/* * linux/drivers/ide/hd.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * This is the low-level hd interrupt support. It traverses the * request-list, using interrupts to jump between functions. As * all the functions are called within interrupts, we may not * sleep. Special care is recommended. * * modified by Drew Eckhardt to check nr of hd's from the CMOS. * * Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug * in the early extended-partition checks and added DM partitions * * IRQ-unmask, drive-id, multiple-mode, support for ">16 heads", * and general streamlining by Mark Lord. * * Removed 99% of above. Use Mark's ide driver for those options. * This is now a lightweight ST-506 driver. (Paul Gortmaker) * * Modified 1995 Russell King for ARM processor. * * Bugfix: max_sectors must be <= 255 or the wheels tend to come * off in a hurry once you queue things up - Paul G. 02/2001 */ /* Uncomment the following if you want verbose error reports. */ /* #define VERBOSE_ERRORS */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* CMOS defines */ #include #include #define REALLY_SLOW_IO #include #include #include #define MAJOR_NR HD_MAJOR #include #ifdef __arm__ #undef HD_IRQ #endif #include #ifdef __arm__ #define HD_IRQ IRQ_HARDDISK #endif static int revalidate_hddisk(kdev_t, int); #define HD_DELAY 0 #define MAX_ERRORS 16 /* Max read/write errors/sector */ #define RESET_FREQ 8 /* Reset controller every 8th retry */ #define RECAL_FREQ 4 /* Recalibrate every 4th retry */ #define MAX_HD 2 #define STAT_OK (READY_STAT|SEEK_STAT) #define OK_STATUS(s) (((s)&(STAT_OK|(BUSY_STAT|WRERR_STAT|ERR_STAT)))==STAT_OK) static void recal_intr(void); static void bad_rw_intr(void); static char recalibrate[MAX_HD]; static char special_op[MAX_HD]; static int access_count[MAX_HD]; static char busy[MAX_HD]; static DECLARE_WAIT_QUEUE_HEAD(busy_wait); static int reset; static int hd_error; #define SUBSECTOR(block) (CURRENT->current_nr_sectors > 0) /* * This struct defines the HD's and their types. */ struct hd_i_struct { unsigned int head,sect,cyl,wpcom,lzone,ctl; }; #ifdef HD_TYPE static struct hd_i_struct hd_info[] = { HD_TYPE }; static int NR_HD = ((sizeof (hd_info))/(sizeof (struct hd_i_struct))); #else static struct hd_i_struct hd_info[MAX_HD]; static int NR_HD; #endif static struct hd_struct hd[MAX_HD<<6]; static int hd_sizes[MAX_HD<<6]; static int hd_blocksizes[MAX_HD<<6]; static int hd_hardsectsizes[MAX_HD<<6]; static int hd_maxsect[MAX_HD<<6]; static struct timer_list device_timer; #define SET_TIMER \ do { \ mod_timer(&device_timer, jiffies + TIMEOUT_VALUE); \ } while (0) #define CLEAR_TIMER del_timer(&device_timer); #undef SET_INTR #define SET_INTR(x) \ if ((DEVICE_INTR = (x)) != NULL) \ SET_TIMER; \ else \ CLEAR_TIMER; #if (HD_DELAY > 0) unsigned long last_req; unsigned long read_timer(void) { unsigned long t, flags; int i; save_flags(flags); cli(); t = jiffies * 11932; outb_p(0, 0x43); i = inb_p(0x40); i |= inb(0x40) << 8; restore_flags(flags); return(t - i); } #endif void __init hd_setup(char *str, int *ints) { int hdind = 0; if (ints[0] != 3) return; if (hd_info[0].head != 0) hdind=1; hd_info[hdind].head = ints[2]; hd_info[hdind].sect = ints[3]; hd_info[hdind].cyl = ints[1]; hd_info[hdind].wpcom = 0; hd_info[hdind].lzone = ints[1]; hd_info[hdind].ctl = (ints[2] > 8 ? 8 : 0); NR_HD = hdind+1; } static void dump_status (const char *msg, unsigned int stat) { unsigned long flags; char devc; devc = !QUEUE_EMPTY ? 'a' + DEVICE_NR(CURRENT->rq_dev) : '?'; save_flags (flags); sti(); #ifdef VERBOSE_ERRORS printk("hd%c: %s: status=0x%02x { ", devc, msg, stat & 0xff); if (stat & BUSY_STAT) printk("Busy "); if (stat & READY_STAT) printk("DriveReady "); if (stat & WRERR_STAT) printk("WriteFault "); if (stat & SEEK_STAT) printk("SeekComplete "); if (stat & DRQ_STAT) printk("DataRequest "); if (stat & ECC_STAT) printk("CorrectedError "); if (stat & INDEX_STAT) printk("Index "); if (stat & ERR_STAT) printk("Error "); printk("}\n"); if ((stat & ERR_STAT) == 0) { hd_error = 0; } else { hd_error = inb(HD_ERROR); printk("hd%c: %s: error=0x%02x { ", devc, msg, hd_error & 0xff); if (hd_error & BBD_ERR) printk("BadSector "); if (hd_error & ECC_ERR) printk("UncorrectableError "); if (hd_error & ID_ERR) printk("SectorIdNotFound "); if (hd_error & ABRT_ERR) printk("DriveStatusError "); if (hd_error & TRK0_ERR) printk("TrackZeroNotFound "); if (hd_error & MARK_ERR) printk("AddrMarkNotFound "); printk("}"); if (hd_error & (BBD_ERR|ECC_ERR|ID_ERR|MARK_ERR)) { printk(", CHS=%d/%d/%d", (inb(HD_HCYL)<<8) + inb(HD_LCYL), inb(HD_CURRENT) & 0xf, inb(HD_SECTOR)); if (!QUEUE_EMPTY) printk(", sector=%ld", CURRENT->sector); } printk("\n"); } #else printk("hd%c: %s: status=0x%02x.\n", devc, msg, stat & 0xff); if ((stat & ERR_STAT) == 0) { hd_error = 0; } else { hd_error = inb(HD_ERROR); printk("hd%c: %s: error=0x%02x.\n", devc, msg, hd_error & 0xff); } #endif /* verbose errors */ restore_flags (flags); } void check_status(void) { int i = inb_p(HD_STATUS); if (!OK_STATUS(i)) { dump_status("check_status", i); bad_rw_intr(); } } static int controller_busy(void) { int retries = 100000; unsigned char status; do { status = inb_p(HD_STATUS); } while ((status & BUSY_STAT) && --retries); return status; } static int status_ok(void) { unsigned char status = inb_p(HD_STATUS); if (status & BUSY_STAT) return 1; /* Ancient, but does it make sense??? */ if (status & WRERR_STAT) return 0; if (!(status & READY_STAT)) return 0; if (!(status & SEEK_STAT)) return 0; return 1; } static int controller_ready(unsigned int drive, unsigned int head) { int retry = 100; do { if (controller_busy() & BUSY_STAT) return 0; outb_p(0xA0 | (drive<<4) | head, HD_CURRENT); if (status_ok()) return 1; } while (--retry); return 0; } static void hd_out(unsigned int drive,unsigned int nsect,unsigned int sect, unsigned int head,unsigned int cyl,unsigned int cmd, void (*intr_addr)(void)) { unsigned short port; #if (HD_DELAY > 0) while (read_timer() - last_req < HD_DELAY) /* nothing */; #endif if (reset) return; if (!controller_ready(drive, head)) { reset = 1; return; } SET_INTR(intr_addr); outb_p(hd_info[drive].ctl,HD_CMD); port=HD_DATA; outb_p(hd_info[drive].wpcom>>2,++port); outb_p(nsect,++port); outb_p(sect,++port); outb_p(cyl,++port); outb_p(cyl>>8,++port); outb_p(0xA0|(drive<<4)|head,++port); outb_p(cmd,++port); } static void hd_request (void); static int drive_busy(void) { unsigned int i; unsigned char c; for (i = 0; i < 500000 ; i++) { c = inb_p(HD_STATUS); if ((c & (BUSY_STAT | READY_STAT | SEEK_STAT)) == STAT_OK) return 0; } dump_status("reset timed out", c); return 1; } static void reset_controller(void) { int i; outb_p(4,HD_CMD); for(i = 0; i < 1000; i++) barrier(); outb_p(hd_info[0].ctl & 0x0f,HD_CMD); for(i = 0; i < 1000; i++) barrier(); if (drive_busy()) printk("hd: controller still busy\n"); else if ((hd_error = inb(HD_ERROR)) != 1) printk("hd: controller reset failed: %02x\n",hd_error); } static void reset_hd(void) { static int i; repeat: if (reset) { reset = 0; i = -1; reset_controller(); } else { check_status(); if (reset) goto repeat; } if (++i < NR_HD) { special_op[i] = recalibrate[i] = 1; hd_out(i,hd_info[i].sect,hd_info[i].sect,hd_info[i].head-1, hd_info[i].cyl,WIN_SPECIFY,&reset_hd); if (reset) goto repeat; } else hd_request(); } /* * Ok, don't know what to do with the unexpected interrupts: on some machines * doing a reset and a retry seems to result in an eternal loop. Right now I * ignore it, and just set the timeout. * * On laptops (and "green" PCs), an unexpected interrupt occurs whenever the * drive enters "idle", "standby", or "sleep" mode, so if the status looks * "good", we just ignore the interrupt completely. */ void unexpected_hd_interrupt(void) { unsigned int stat = inb_p(HD_STATUS); if (stat & (BUSY_STAT|DRQ_STAT|ECC_STAT|ERR_STAT)) { dump_status ("unexpected interrupt", stat); SET_TIMER; } } /* * bad_rw_intr() now tries to be a bit smarter and does things * according to the error returned by the controller. * -Mika Liljeberg (liljeber@cs.Helsinki.FI) */ static void bad_rw_intr(void) { int dev; if (QUEUE_EMPTY) return; dev = DEVICE_NR(CURRENT->rq_dev); if (++CURRENT->errors >= MAX_ERRORS || (hd_error & BBD_ERR)) { end_request(0); special_op[dev] = recalibrate[dev] = 1; } else if (CURRENT->errors % RESET_FREQ == 0) reset = 1; else if ((hd_error & TRK0_ERR) || CURRENT->errors % RECAL_FREQ == 0) special_op[dev] = recalibrate[dev] = 1; /* Otherwise just retry */ } static inline int wait_DRQ(void) { int retries = 100000, stat; while (--retries > 0) if ((stat = inb_p(HD_STATUS)) & DRQ_STAT) return 0; dump_status("wait_DRQ", stat); return -1; } static void read_intr(void) { int i, retries = 100000; do { i = (unsigned) inb_p(HD_STATUS); if (i & BUSY_STAT) continue; if (!OK_STATUS(i)) break; if (i & DRQ_STAT) goto ok_to_read; } while (--retries > 0); dump_status("read_intr", i); bad_rw_intr(); hd_request(); return; ok_to_read: insw(HD_DATA,CURRENT->buffer,256); CURRENT->sector++; CURRENT->buffer += 512; CURRENT->errors = 0; i = --CURRENT->nr_sectors; --CURRENT->current_nr_sectors; #ifdef DEBUG printk("hd%c: read: sector %ld, remaining = %ld, buffer=0x%08lx\n", dev+'a', CURRENT->sector, CURRENT->nr_sectors, (unsigned long) CURRENT->buffer+512)); #endif if (CURRENT->current_nr_sectors <= 0) end_request(1); if (i > 0) { SET_INTR(&read_intr); return; } (void) inb_p(HD_STATUS); #if (HD_DELAY > 0) last_req = read_timer(); #endif if (!QUEUE_EMPTY) hd_request(); return; } static void write_intr(void) { int i; int retries = 100000; do { i = (unsigned) inb_p(HD_STATUS); if (i & BUSY_STAT) continue; if (!OK_STATUS(i)) break; if ((CURRENT->nr_sectors <= 1) || (i & DRQ_STAT)) goto ok_to_write; } while (--retries > 0); dump_status("write_intr", i); bad_rw_intr(); hd_request(); return; ok_to_write: CURRENT->sector++; i = --CURRENT->nr_sectors; --CURRENT->current_nr_sectors; CURRENT->buffer += 512; if (!i || (CURRENT->bh && !SUBSECTOR(i))) end_request(1); if (i > 0) { SET_INTR(&write_intr); outsw(HD_DATA,CURRENT->buffer,256); sti(); } else { #if (HD_DELAY > 0) last_req = read_timer(); #endif hd_request(); } return; } static void recal_intr(void) { check_status(); #if (HD_DELAY > 0) last_req = read_timer(); #endif hd_request(); } /* * This is another of the error-routines I don't know what to do with. The * best idea seems to just set reset, and start all over again. */ static void hd_times_out(unsigned long dummy) { unsigned int dev; DEVICE_INTR = NULL; if (QUEUE_EMPTY) return; disable_irq(HD_IRQ); sti(); reset = 1; dev = DEVICE_NR(CURRENT->rq_dev); printk("hd%c: timeout\n", dev+'a'); if (++CURRENT->errors >= MAX_ERRORS) { #ifdef DEBUG printk("hd%c: too many errors\n", dev+'a'); #endif end_request(0); } cli(); hd_request(); enable_irq(HD_IRQ); } int do_special_op (unsigned int dev) { if (recalibrate[dev]) { recalibrate[dev] = 0; hd_out(dev,hd_info[dev].sect,0,0,0,WIN_RESTORE,&recal_intr); return reset; } if (hd_info[dev].head > 16) { printk ("hd%c: cannot handle device with more than 16 heads - giving up\n", dev+'a'); end_request(0); } special_op[dev] = 0; return 1; } /* * The driver enables interrupts as much as possible. In order to do this, * (a) the device-interrupt is disabled before entering hd_request(), * and (b) the timeout-interrupt is disabled before the sti(). * * Interrupts are still masked (by default) whenever we are exchanging * data/cmds with a drive, because some drives seem to have very poor * tolerance for latency during I/O. The IDE driver has support to unmask * interrupts for non-broken hardware, so use that driver if required. */ static void hd_request(void) { unsigned int dev, block, nsect, sec, track, head, cyl; if (!QUEUE_EMPTY && CURRENT->rq_status == RQ_INACTIVE) return; if (DEVICE_INTR) return; repeat: del_timer(&device_timer); sti(); INIT_REQUEST; if (reset) { cli(); reset_hd(); return; } dev = MINOR(CURRENT->rq_dev); block = CURRENT->sector; nsect = CURRENT->nr_sectors; if (dev >= (NR_HD<<6) || block >= hd[dev].nr_sects || ((block+nsect) > hd[dev].nr_sects)) { #ifdef DEBUG if (dev >= (NR_HD<<6)) printk("hd: bad minor number: device=%s\n", kdevname(CURRENT->rq_dev)); else printk("hd%c: bad access: block=%d, count=%d\n", (MINOR(CURRENT->rq_dev)>>6)+'a', block, nsect); #endif end_request(0); goto repeat; } block += hd[dev].start_sect; dev >>= 6; if (special_op[dev]) { if (do_special_op(dev)) goto repeat; return; } sec = block % hd_info[dev].sect + 1; track = block / hd_info[dev].sect; head = track % hd_info[dev].head; cyl = track / hd_info[dev].head; #ifdef DEBUG printk("hd%c: %sing: CHS=%d/%d/%d, sectors=%d, buffer=0x%08lx\n", dev+'a', (CURRENT->cmd == READ)?"read":"writ", cyl, head, sec, nsect, (unsigned long) CURRENT->buffer); #endif if (CURRENT->cmd == READ) { hd_out(dev,nsect,sec,head,cyl,WIN_READ,&read_intr); if (reset) goto repeat; return; } if (CURRENT->cmd == WRITE) { hd_out(dev,nsect,sec,head,cyl,WIN_WRITE,&write_intr); if (reset) goto repeat; if (wait_DRQ()) { bad_rw_intr(); goto repeat; } outsw(HD_DATA,CURRENT->buffer,256); return; } panic("unknown hd-command"); } static void do_hd_request (request_queue_t * q) { disable_irq(HD_IRQ); hd_request(); enable_irq(HD_IRQ); } static int hd_ioctl(struct inode * inode, struct file * file, unsigned int cmd, unsigned long arg) { struct hd_geometry *loc = (struct hd_geometry *) arg; int dev; if ((!inode) || !(inode->i_rdev)) return -EINVAL; dev = DEVICE_NR(inode->i_rdev); if (dev >= NR_HD) return -EINVAL; switch (cmd) { case HDIO_GETGEO: { struct hd_geometry g; if (!loc) return -EINVAL; g.heads = hd_info[dev].head; g.sectors = hd_info[dev].sect; g.cylinders = hd_info[dev].cyl; g.start = hd[MINOR(inode->i_rdev)].start_sect; return copy_to_user(loc, &g, sizeof g) ? -EFAULT : 0; } case BLKGETSIZE: /* Return device size */ return put_user(hd[MINOR(inode->i_rdev)].nr_sects, (unsigned long *) arg); case BLKGETSIZE64: return put_user((u64)hd[MINOR(inode->i_rdev)].nr_sects << 9, (u64 *) arg); case BLKRRPART: /* Re-read partition tables */ if (!capable(CAP_SYS_ADMIN)) return -EACCES; return revalidate_hddisk(inode->i_rdev, 1); case BLKROSET: case BLKROGET: case BLKRASET: case BLKRAGET: case BLKFLSBUF: case BLKPG: return blk_ioctl(inode->i_rdev, cmd, arg); default: return -EINVAL; } } static int hd_open(struct inode * inode, struct file * filp) { int target; target = DEVICE_NR(inode->i_rdev); if (target >= NR_HD) return -ENODEV; while (busy[target]) sleep_on(&busy_wait); access_count[target]++; return 0; } /* * Releasing a block device means we sync() it, so that it can safely * be forgotten about... */ static int hd_release(struct inode * inode, struct file * file) { int target = DEVICE_NR(inode->i_rdev); access_count[target]--; return 0; } extern struct block_device_operations hd_fops; static struct gendisk hd_gendisk = { major: MAJOR_NR, major_name: "hd", minor_shift: 6, max_p: 1 << 6, part: hd, sizes: hd_sizes, fops: &hd_fops, }; static void hd_interrupt(int irq, void *dev_id, struct pt_regs *regs) { void (*handler)(void) = DEVICE_INTR; DEVICE_INTR = NULL; del_timer(&device_timer); if (!handler) handler = unexpected_hd_interrupt; handler(); sti(); } static struct block_device_operations hd_fops = { open: hd_open, release: hd_release, ioctl: hd_ioctl, }; /* * This is the hard disk IRQ description. The SA_INTERRUPT in sa_flags * means we run the IRQ-handler with interrupts disabled: this is bad for * interrupt latency, but anything else has led to problems on some * machines. * * We enable interrupts in some of the routines after making sure it's * safe. */ static void __init hd_geninit(void) { int drive; for(drive=0; drive < (MAX_HD << 6); drive++) { hd_blocksizes[drive] = 1024; hd_hardsectsizes[drive] = 512; hd_maxsect[drive]=255; } blksize_size[MAJOR_NR] = hd_blocksizes; hardsect_size[MAJOR_NR] = hd_hardsectsizes; max_sectors[MAJOR_NR] = hd_maxsect; #ifdef __i386__ if (!NR_HD) { extern struct drive_info drive_info; unsigned char *BIOS = (unsigned char *) &drive_info; unsigned long flags; int cmos_disks; for (drive=0 ; drive<2 ; drive++) { hd_info[drive].cyl = *(unsigned short *) BIOS; hd_info[drive].head = *(2+BIOS); hd_info[drive].wpcom = *(unsigned short *) (5+BIOS); hd_info[drive].ctl = *(8+BIOS); hd_info[drive].lzone = *(unsigned short *) (12+BIOS); hd_info[drive].sect = *(14+BIOS); #ifdef does_not_work_for_everybody_with_scsi_but_helps_ibm_vp if (hd_info[drive].cyl && NR_HD == drive) NR_HD++; #endif BIOS += 16; } /* We query CMOS about hard disks : it could be that we have a SCSI/ESDI/etc controller that is BIOS compatible with ST-506, and thus showing up in our BIOS table, but not register compatible, and therefore not present in CMOS. Furthermore, we will assume that our ST-506 drives are the primary drives in the system, and the ones reflected as drive 1 or 2. The first drive is stored in the high nibble of CMOS byte 0x12, the second in the low nibble. This will be either a 4 bit drive type or 0xf indicating use byte 0x19 for an 8 bit type, drive 1, 0x1a for drive 2 in CMOS. Needless to say, a non-zero value means we have an AT controller hard disk for that drive. Currently the rtc_lock is a bit academic since this driver is non-modular, but someday... ? Paul G. */ spin_lock_irqsave(&rtc_lock, flags); cmos_disks = CMOS_READ(0x12); spin_unlock_irqrestore(&rtc_lock, flags); if (cmos_disks & 0xf0) { if (cmos_disks & 0x0f) NR_HD = 2; else NR_HD = 1; } } #endif /* __i386__ */ #ifdef __arm__ if (!NR_HD) { /* We don't know anything about the drive. This means * that you *MUST* specify the drive parameters to the * kernel yourself. */ printk("hd: no drives specified - use hd=cyl,head,sectors" " on kernel command line\n"); } #endif for (drive=0 ; drive < NR_HD ; drive++) { hd[drive<<6].nr_sects = hd_info[drive].head * hd_info[drive].sect * hd_info[drive].cyl; printk ("hd%c: %ldMB, CHS=%d/%d/%d\n", drive+'a', hd[drive<<6].nr_sects / 2048, hd_info[drive].cyl, hd_info[drive].head, hd_info[drive].sect); } if (!NR_HD) return; if (request_irq(HD_IRQ, hd_interrupt, SA_INTERRUPT, "hd", NULL)) { printk("hd: unable to get IRQ%d for the hard disk driver\n", HD_IRQ); NR_HD = 0; return; } request_region(HD_DATA, 8, "hd"); request_region(HD_CMD, 1, "hd(cmd)"); hd_gendisk.nr_real = NR_HD; for(drive=0; drive < NR_HD; drive++) register_disk(&hd_gendisk, MKDEV(MAJOR_NR,drive<<6), 1<<6, &hd_fops, hd_info[drive].head * hd_info[drive].sect * hd_info[drive].cyl); } int __init hd_init(void) { if (devfs_register_blkdev(MAJOR_NR,"hd",&hd_fops)) { printk("hd: unable to get major %d for hard disk\n",MAJOR_NR); return -1; } blk_init_queue(BLK_DEFAULT_QUEUE(MAJOR_NR), DEVICE_REQUEST); read_ahead[MAJOR_NR] = 8; /* 8 sector (4kB) read-ahead */ add_gendisk(&hd_gendisk); init_timer(&device_timer); device_timer.function = hd_times_out; hd_geninit(); return 0; } #define DEVICE_BUSY busy[target] #define USAGE access_count[target] #define CAPACITY (hd_info[target].head*hd_info[target].sect*hd_info[target].cyl) /* We assume that the BIOS parameters do not change, so the disk capacity will not change */ #undef MAYBE_REINIT #define GENDISK_STRUCT hd_gendisk /* * This routine is called to flush all partitions and partition tables * for a changed disk, and then re-read the new partition table. * If we are revalidating a disk because of a media change, then we * enter with usage == 0. If we are using an ioctl, we automatically have * usage == 1 (we need an open channel to use an ioctl :-), so this * is our limit. */ static int revalidate_hddisk(kdev_t dev, int maxusage) { int target; struct gendisk * gdev; int max_p; int start; int i; long flags; target = DEVICE_NR(dev); gdev = &GENDISK_STRUCT; save_flags(flags); cli(); if (DEVICE_BUSY || USAGE > maxusage) { restore_flags(flags); return -EBUSY; } DEVICE_BUSY = 1; restore_flags(flags); max_p = gdev->max_p; start = target << gdev->minor_shift; for (i=max_p - 1; i >=0 ; i--) { int minor = start + i; invalidate_device(MKDEV(MAJOR_NR, minor), 1); gdev->part[minor].start_sect = 0; gdev->part[minor].nr_sects = 0; } #ifdef MAYBE_REINIT MAYBE_REINIT; #endif grok_partitions(gdev, target, 1<<6, CAPACITY); DEVICE_BUSY = 0; wake_up(&busy_wait); return 0; } static int parse_hd_setup (char *line) { int ints[6]; (void) get_options(line, ARRAY_SIZE(ints), ints); hd_setup(NULL, ints); return 1; } __setup("hd=", parse_hd_setup);