(8); if (!packet) { return -ENOMEM; } packet->host = host; packet->tlabel = get_tlabel(host, node, 1); packet->node_id = node; switch (extcode) { case EXTCODE_MASK_SWAP: case EXTCODE_COMPARE_SWAP: case EXTCODE_BOUNDED_ADD: case EXTCODE_WRAP_ADD: length = 8; packet->data[0] = arg; packet->data[1] = *data; break; case EXTCODE_FETCH_ADD: case EXTCODE_LITTLE_ADD: length = 4; packet->data[0] = *data; break; default: return -EINVAL; } fill_async_lock(packet, addr, extcode, length); packet->generation = get_hpsb_generation(host); if (!hpsb_send_packet(packet)) { retval = -EINVAL; goto hpsb_lock_fail; } down(&packet->state_change); down(&packet->state_change); retval = hpsb_packet_success(packet); if (retval == 0) { *data = packet->data[0]; } hpsb_lock_fail: free_tlabel(host, node, packet->tlabel); free_hpsb_packet(packet); return retval; }