/* * Compaq Hot Plug Controller Driver * * Copyright (c) 1995,2001 Compaq Computer Corporation * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (c) 2001 IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to * */ #include #include #include #include #include #include #include #include #include #include #include "cpqphp.h" static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,u8 behind_bridge, struct resource_lists *resources); static int configure_new_function(struct controller* ctrl, struct pci_func *func,u8 behind_bridge, struct resource_lists *resources); static void interrupt_event_handler(struct controller *ctrl); static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */ static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */ static int event_finished; static unsigned long pushbutton_pending; /* = 0 */ /* things needed for the long_delay function */ static struct semaphore delay_sem; static wait_queue_head_t delay_wait; /* delay is in jiffies to wait for */ static void long_delay (int delay) { DECLARE_WAITQUEUE(wait, current); /* only allow 1 customer into the delay queue at once * yes this makes some people wait even longer, but who really cares? * this is for _huge_ delays to make the hardware happy as the * signals bounce around */ down (&delay_sem); init_waitqueue_head (&delay_wait); add_wait_queue(&delay_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(delay); remove_wait_queue(&delay_wait, &wait); set_current_state(TASK_RUNNING); up (&delay_sem); } //FIXME: The following line needs to be somewhere else... #define WRONG_BUS_FREQUENCY 0x07 static u8 handle_switch_change(u8 change, struct controller * ctrl) { int hp_slot; u8 rc = 0; u16 temp_word; struct pci_func *func; struct event_info *taskInfo; if (!change) return 0; // Switch Change dbg("cpqsbd: Switch interrupt received.\n"); for (hp_slot = 0; hp_slot < 6; hp_slot++) { if (change & (0x1L << hp_slot)) { //********************************* // this one changed. //********************************* func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); //this is the structure that tells the worker thread //what to do taskInfo = &(ctrl->event_queue[ctrl->next_event]); ctrl->next_event = (ctrl->next_event + 1) % 10; taskInfo->hp_slot = hp_slot; rc++; temp_word = ctrl->ctrl_int_comp >> 16; func->presence_save = (temp_word >> hp_slot) & 0x01; func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { //********************************* // Switch opened //********************************* func->switch_save = 0; taskInfo->event_type = INT_SWITCH_OPEN; } else { //********************************* // Switch closed //********************************* func->switch_save = 0x10; taskInfo->event_type = INT_SWITCH_CLOSE; } } } return rc; } /* * find_slot */ static inline struct slot *find_slot (struct controller * ctrl, u8 device) { struct slot *slot; if (!ctrl) return NULL; slot = ctrl->slot; while (slot && (slot->device != device)) { slot = slot->next; } return slot; } static u8 handle_presence_change(u16 change, struct controller * ctrl) { int hp_slot; u8 rc = 0; u8 temp_byte; u16 temp_word; struct pci_func *func; struct event_info *taskInfo; struct slot *p_slot; if (!change) return 0; //********************************* // Presence Change //********************************* dbg("cpqsbd: Presence/Notify input change.\n"); dbg(" Changed bits are 0x%4.4x\n", change ); for (hp_slot = 0; hp_slot < 6; hp_slot++) { if (change & (0x0101 << hp_slot)) { //********************************* // this one changed. //********************************* func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); taskInfo = &(ctrl->event_queue[ctrl->next_event]); ctrl->next_event = (ctrl->next_event + 1) % 10; taskInfo->hp_slot = hp_slot; rc++; p_slot = find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); // If the switch closed, must be a button // If not in button mode, nevermind if (func->switch_save && (ctrl->push_button == 1)) { temp_word = ctrl->ctrl_int_comp >> 16; temp_byte = (temp_word >> hp_slot) & 0x01; temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; if (temp_byte != func->presence_save) { //********************************* // button Pressed (doesn't do anything) //********************************* dbg("hp_slot %d button pressed\n", hp_slot); taskInfo->event_type = INT_BUTTON_PRESS; } else { //********************************* // button Released - TAKE ACTION!!!! //********************************* dbg("hp_slot %d button released\n", hp_slot); taskInfo->event_type = INT_BUTTON_RELEASE; // Cancel if we are still blinking if ((p_slot->state == BLINKINGON_STATE) || (p_slot->state == BLINKINGOFF_STATE)) { taskInfo->event_type = INT_BUTTON_CANCEL; dbg("hp_slot %d button cancel\n", hp_slot); } else if ((p_slot->state == POWERON_STATE) || (p_slot->state == POWEROFF_STATE)) { //info(msg_button_ignore, p_slot->number); taskInfo->event_type = INT_BUTTON_IGNORE; dbg("hp_slot %d button ignore\n", hp_slot); } } } else { // Switch is open, assume a presence change // Save the presence state temp_word = ctrl->ctrl_int_comp >> 16; func->presence_save = (temp_word >> hp_slot) & 0x01; func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { //********************************* // Present //********************************* taskInfo->event_type = INT_PRESENCE_ON; } else { //********************************* // Not Present //********************************* taskInfo->event_type = INT_PRESENCE_OFF; } } } } return rc; } static u8 handle_power_fault(u8 change, struct controller * ctrl) { int hp_slot; u8 rc = 0; struct pci_func *func; struct event_info *taskInfo; if (!change) return 0; //********************************* // power fault //********************************* info("power fault interrupt\n"); for (hp_slot = 0; hp_slot < 6; hp_slot++) { if (change & (0x01 << hp_slot)) { //********************************* // this one changed. //********************************* func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); taskInfo = &(ctrl->event_queue[ctrl->next_event]); ctrl->next_event = (ctrl->next_event + 1) % 10; taskInfo->hp_slot = hp_slot; rc++; if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { //********************************* // power fault Cleared //********************************* func->status = 0x00; taskInfo->event_type = INT_POWER_FAULT_CLEAR; } else { //********************************* // power fault //********************************* taskInfo->event_type = INT_POWER_FAULT; if (ctrl->rev < 4) { amber_LED_on (ctrl, hp_slot); green_LED_off (ctrl, hp_slot); set_SOGO (ctrl); // this is a fatal condition, we want to crash the // machine to protect from data corruption // simulated_NMI shouldn't ever return //FIXME //simulated_NMI(hp_slot, ctrl); //The following code causes a software crash just in //case simulated_NMI did return //FIXME //panic(msg_power_fault); } else { // set power fault status for this board func->status = 0xFF; info("power fault bit %x set\n", hp_slot); } } } } return rc; } /* * sort_by_size * * Sorts nodes on the list by their length. * Smallest first. * */ static int sort_by_size(struct pci_resource **head) { struct pci_resource *current_res; struct pci_resource *next_res; int out_of_order = 1; if (!(*head)) return(1); if (!((*head)->next)) return(0); while (out_of_order) { out_of_order = 0; // Special case for swapping list head if (((*head)->next) && ((*head)->length > (*head)->next->length)) { out_of_order++; current_res = *head; *head = (*head)->next; current_res->next = (*head)->next; (*head)->next = current_res; } current_res = *head; while (current_res->next && current_res->next->next) { if (current_res->next->length > current_res->next->next->length) { out_of_order++; next_res = current_res->next; current_res->next = current_res->next->next; current_res = current_res->next; next_res->next = current_res->next; current_res->next = next_res; } else current_res = current_res->next; } } // End of out_of_order loop return(0); } /* * sort_by_max_size * * Sorts nodes on the list by their length. * Largest first. * */ static int sort_by_max_size(struct pci_resource **head) { struct pci_resource *current_res; struct pci_resource *next_res; int out_of_order = 1; if (!(*head)) return(1); if (!((*head)->next)) return(0); while (out_of_order) { out_of_order = 0; // Special case for swapping list head if (((*head)->next) && ((*head)->length < (*head)->next->length)) { out_of_order++; current_res = *head; *head = (*head)->next; current_res->next = (*head)->next; (*head)->next = current_res; } current_res = *head; while (current_res->next && current_res->next->next) { if (current_res->next->length < current_res->next->next->length) { out_of_order++; next_res = current_res->next; current_res->next = current_res->next->next; current_res = current_res->next; next_res->next = current_res->next; current_res->next = next_res; } else current_res = current_res->next; } } // End of out_of_order loop return(0); } /* * do_pre_bridge_resource_split * * Returns zero or one node of resources that aren't in use * */ static struct pci_resource *do_pre_bridge_resource_split (struct pci_resource **head, struct pci_resource **orig_head, u32 alignment) { struct pci_resource *prevnode = NULL; struct pci_resource *node; struct pci_resource *split_node; u32 rc; u32 temp_dword; dbg("do_pre_bridge_resource_split\n"); if (!(*head) || !(*orig_head)) return(NULL); rc = cpqhp_resource_sort_and_combine(head); if (rc) return(NULL); if ((*head)->base != (*orig_head)->base) return(NULL); if ((*head)->length == (*orig_head)->length) return(NULL); // If we got here, there the bridge requires some of the resource, but // we may be able to split some off of the front node = *head; if (node->length & (alignment -1)) { // this one isn't an aligned length, so we'll make a new entry // and split it up. split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); temp_dword = (node->length | (alignment-1)) + 1 - alignment; split_node->base = node->base; split_node->length = temp_dword; node->length -= temp_dword; node->base += split_node->length; // Put it in the list *head = split_node; split_node->next = node; } if (node->length < alignment) { return(NULL); } // Now unlink it if (*head == node) { *head = node->next; node->next = NULL; } else { prevnode = *head; while (prevnode->next != node) prevnode = prevnode->next; prevnode->next = node->next; node->next = NULL; } return(node); } /* * do_bridge_resource_split * * Returns zero or one node of resources that aren't in use * */ static struct pci_resource *do_bridge_resource_split (struct pci_resource **head, u32 alignment) { struct pci_resource *prevnode = NULL; struct pci_resource *node; u32 rc; u32 temp_dword; if (!(*head)) return(NULL); rc = cpqhp_resource_sort_and_combine(head); if (rc) return(NULL); node = *head; while (node->next) { prevnode = node; node = node->next; kfree(prevnode); } if (node->length < alignment) { kfree(node); return(NULL); } if (node->base & (alignment - 1)) { // Short circuit if adjusted size is too small temp_dword = (node->base | (alignment-1)) + 1; if ((node->length - (temp_dword - node->base)) < alignment) { kfree(node); return(NULL); } node->length -= (temp_dword - node->base); node->base = temp_dword; } if (node->length & (alignment - 1)) { // There's stuff in use after this node kfree(node); return(NULL); } return(node); } /* * get_io_resource * * this function sorts the resource list by size and then * returns the first node of "size" length that is not in the * ISA aliasing window. If it finds a node larger than "size" * it will split it up. * * size must be a power of two. */ static struct pci_resource *get_io_resource (struct pci_resource **head, u32 size) { struct pci_resource *prevnode; struct pci_resource *node; struct pci_resource *split_node; u32 temp_dword; if (!(*head)) return(NULL); if ( cpqhp_resource_sort_and_combine(head) ) return(NULL); if ( sort_by_size(head) ) return(NULL); for (node = *head; node; node = node->next) { if (node->length < size) continue; if (node->base & (size - 1)) { // this one isn't base aligned properly // so we'll make a new entry and split it up temp_dword = (node->base | (size-1)) + 1; // Short circuit if adjusted size is too small if ((node->length - (temp_dword - node->base)) < size) continue; split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); split_node->base = node->base; split_node->length = temp_dword - node->base; node->base = temp_dword; node->length -= split_node->length; // Put it in the list split_node->next = node->next; node->next = split_node; } // End of non-aligned base // Don't need to check if too small since we already did if (node->length > size) { // this one is longer than we need // so we'll make a new entry and split it up split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); split_node->base = node->base + size; split_node->length = node->length - size; node->length = size; // Put it in the list split_node->next = node->next; node->next = split_node; } // End of too big on top end // For IO make sure it's not in the ISA aliasing space if (node->base & 0x300L) continue; // If we got here, then it is the right size // Now take it out of the list if (*head == node) { *head = node->next; } else { prevnode = *head; while (prevnode->next != node) prevnode = prevnode->next; prevnode->next = node->next; } node->next = NULL; // Stop looping break; } return(node); } /* * get_max_resource * * Gets the largest node that is at least "size" big from the * list pointed to by head. It aligns the node on top and bottom * to "size" alignment before returning it. */ static struct pci_resource *get_max_resource (struct pci_resource **head, u32 size) { struct pci_resource *max; struct pci_resource *temp; struct pci_resource *split_node; u32 temp_dword; if (!(*head)) return(NULL); if (cpqhp_resource_sort_and_combine(head)) return(NULL); if (sort_by_max_size(head)) return(NULL); for (max = *head;max; max = max->next) { // If not big enough we could probably just bail, // instead we'll continue to the next. if (max->length < size) continue; if (max->base & (size - 1)) { // this one isn't base aligned properly // so we'll make a new entry and split it up temp_dword = (max->base | (size-1)) + 1; // Short circuit if adjusted size is too small if ((max->length - (temp_dword - max->base)) < size) continue; split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); split_node->base = max->base; split_node->length = temp_dword - max->base; max->base = temp_dword; max->length -= split_node->length; // Put it next in the list split_node->next = max->next; max->next = split_node; } if ((max->base + max->length) & (size - 1)) { // this one isn't end aligned properly at the top // so we'll make a new entry and split it up split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); temp_dword = ((max->base + max->length) & ~(size - 1)); split_node->base = temp_dword; split_node->length = max->length + max->base - split_node->base; max->length -= split_node->length; // Put it in the list split_node->next = max->next; max->next = split_node; } // Make sure it didn't shrink too much when we aligned it if (max->length < size) continue; // Now take it out of the list temp = (struct pci_resource*) *head; if (temp == max) { *head = max->next; } else { while (temp && temp->next != max) { temp = temp->next; } temp->next = max->next; } max->next = NULL; return(max); } // If we get here, we couldn't find one return(NULL); } /* * get_resource * * this function sorts the resource list by size and then * returns the first node of "size" length. If it finds a node * larger than "size" it will split it up. * * size must be a power of two. */ static struct pci_resource *get_resource (struct pci_resource **head, u32 size) { struct pci_resource *prevnode; struct pci_resource *node; struct pci_resource *split_node; u32 temp_dword; if (!(*head)) return(NULL); if ( cpqhp_resource_sort_and_combine(head) ) return(NULL); if ( sort_by_size(head) ) return(NULL); for (node = *head; node; node = node->next) { dbg(__FUNCTION__": req_size =%x node=%p, base=%x, length=%x\n", size, node, node->base, node->length); if (node->length < size) continue; if (node->base & (size - 1)) { dbg(__FUNCTION__": not aligned\n"); // this one isn't base aligned properly // so we'll make a new entry and split it up temp_dword = (node->base | (size-1)) + 1; // Short circuit if adjusted size is too small if ((node->length - (temp_dword - node->base)) < size) continue; split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); split_node->base = node->base; split_node->length = temp_dword - node->base; node->base = temp_dword; node->length -= split_node->length; // Put it in the list split_node->next = node->next; node->next = split_node; } // End of non-aligned base // Don't need to check if too small since we already did if (node->length > size) { dbg(__FUNCTION__": too big\n"); // this one is longer than we need // so we'll make a new entry and split it up split_node = (struct pci_resource*) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!split_node) return(NULL); split_node->base = node->base + size; split_node->length = node->length - size; node->length = size; // Put it in the list split_node->next = node->next; node->next = split_node; } // End of too big on top end dbg(__FUNCTION__": got one!!!\n"); // If we got here, then it is the right size // Now take it out of the list if (*head == node) { *head = node->next; } else { prevnode = *head; while (prevnode->next != node) prevnode = prevnode->next; prevnode->next = node->next; } node->next = NULL; // Stop looping break; } return(node); } /* * cpqhp_resource_sort_and_combine * * Sorts all of the nodes in the list in ascending order by * their base addresses. Also does garbage collection by * combining adjacent nodes. * * returns 0 if success */ int cpqhp_resource_sort_and_combine(struct pci_resource **head) { struct pci_resource *node1; struct pci_resource *node2; int out_of_order = 1; dbg(__FUNCTION__": head = %p, *head = %p\n", head, *head); if (!(*head)) return(1); dbg("*head->next = %p\n",(*head)->next); if (!(*head)->next) return(0); /* only one item on the list, already sorted! */ dbg("*head->base = 0x%x\n",(*head)->base); dbg("*head->next->base = 0x%x\n",(*head)->next->base); while (out_of_order) { out_of_order = 0; // Special case for swapping list head if (((*head)->next) && ((*head)->base > (*head)->next->base)) { node1 = *head; (*head) = (*head)->next; node1->next = (*head)->next; (*head)->next = node1; out_of_order++; } node1 = (*head); while (node1->next && node1->next->next) { if (node1->next->base > node1->next->next->base) { out_of_order++; node2 = node1->next; node1->next = node1->next->next; node1 = node1->next; node2->next = node1->next; node1->next = node2; } else node1 = node1->next; } } // End of out_of_order loop node1 = *head; while (node1 && node1->next) { if ((node1->base + node1->length) == node1->next->base) { // Combine dbg("8..\n"); node1->length += node1->next->length; node2 = node1->next; node1->next = node1->next->next; kfree(node2); } else node1 = node1->next; } return(0); } void cpqhp_ctrl_intr(int IRQ, struct controller * ctrl, struct pt_regs *regs) { u8 schedule_flag = 0; u16 misc; u32 Diff; u32 temp_dword; misc = readw(ctrl->hpc_reg + MISC); //********************************* // Check to see if it was our interrupt //********************************* if (!(misc & 0x000C)) { return; } if (misc & 0x0004) { //********************************* // Serial Output interrupt Pending //********************************* // Clear the interrupt misc |= 0x0004; writew(misc, ctrl->hpc_reg + MISC); // Read to clear posted writes misc = readw(ctrl->hpc_reg + MISC); dbg (__FUNCTION__" - waking up\n"); wake_up_interruptible(&ctrl->queue); } if (misc & 0x0008) { // General-interrupt-input interrupt Pending Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); // Clear the interrupt writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); // Read it back to clear any posted writes temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); if (!Diff) { // Clear all interrupts writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); } schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); } if (schedule_flag) { up(&event_semaphore); dbg("Signal event_semaphore\n"); mark_bh(IMMEDIATE_BH); } } /** * cpqhp_slot_create - Creates a node and adds it to the proper bus. * @busnumber - bus where new node is to be located * * Returns pointer to the new node or NULL if unsuccessful */ struct pci_func *cpqhp_slot_create(u8 busnumber) { struct pci_func *new_slot; struct pci_func *next; new_slot = (struct pci_func *) kmalloc(sizeof(struct pci_func), GFP_KERNEL); if (new_slot == NULL) { // I'm not dead yet! // You will be. return(new_slot); } memset(new_slot, 0, sizeof(struct pci_func)); new_slot->next = NULL; new_slot->configured = 1; if (cpqhp_slot_list[busnumber] == NULL) { cpqhp_slot_list[busnumber] = new_slot; } else { next = cpqhp_slot_list[busnumber]; while (next->next != NULL) next = next->next; next->next = new_slot; } return(new_slot); } /* * slot_remove - Removes a node from the linked list of slots. * @old_slot: slot to remove * * Returns 0 if successful, !0 otherwise. */ static int slot_remove(struct pci_func * old_slot) { struct pci_func *next; if (old_slot == NULL) return(1); next = cpqhp_slot_list[old_slot->bus]; if (next == NULL) { return(1); } if (next == old_slot) { cpqhp_slot_list[old_slot->bus] = old_slot->next; cpqhp_destroy_board_resources(old_slot); kfree(old_slot); return(0); } while ((next->next != old_slot) && (next->next != NULL)) { next = next->next; } if (next->next == old_slot) { next->next = old_slot->next; cpqhp_destroy_board_resources(old_slot); kfree(old_slot); return(0); } else return(2); } /** * bridge_slot_remove - Removes a node from the linked list of slots. * @bridge: bridge to remove * * Returns 0 if successful, !0 otherwise. */ static int bridge_slot_remove(struct pci_func *bridge) { u8 subordinateBus, secondaryBus; u8 tempBus; struct pci_func *next; if (bridge == NULL) return(1); secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { next = cpqhp_slot_list[tempBus]; while (!slot_remove(next)) { next = cpqhp_slot_list[tempBus]; } } next = cpqhp_slot_list[bridge->bus]; if (next == NULL) { return(1); } if (next == bridge) { cpqhp_slot_list[bridge->bus] = bridge->next; kfree(bridge); return(0); } while ((next->next != bridge) && (next->next != NULL)) { next = next->next; } if (next->next == bridge) { next->next = bridge->next; kfree(bridge); return(0); } else return(2); } /** * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed * @bus: bus to find * @device: device to find * @index: is 0 for first function found, 1 for the second... * * Returns pointer to the node if successful, %NULL otherwise. */ struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) { int found = -1; struct pci_func *func; func = cpqhp_slot_list[bus]; if ((func == NULL) || ((func->device == device) && (index == 0))) return(func); if (func->device == device) found++; while (func->next != NULL) { func = func->next; if (func->device == device) found++; if (found == index) return(func); } return(NULL); } // DJZ: I don't think is_bridge will work as is. //FIXME static int is_bridge(struct pci_func * func) { // Check the header type if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) return 1; else return 0; } /* the following routines constitute the bulk of the hotplug controller logic */ /** * board_replaced - Called after a board has been replaced in the system. * * This is only used if we don't have resources for hot add * Turns power on for the board * Checks to see if board is the same * If board is same, reconfigures it * If board isn't same, turns it back off. * */ static u32 board_replaced(struct pci_func * func, struct controller * ctrl) { u8 hp_slot; u8 temp_byte; u32 index; u32 rc = 0; u32 src = 8; hp_slot = func->device - ctrl->slot_device_offset; if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) { //********************************* // The switch is open. //********************************* rc = INTERLOCK_OPEN; } else if (is_slot_enabled (ctrl, hp_slot)) { //********************************* // The board is already on //********************************* rc = CARD_FUNCTIONING; } else { if (ctrl->speed == 1) { // Wait for exclusive access to hardware down(&ctrl->crit_sect); // turn on board without attaching to the bus enable_slot_power (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Change bits in slot power register to force another shift out // NOTE: this is to work around the timer bug temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); writeb(0x00, ctrl->hpc_reg + SLOT_POWER); writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); if (!(readl(ctrl->hpc_reg + NON_INT_INPUT) & (0x01 << hp_slot))) { rc = WRONG_BUS_FREQUENCY; } // turn off board without attaching to the bus disable_slot_power (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); if (rc) return(rc); } // Wait for exclusive access to hardware down(&ctrl->crit_sect); slot_enable (ctrl, hp_slot); green_LED_blink (ctrl, hp_slot); amber_LED_off (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); // Wait for ~1 second because of hot plug spec long_delay(1*HZ); // Check for a power fault if (func->status == 0xFF) { // power fault occurred, but it was benign rc = POWER_FAILURE; func->status = 0; } else rc = cpqhp_valid_replace(ctrl, func); if (!rc) { // It must be the same board rc = cpqhp_configure_board(ctrl, func); if (rc || src) { // If configuration fails, turn it off // Get slot won't work for devices behind bridges, but // in this case it will always be called for the "base" // bus/dev/func of an adapter. // Wait for exclusive access to hardware down(&ctrl->crit_sect); amber_LED_on (ctrl, hp_slot); green_LED_off (ctrl, hp_slot); slot_disable (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); if (rc) return(rc); else return(1); } func->status = 0; func->switch_save = 0x10; index = 1; while (((func = cpqhp_slot_find(func->bus, func->device, index)) != NULL) && !rc) { rc |= cpqhp_configure_board(ctrl, func); index++; } if (rc) { // If configuration fails, turn it off // Get slot won't work for devices behind bridges, but // in this case it will always be called for the "base" // bus/dev/func of an adapter. // Wait for exclusive access to hardware down(&ctrl->crit_sect); amber_LED_on (ctrl, hp_slot); green_LED_off (ctrl, hp_slot); slot_disable (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); return(rc); } // Done configuring so turn LED on full time // Wait for exclusive access to hardware down(&ctrl->crit_sect); green_LED_on (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); rc = 0; } else { // Something is wrong // Get slot won't work for devices behind bridges, but // in this case it will always be called for the "base" // bus/dev/func of an adapter. // Wait for exclusive access to hardware down(&ctrl->crit_sect); amber_LED_on (ctrl, hp_slot); green_LED_off (ctrl, hp_slot); slot_disable (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); } } return(rc); } /** * board_added - Called after a board has been added to the system. * * Turns power on for the board * Configures board * */ static u32 board_added(struct pci_func * func, struct controller * ctrl) { u8 hp_slot; u8 temp_byte; int index; u32 temp_register = 0xFFFFFFFF; u32 rc = 0; struct pci_func *new_slot = NULL; struct slot *p_slot; struct resource_lists res_lists; hp_slot = func->device - ctrl->slot_device_offset; dbg(__FUNCTION__": func->device, slot_offset, hp_slot = %d, %d ,%d\n", func->device, ctrl->slot_device_offset, hp_slot); if (ctrl->speed == 1) { // Wait for exclusive access to hardware down(&ctrl->crit_sect); // turn on board without attaching to the bus enable_slot_power (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Change bits in slot power register to force another shift out // NOTE: this is to work around the timer bug temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); writeb(0x00, ctrl->hpc_reg + SLOT_POWER); writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); if (!(readl(ctrl->hpc_reg + NON_INT_INPUT) & (0x01 << hp_slot))) { rc = WRONG_BUS_FREQUENCY; } // turn off board without attaching to the bus disable_slot_power (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); if (rc) return(rc); } p_slot = find_slot(ctrl, hp_slot + ctrl->slot_device_offset); // turn on board and blink green LED // Wait for exclusive access to hardware dbg(__FUNCTION__": before down\n"); down(&ctrl->crit_sect); dbg(__FUNCTION__": after down\n"); dbg(__FUNCTION__": before slot_enable\n"); slot_enable (ctrl, hp_slot); dbg(__FUNCTION__": before green_LED_blink\n"); green_LED_blink (ctrl, hp_slot); dbg(__FUNCTION__": before amber_LED_blink\n"); amber_LED_off (ctrl, hp_slot); dbg(__FUNCTION__": before set_SOGO\n"); set_SOGO(ctrl); // Wait for SOBS to be unset dbg(__FUNCTION__": before wait_for_ctrl_irq\n"); wait_for_ctrl_irq (ctrl); dbg(__FUNCTION__": after wait_for_ctrl_irq\n"); // Done with exclusive hardware access dbg(__FUNCTION__": before up\n"); up(&ctrl->crit_sect); dbg(__FUNCTION__": after up\n"); // Wait for ~1 second because of hot plug spec dbg(__FUNCTION__": before long_delay\n"); long_delay(1*HZ); dbg(__FUNCTION__": after long_delay\n"); dbg(__FUNCTION__": func status = %x\n", func->status); // Check for a power fault if (func->status == 0xFF) { // power fault occurred, but it was benign temp_register = 0xFFFFFFFF; dbg(__FUNCTION__": temp register set to %x by power fault\n", temp_register); rc = POWER_FAILURE; func->status = 0; } else { // Get vendor/device ID u32 rc = pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_VENDOR_ID, &temp_register); dbg(__FUNCTION__": pci_read_config_dword returns %d\n", rc); dbg(__FUNCTION__": temp_register is %x\n", temp_register); if (rc != 0) { // Something's wrong here temp_register = 0xFFFFFFFF; dbg(__FUNCTION__": temp register set to %x by error\n", temp_register); } // Preset return code. It will be changed later if things go okay. rc = NO_ADAPTER_PRESENT; } // All F's is an empty slot or an invalid board if (temp_register != 0xFFFFFFFF) { // Check for a board in the slot res_lists.io_head = ctrl->io_head; res_lists.mem_head = ctrl->mem_head; res_lists.p_mem_head = ctrl->p_mem_head; res_lists.bus_head = ctrl->bus_head; res_lists.irqs = NULL; rc = configure_new_device(ctrl, func, 0, &res_lists); dbg(__FUNCTION__": back from configure_new_device\n"); ctrl->io_head = res_lists.io_head; ctrl->mem_head = res_lists.mem_head; ctrl->p_mem_head = res_lists.p_mem_head; ctrl->bus_head = res_lists.bus_head; cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); cpqhp_resource_sort_and_combine(&(ctrl->io_head)); cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); if (rc) { // Wait for exclusive access to hardware down(&ctrl->crit_sect); amber_LED_on (ctrl, hp_slot); green_LED_off (ctrl, hp_slot); slot_disable (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); return(rc); } else { cpqhp_save_slot_config(ctrl, func); } func->status = 0; func->switch_save = 0x10; func->is_a_board = 0x01; //next, we will instantiate the linux pci_dev structures (with appropriate driver notification, if already present) dbg(__FUNCTION__": configure linux pci_dev structure\n"); index = 0; do { new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); if (new_slot && !new_slot->pci_dev) { cpqhp_configure_device(ctrl, new_slot); } } while (new_slot); // Wait for exclusive access to hardware down(&ctrl->crit_sect); green_LED_on (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); } else { // Wait for exclusive access to hardware down(&ctrl->crit_sect); amber_LED_on (ctrl, hp_slot); green_LED_off (ctrl, hp_slot); slot_disable (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); return(rc); } return 0; } /** * remove_board - Turns off slot and LED's * */ static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl) { int index; u8 skip = 0; u8 device; u8 hp_slot; u8 temp_byte; u32 rc; struct resource_lists res_lists; struct pci_func *temp_func; if (func == NULL) return(1); if (cpqhp_unconfigure_device(func)) return(1); device = func->device; hp_slot = func->device - ctrl->slot_device_offset; dbg("In "__FUNCTION__", hp_slot = %d\n", hp_slot); // When we get here, it is safe to change base Address Registers. // We will attempt to save the base Address Register Lengths if (replace_flag || !ctrl->add_support) rc = cpqhp_save_base_addr_length(ctrl, func); else if (!func->bus_head && !func->mem_head && !func->p_mem_head && !func->io_head) { // Here we check to see if we've saved any of the board's // resources already. If so, we'll skip the attempt to // determine what's being used. index = 0; temp_func = cpqhp_slot_find(func->bus, func->device, index++); while (temp_func) { if (temp_func->bus_head || temp_func->mem_head || temp_func->p_mem_head || temp_func->io_head) { skip = 1; break; } temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); } if (!skip) rc = cpqhp_save_used_resources(ctrl, func); } // Change status to shutdown if (func->is_a_board) func->status = 0x01; func->configured = 0; // Wait for exclusive access to hardware down(&ctrl->crit_sect); green_LED_off (ctrl, hp_slot); slot_disable (ctrl, hp_slot); set_SOGO(ctrl); // turn off SERR for slot temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); temp_byte &= ~(0x01 << hp_slot); writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); if (!replace_flag && ctrl->add_support) { while (func) { res_lists.io_head = ctrl->io_head; res_lists.mem_head = ctrl->mem_head; res_lists.p_mem_head = ctrl->p_mem_head; res_lists.bus_head = ctrl->bus_head; cpqhp_return_board_resources(func, &res_lists); ctrl->io_head = res_lists.io_head; ctrl->mem_head = res_lists.mem_head; ctrl->p_mem_head = res_lists.p_mem_head; ctrl->bus_head = res_lists.bus_head; cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); cpqhp_resource_sort_and_combine(&(ctrl->io_head)); cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); if (is_bridge(func)) { bridge_slot_remove(func); } else slot_remove(func); func = cpqhp_slot_find(ctrl->bus, device, 0); } // Setup slot structure with entry for empty slot func = cpqhp_slot_create(ctrl->bus); if (func == NULL) { // Out of memory return(1); } func->bus = ctrl->bus; func->device = device; func->function = 0; func->configured = 0; func->switch_save = 0x10; func->is_a_board = 0; func->p_task_event = NULL; } return 0; } static void pushbutton_helper_thread (unsigned long data) { pushbutton_pending = data; up(&event_semaphore); } // this is the main worker thread static int event_thread(void* data) { struct controller *ctrl; lock_kernel(); daemonize(); reparent_to_init(); // New name strcpy(current->comm, "phpd_event"); unlock_kernel(); while (1) { dbg("!!!!event_thread sleeping\n"); down_interruptible (&event_semaphore); dbg("event_thread woken finished = %d\n", event_finished); if (event_finished) break; /* Do stuff here */ if (pushbutton_pending) cpqhp_pushbutton_thread(pushbutton_pending); else for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next) interrupt_event_handler(ctrl); } dbg("event_thread signals exit\n"); up(&event_exit); return 0; } int cpqhp_event_start_thread (void) { int pid; /* initialize our semaphores */ init_MUTEX(&delay_sem); init_MUTEX_LOCKED(&event_semaphore); init_MUTEX_LOCKED(&event_exit); event_finished=0; pid = kernel_thread(event_thread, 0, 0); if (pid < 0) { err ("Can't start up our event thread\n"); return -1; } dbg("Our event thread pid = %d\n", pid); return 0; } void cpqhp_event_stop_thread (void) { event_finished = 1; dbg("event_thread finish command given\n"); up(&event_semaphore); dbg("wait for event_thread to exit\n"); down(&event_exit); } static int update_slot_info (struct controller *ctrl, struct slot *slot) { struct hotplug_slot_info *info; char buffer[SLOT_NAME_SIZE]; int result; info = kmalloc (sizeof (struct hotplug_slot_info), GFP_KERNEL); if (!info) return -ENOMEM; make_slot_name (&buffer[0], SLOT_NAME_SIZE, slot); info->power_status = get_slot_enabled(ctrl, slot); info->attention_status = cpq_get_attention_status(ctrl, slot); info->latch_status = cpq_get_latch_status(ctrl, slot); info->adapter_status = get_presence_status(ctrl, slot); result = pci_hp_change_slot_info(buffer, info); kfree (info); return result; } static void interrupt_event_handler(struct controller *ctrl) { int loop = 0; int change = 1; struct pci_func *func; u8 hp_slot; struct slot *p_slot; while (change) { change = 0; for (loop = 0; loop < 10; loop++) { //dbg("loop %d\n", loop); if (ctrl->event_queue[loop].event_type != 0) { hp_slot = ctrl->event_queue[loop].hp_slot; func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); p_slot = find_slot(ctrl, hp_slot + ctrl->slot_device_offset); dbg("hp_slot %d, func %p, p_slot %p\n", hp_slot, func, p_slot); if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { dbg("button pressed\n"); } else if (ctrl->event_queue[loop].event_type == INT_BUTTON_CANCEL) { dbg("button cancel\n"); del_timer(&p_slot->task_event); // Wait for exclusive access to hardware down(&ctrl->crit_sect); if (p_slot->state == BLINKINGOFF_STATE) { // slot is on // turn on green LED dbg("turn on green LED\n"); green_LED_on (ctrl, hp_slot); } else if (p_slot->state == BLINKINGON_STATE) { // slot is off // turn off green LED dbg("turn off green LED\n"); green_LED_off (ctrl, hp_slot); } info(msg_button_cancel, p_slot->number); p_slot->state = STATIC_STATE; amber_LED_off (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); } // ***********button Released (No action on press...) else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { dbg("button release\n"); if (is_slot_enabled (ctrl, hp_slot)) { // slot is on dbg("slot is on\n"); p_slot->state = BLINKINGOFF_STATE; info(msg_button_off, p_slot->number); } else { // slot is off dbg("slot is off\n"); p_slot->state = BLINKINGON_STATE; info(msg_button_on, p_slot->number); } // Wait for exclusive access to hardware down(&ctrl->crit_sect); dbg("blink green LED and turn off amber\n"); amber_LED_off (ctrl, hp_slot); green_LED_blink (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); init_timer(&p_slot->task_event); p_slot->hp_slot = hp_slot; p_slot->ctrl = ctrl; // p_slot->physical_slot = physical_slot; p_slot->task_event.expires = jiffies + 5 * HZ; // 5 second delay p_slot->task_event.function = pushbutton_helper_thread; p_slot->task_event.data = (u32) p_slot; dbg("add_timer p_slot = %p\n", p_slot); add_timer(&p_slot->task_event); } // ***********POWER FAULT else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { dbg("power fault\n"); } else { /* refresh notification */ if (p_slot) update_slot_info(ctrl, p_slot); } ctrl->event_queue[loop].event_type = 0; change = 1; } } // End of FOR loop } return; } /** * cpqhp_pushbutton_thread * * Scheduled procedure to handle blocking stuff for the pushbuttons * Handles all pending events and exits. * */ void cpqhp_pushbutton_thread (unsigned long slot) { u8 hp_slot; u8 device; struct pci_func *func; struct slot *p_slot = (struct slot *) slot; struct controller *ctrl = (struct controller *) p_slot->ctrl; pushbutton_pending = 0; hp_slot = p_slot->hp_slot; device = p_slot->device; if (is_slot_enabled (ctrl, hp_slot)) { p_slot->state = POWEROFF_STATE; // power Down board func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); if (!func) { dbg("Error! func NULL in "__FUNCTION__"\n"); return ; } if (func != NULL && ctrl != NULL) { if (cpqhp_process_SS(ctrl, func) != 0) { amber_LED_on (ctrl, hp_slot); green_LED_on (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); } } p_slot->state = STATIC_STATE; } else { p_slot->state = POWERON_STATE; // slot is off func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); if (!func) { dbg("Error! func NULL in "__FUNCTION__"\n"); return ; } if (func != NULL && ctrl != NULL) { if (cpqhp_process_SI(ctrl, func) != 0) { amber_LED_on (ctrl, hp_slot); green_LED_off (ctrl, hp_slot); set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); } } p_slot->state = STATIC_STATE; } return; } int cpqhp_process_SI (struct controller *ctrl, struct pci_func *func) { u8 device, hp_slot; u16 temp_word; u32 tempdword; int rc; struct slot* p_slot; int physical_slot = 0; if (!ctrl) return(1); tempdword = 0; device = func->device; hp_slot = device - ctrl->slot_device_offset; p_slot = find_slot(ctrl, device); if (p_slot) { physical_slot = p_slot->number; } // Check to see if the interlock is closed tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); if (tempdword & (0x01 << hp_slot)) { return(1); } if (func->is_a_board) { rc = board_replaced(func, ctrl); } else { // add board slot_remove(func); func = cpqhp_slot_create(ctrl->bus); if (func == NULL) { return(1); } func->bus = ctrl->bus; func->device = device; func->function = 0; func->configured = 0; func->is_a_board = 1; // We have to save the presence info for these slots temp_word = ctrl->ctrl_int_comp >> 16; func->presence_save = (temp_word >> hp_slot) & 0x01; func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { func->switch_save = 0; } else { func->switch_save = 0x10; } rc = board_added(func, ctrl); if (rc) { if (is_bridge(func)) { bridge_slot_remove(func); } else slot_remove(func); // Setup slot structure with entry for empty slot func = cpqhp_slot_create(ctrl->bus); if (func == NULL) { // Out of memory return(1); } func->bus = ctrl->bus; func->device = device; func->function = 0; func->configured = 0; func->is_a_board = 0; // We have to save the presence info for these slots temp_word = ctrl->ctrl_int_comp >> 16; func->presence_save = (temp_word >> hp_slot) & 0x01; func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { func->switch_save = 0; } else { func->switch_save = 0x10; } } } if (rc) { dbg(__FUNCTION__": rc = %d\n", rc); } if (p_slot) update_slot_info(ctrl, p_slot); return rc; } int cpqhp_process_SS (struct controller *ctrl, struct pci_func *func) { u8 device, class_code, header_type, BCR; u8 index = 0; u8 replace_flag; u32 rc = 0; struct slot* p_slot; int physical_slot=0; device = func->device; func = cpqhp_slot_find(ctrl->bus, device, index++); p_slot = find_slot(ctrl, device); if (p_slot) { physical_slot = p_slot->number; } // Make sure there are no video controllers here while (func && !rc) { // Check the Class Code rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, 0x0B, &class_code); if (rc) return rc; if (class_code == PCI_BASE_CLASS_DISPLAY) { /* Display/Video adapter (not supported) */ rc = REMOVE_NOT_SUPPORTED; } else { // See if it's a bridge rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &header_type); if (rc) return rc; // If it's a bridge, check the VGA Enable bit if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_BRIDGE_CONTROL, &BCR); if (rc) return rc; // If the VGA Enable bit is set, remove isn't supported if (BCR & PCI_BRIDGE_CTL_VGA) { rc = REMOVE_NOT_SUPPORTED; } } } func = cpqhp_slot_find(ctrl->bus, device, index++); } func = cpqhp_slot_find(ctrl->bus, device, 0); if ((func != NULL) && !rc) { //FIXME: Replace flag should be passed into process_SS replace_flag = !(ctrl->add_support); rc = remove_board(func, replace_flag, ctrl); } else if (!rc) { rc = 1; } if (p_slot) update_slot_info(ctrl, p_slot); return(rc); } /** * hardware_test - runs hardware tests * * For hot plug ctrl folks to play with. * test_num is the number entered in the GUI * */ int cpqhp_hardware_test(struct controller *ctrl, int test_num) { u32 save_LED; u32 work_LED; int loop; int num_of_slots; num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; switch (test_num) { case 1: // Do stuff here! // Do that funky LED thing save_LED = readl(ctrl->hpc_reg + LED_CONTROL); // so we can restore them later work_LED = 0x01010101; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); for (loop = 0; loop < num_of_slots; loop++) { set_SOGO(ctrl); // Wait for SOGO interrupt wait_for_ctrl_irq (ctrl); // Get ready for next iteration work_LED = work_LED << 1; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); long_delay((2*HZ)/10); } for (loop = 0; loop < num_of_slots; loop++) { work_LED = work_LED >> 1; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); set_SOGO(ctrl); // Wait for SOGO interrupt wait_for_ctrl_irq (ctrl); // Get ready for next iteration long_delay((2*HZ)/10); } for (loop = 0; loop < num_of_slots; loop++) { work_LED = work_LED << 1; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); set_SOGO(ctrl); // Wait for SOGO interrupt wait_for_ctrl_irq (ctrl); // Get ready for next iteration long_delay((2*HZ)/10); } for (loop = 0; loop < num_of_slots; loop++) { work_LED = work_LED >> 1; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); set_SOGO(ctrl); // Wait for SOGO interrupt wait_for_ctrl_irq (ctrl); // Get ready for next iteration long_delay((2*HZ)/10); } work_LED = 0x01010000; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); for (loop = 0; loop < num_of_slots; loop++) { set_SOGO(ctrl); // Wait for SOGO interrupt wait_for_ctrl_irq (ctrl); // Get ready for next iteration work_LED = work_LED << 1; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); long_delay((2*HZ)/10); } for (loop = 0; loop < num_of_slots; loop++) { work_LED = work_LED >> 1; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); set_SOGO(ctrl); // Wait for SOGO interrupt wait_for_ctrl_irq (ctrl); // Get ready for next iteration long_delay((2*HZ)/10); } work_LED = 0x00000101; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); for (loop = 0; loop < num_of_slots; loop++) { work_LED = work_LED << 1; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); set_SOGO(ctrl); // Wait for SOGO interrupt wait_for_ctrl_irq (ctrl); // Get ready for next iteration long_delay((2*HZ)/10); } for (loop = 0; loop < num_of_slots; loop++) { work_LED = work_LED >> 1; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); set_SOGO(ctrl); // Wait for SOGO interrupt wait_for_ctrl_irq (ctrl); // Get ready for next iteration long_delay((2*HZ)/10); } work_LED = 0x01010000; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); for (loop = 0; loop < num_of_slots; loop++) { set_SOGO(ctrl); // Wait for SOGO interrupt wait_for_ctrl_irq (ctrl); // Get ready for next iteration long_delay((3*HZ)/10); work_LED = work_LED >> 16; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); set_SOGO(ctrl); // Wait for SOGO interrupt wait_for_ctrl_irq (ctrl); // Get ready for next iteration long_delay((3*HZ)/10); work_LED = work_LED << 16; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); work_LED = work_LED << 1; writel(work_LED, ctrl->hpc_reg + LED_CONTROL); } writel (save_LED, ctrl->hpc_reg + LED_CONTROL); // put it back the way it was set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); break; case 2: // Do other stuff here! break; case 3: // and more... break; } return 0; } /** * configure_new_device - Configures the PCI header information of one board. * * @ctrl: pointer to controller structure * @func: pointer to function structure * @behind_bridge: 1 if this is a recursive call, 0 if not * @resources: pointer to set of resource lists * * Returns 0 if success * */ static u32 configure_new_device (struct controller * ctrl, struct pci_func * func, u8 behind_bridge, struct resource_lists * resources) { u8 temp_byte, function, max_functions, stop_it; int rc; u32 ID; struct pci_func *new_slot; int index; new_slot = func; dbg(__FUNCTION__"\n"); // Check for Multi-function device rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, 0x0E, &temp_byte); if (rc) { dbg(__FUNCTION__": rc = %d\n", rc); return rc; } if (temp_byte & 0x80) // Multi-function device max_functions = 8; else max_functions = 1; function = 0; do { rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); if (rc) { dbg("configure_new_function failed %d\n",rc); index = 0; while (new_slot) { new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); if (new_slot) cpqhp_return_board_resources(new_slot, resources); } return(rc); } function++; stop_it = 0; // The following loop skips to the next present function // and creates a board structure while ((function < max_functions) && (!stop_it)) { pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, function, 0x00, &ID); if (ID == 0xFFFFFFFF) { // There's nothing there. function++; } else { // There's something there // Setup slot structure. new_slot = cpqhp_slot_create(func->bus); if (new_slot == NULL) { // Out of memory return(1); } new_slot->bus = func->bus; new_slot->device = func->device; new_slot->function = function; new_slot->is_a_board = 1; new_slot->status = 0; stop_it++; } } } while (function < max_functions); dbg("returning from configure_new_device\n"); return 0; } /* Configuration logic that involves the hotplug data structures and their bookkeeping */ /** * configure_new_function - Configures the PCI header information of one device * * @ctrl: pointer to controller structure * @func: pointer to function structure * @behind_bridge: 1 if this is a recursive call, 0 if not * @resources: pointer to set of resource lists * * Calls itself recursively for bridged devices. * Returns 0 if success * */ static int configure_new_function (struct controller * ctrl, struct pci_func * func, u8 behind_bridge, struct resource_lists * resources) { int cloop; u8 IRQ; u8 temp_byte; u8 device; u8 class_code; u16 command; u16 temp_word; u32 temp_dword; u32 rc; u32 temp_register; u32 base; u32 ID; struct pci_resource *mem_node; struct pci_resource *p_mem_node; struct pci_resource *io_node; struct pci_resource *bus_node; struct pci_resource *hold_mem_node; struct pci_resource *hold_p_mem_node; struct pci_resource *hold_IO_node; struct pci_resource *hold_bus_node; struct irq_mapping irqs; struct pci_func *new_slot; struct resource_lists temp_resources; // Check for Bridge rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &temp_byte); if (rc) return rc; if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { // PCI-PCI Bridge // set Primary bus dbg("set Primary bus = %d\n", func->bus); rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PRIMARY_BUS, func->bus); if (rc) return rc; // find range of busses to use dbg("find ranges of buses to use\n"); bus_node = get_max_resource(&resources->bus_head, 1); // If we don't have any busses to allocate, we can't continue if (!bus_node) return -ENOMEM; // set Secondary bus temp_byte = bus_node->base; dbg("set Secondary bus = %d\n", bus_node->base); rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_SECONDARY_BUS, temp_byte); if (rc) return rc; // set subordinate bus temp_byte = bus_node->base + bus_node->length - 1; dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_SUBORDINATE_BUS, temp_byte); if (rc) return rc; // set subordinate Latency Timer and base Latency Timer temp_byte = 0x40; rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_SEC_LATENCY_TIMER, temp_byte); if (rc) return rc; rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_LATENCY_TIMER, temp_byte); if (rc) return rc; // set Cache Line size temp_byte = 0x08; rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_CACHE_LINE_SIZE, temp_byte); if (rc) return rc; // Setup the IO, memory, and prefetchable windows io_node = get_max_resource(&(resources->io_head), 0x1000); mem_node = get_max_resource(&(resources->mem_head), 0x100000); p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); dbg("Setup the IO, memory, and prefetchable windows\n"); dbg("io_node\n"); dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, io_node->length, io_node->next); dbg("mem_node\n"); dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, mem_node->length, mem_node->next); dbg("p_mem_node\n"); dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, p_mem_node->length, p_mem_node->next); // set up the IRQ info if (!resources->irqs) { irqs.barber_pole = 0; irqs.interrupt[0] = 0; irqs.interrupt[1] = 0; irqs.interrupt[2] = 0; irqs.interrupt[3] = 0; irqs.valid_INT = 0; } else { irqs.barber_pole = resources->irqs->barber_pole; irqs.interrupt[0] = resources->irqs->interrupt[0]; irqs.interrupt[1] = resources->irqs->interrupt[1]; irqs.interrupt[2] = resources->irqs->interrupt[2]; irqs.interrupt[3] = resources->irqs->interrupt[3]; irqs.valid_INT = resources->irqs->valid_INT; } // set up resource lists that are now aligned on top and bottom // for anything behind the bridge. temp_resources.bus_head = bus_node; temp_resources.io_head = io_node; temp_resources.mem_head = mem_node; temp_resources.p_mem_head = p_mem_node; temp_resources.irqs = &irqs; // Make copies of the nodes we are going to pass down so that // if there is a problem,we can just use these to free resources hold_bus_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); hold_IO_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); hold_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); hold_p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { if (hold_bus_node) kfree(hold_bus_node); if (hold_IO_node) kfree(hold_IO_node); if (hold_mem_node) kfree(hold_mem_node); if (hold_p_mem_node) kfree(hold_p_mem_node); return(1); } memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); bus_node->base += 1; bus_node->length -= 1; bus_node->next = NULL; // If we have IO resources copy them and fill in the bridge's // IO range registers if (io_node) { memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); io_node->next = NULL; // set IO base and Limit registers temp_byte = io_node->base >> 8; rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_BASE, temp_byte); temp_byte = (io_node->base + io_node->length - 1) >> 8; rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_LIMIT, temp_byte); } else { kfree(hold_IO_node); hold_IO_node = NULL; } // If we have memory resources copy them and fill in the bridge's // memory range registers. Otherwise, fill in the range // registers with values that disable them. if (mem_node) { memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); mem_node->next = NULL; // set Mem base and Limit registers temp_word = mem_node->base >> 16; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_BASE, temp_word); temp_word = (mem_node->base + mem_node->length - 1) >> 16; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_LIMIT, temp_word); } else { temp_word = 0xFFFF; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_BASE, temp_word); temp_word = 0x0000; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_LIMIT, temp_word); kfree(hold_mem_node); hold_mem_node = NULL; } // If we have prefetchable memory resources copy them and // fill in the bridge's memory range registers. Otherwise, // fill in the range registers with values that disable them. if (p_mem_node) { memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); p_mem_node->next = NULL; // set Pre Mem base and Limit registers temp_word = p_mem_node->base >> 16; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_BASE, temp_word); temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_LIMIT, temp_word); } else { temp_word = 0xFFFF; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_BASE, temp_word); temp_word = 0x0000; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_LIMIT, temp_word); kfree(hold_p_mem_node); hold_p_mem_node = NULL; } // Adjust this to compensate for extra adjustment in first loop irqs.barber_pole--; rc = 0; // Here we actually find the devices and configure them for (device = 0; (device <= 0x1F) && !rc; device++) { irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; ID = 0xFFFFFFFF; pci_read_config_dword_nodev (ctrl->pci_ops, hold_bus_node->base, device, 0, 0x00, &ID); if (ID != 0xFFFFFFFF) { // device Present // Setup slot structure. new_slot = cpqhp_slot_create(hold_bus_node->base); if (new_slot == NULL) { // Out of memory rc = -ENOMEM; continue; } new_slot->bus = hold_bus_node->base; new_slot->device = device; new_slot->function = 0; new_slot->is_a_board = 1; new_slot->status = 0; rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); dbg("configure_new_device rc=0x%x\n",rc); } // End of IF (device in slot?) } // End of FOR loop if (rc) { cpqhp_destroy_resource_list(&temp_resources); return_resource(&(resources->bus_head), hold_bus_node); return_resource(&(resources->io_head), hold_IO_node); return_resource(&(resources->mem_head), hold_mem_node); return_resource(&(resources->p_mem_head), hold_p_mem_node); return(rc); } // save the interrupt routing information if (resources->irqs) { resources->irqs->interrupt[0] = irqs.interrupt[0]; resources->irqs->interrupt[1] = irqs.interrupt[1]; resources->irqs->interrupt[2] = irqs.interrupt[2]; resources->irqs->interrupt[3] = irqs.interrupt[3]; resources->irqs->valid_INT = irqs.valid_INT; } else if (!behind_bridge) { // We need to hook up the interrupts here for (cloop = 0; cloop < 4; cloop++) { if (irqs.valid_INT & (0x01 << cloop)) { rc = cpqhp_set_irq(func->bus, func->device, 0x0A + cloop, irqs.interrupt[cloop]); if (rc) { cpqhp_destroy_resource_list (&temp_resources); return_resource(&(resources-> bus_head), hold_bus_node); return_resource(&(resources-> io_head), hold_IO_node); return_resource(&(resources-> mem_head), hold_mem_node); return_resource(&(resources-> p_mem_head), hold_p_mem_node); return rc; } } } // end of for loop } // Return unused bus resources // First use the temporary node to store information for the board if (hold_bus_node && bus_node && temp_resources.bus_head) { hold_bus_node->length = bus_node->base - hold_bus_node->base; hold_bus_node->next = func->bus_head; func->bus_head = hold_bus_node; temp_byte = temp_resources.bus_head->base - 1; // set subordinate bus rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_SUBORDINATE_BUS, temp_byte); if (temp_resources.bus_head->length == 0) { kfree(temp_resources.bus_head); temp_resources.bus_head = NULL; } else { return_resource(&(resources->bus_head), temp_resources.bus_head); } } // If we have IO space available and there is some left, // return the unused portion if (hold_IO_node && temp_resources.io_head) { io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), &hold_IO_node, 0x1000); // Check if we were able to split something off if (io_node) { hold_IO_node->base = io_node->base + io_node->length; temp_byte = (hold_IO_node->base) >> 8; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_BASE, temp_byte); return_resource(&(resources->io_head), io_node); } io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); // Check if we were able to split something off if (io_node) { // First use the temporary node to store information for the board hold_IO_node->length = io_node->base - hold_IO_node->base; // If we used any, add it to the board's list if (hold_IO_node->length) { hold_IO_node->next = func->io_head; func->io_head = hold_IO_node; temp_byte = (io_node->base - 1) >> 8; rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_LIMIT, temp_byte); return_resource(&(resources->io_head), io_node); } else { // it doesn't need any IO temp_word = 0x0000; pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_LIMIT, temp_word); return_resource(&(resources->io_head), io_node); kfree(hold_IO_node); } } else { // it used most of the range hold_IO_node->next = func->io_head; func->io_head = hold_IO_node; } } else if (hold_IO_node) { // it used the whole range hold_IO_node->next = func->io_head; func->io_head = hold_IO_node; } // If we have memory space available and there is some left, // return the unused portion if (hold_mem_node && temp_resources.mem_head) { mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), &hold_mem_node, 0x100000); // Check if we were able to split something off if (mem_node) { hold_mem_node->base = mem_node->base + mem_node->length; temp_word = (hold_mem_node->base) >> 16; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_BASE, temp_word); return_resource(&(resources->mem_head), mem_node); } mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); // Check if we were able to split something off if (mem_node) { // First use the temporary node to store information for the board hold_mem_node->length = mem_node->base - hold_mem_node->base; if (hold_mem_node->length) { hold_mem_node->next = func->mem_head; func->mem_head = hold_mem_node; // configure end address temp_word = (mem_node->base - 1) >> 16; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_LIMIT, temp_word); // Return unused resources to the pool return_resource(&(resources->mem_head), mem_node); } else { // it doesn't need any Mem temp_word = 0x0000; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_LIMIT, temp_word); return_resource(&(resources->mem_head), mem_node); kfree(hold_mem_node); } } else { // it used most of the range hold_mem_node->next = func->mem_head; func->mem_head = hold_mem_node; } } else if (hold_mem_node) { // it used the whole range hold_mem_node->next = func->mem_head; func->mem_head = hold_mem_node; } // If we have prefetchable memory space available and there is some // left at the end, return the unused portion if (hold_p_mem_node && temp_resources.p_mem_head) { p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), &hold_p_mem_node, 0x100000); // Check if we were able to split something off if (p_mem_node) { hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; temp_word = (hold_p_mem_node->base) >> 16; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_BASE, temp_word); return_resource(&(resources->p_mem_head), p_mem_node); } p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); // Check if we were able to split something off if (p_mem_node) { // First use the temporary node to store information for the board hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; // If we used any, add it to the board's list if (hold_p_mem_node->length) { hold_p_mem_node->next = func->p_mem_head; func->p_mem_head = hold_p_mem_node; temp_word = (p_mem_node->base - 1) >> 16; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_LIMIT, temp_word); return_resource(&(resources->p_mem_head), p_mem_node); } else { // it doesn't need any PMem temp_word = 0x0000; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_LIMIT, temp_word); return_resource(&(resources->p_mem_head), p_mem_node); kfree(hold_p_mem_node); } } else { // it used the most of the range hold_p_mem_node->next = func->p_mem_head; func->p_mem_head = hold_p_mem_node; } } else if (hold_p_mem_node) { // it used the whole range hold_p_mem_node->next = func->p_mem_head; func->p_mem_head = hold_p_mem_node; } // We should be configuring an IRQ and the bridge's base address // registers if it needs them. Although we have never seen such // a device // enable card command = 0x0157; // = PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE | PCI_COMMAND_PARITY | PCI_COMMAND_SERR rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_COMMAND, command); // set Bridge Control Register command = 0x07; // = PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR | PCI_BRIDGE_CTL_NO_ISA rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_BRIDGE_CONTROL, command); } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { // Standard device rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, 0x0B, &class_code); if (class_code == PCI_BASE_CLASS_DISPLAY) { // Display (video) adapter (not supported) return(DEVICE_TYPE_NOT_SUPPORTED); } // Figure out IO and memory needs for (cloop = 0x10; cloop <= 0x24; cloop += 4) { temp_register = 0xFFFFFFFF; dbg("CND: bus=%d, device=%d, func=%d, offset=%d\n", func->bus, func->device, func->function, cloop); rc = pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register); rc = pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &temp_register); dbg("CND: base = 0x%x\n", temp_register); if (temp_register) { // If this register is implemented if ((temp_register & 0x03L) == 0x01) { // Map IO // set base = amount of IO space base = temp_register & 0xFFFFFFFC; base = ~base + 1; dbg("CND: length = 0x%x\n", base); io_node = get_io_resource(&(resources->io_head), base); dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", io_node->base, io_node->length, io_node->next); dbg("func (%p) io_head (%p)\n", func, func->io_head); // allocate the resource to the board if (io_node) { base = io_node->base; io_node->next = func->io_head; func->io_head = io_node; } else return -ENOMEM; } else if ((temp_register & 0x0BL) == 0x08) { // Map prefetchable memory base = temp_register & 0xFFFFFFF0; base = ~base + 1; dbg("CND: length = 0x%x\n", base); p_mem_node = get_resource(&(resources->p_mem_head), base); // allocate the resource to the board if (p_mem_node) { base = p_mem_node->base; p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } else return -ENOMEM; } else if ((temp_register & 0x0BL) == 0x00) { // Map memory base = temp_register & 0xFFFFFFF0; base = ~base + 1; dbg("CND: length = 0x%x\n", base); mem_node = get_resource(&(resources->mem_head), base); // allocate the resource to the board if (mem_node) { base = mem_node->base; mem_node->next = func->mem_head; func->mem_head = mem_node; } else return -ENOMEM; } else if ((temp_register & 0x0BL) == 0x04) { // Map memory base = temp_register & 0xFFFFFFF0; base = ~base + 1; dbg("CND: length = 0x%x\n", base); mem_node = get_resource(&(resources->mem_head), base); // allocate the resource to the board if (mem_node) { base = mem_node->base; mem_node->next = func->mem_head; func->mem_head = mem_node; } else return -ENOMEM; } else if ((temp_register & 0x0BL) == 0x06) { // Those bits are reserved, we can't handle this return(1); } else { // Requesting space below 1M return(NOT_ENOUGH_RESOURCES); } rc = pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, base); // Check for 64-bit base if ((temp_register & 0x07L) == 0x04) { cloop += 4; // Upper 32 bits of address always zero on today's systems // FIXME this is probably not true on Alpha and ia64??? base = 0; rc = pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, base); } } } // End of base register loop // Figure out which interrupt pin this function uses rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_INTERRUPT_PIN, &temp_byte); // If this function needs an interrupt and we are behind a bridge // and the pin is tied to something that's alread mapped, // set this one the same if (temp_byte && resources->irqs && (resources->irqs->valid_INT & (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { // We have to share with something already set up IRQ = resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03]; } else { // Program IRQ based on card type rc = pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, 0x0B, &class_code); if (class_code == PCI_BASE_CLASS_STORAGE) { IRQ = cpqhp_disk_irq; } else { IRQ = cpqhp_nic_irq; } } // IRQ Line rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_INTERRUPT_LINE, IRQ); if (!behind_bridge) { rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ); if (rc) return(1); } else { //TBD - this code may also belong in the other clause of this If statement resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; } // Latency Timer temp_byte = 0x40; rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_LATENCY_TIMER, temp_byte); // Cache Line size temp_byte = 0x08; rc = pci_write_config_byte_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_CACHE_LINE_SIZE, temp_byte); // disable ROM base Address temp_dword = 0x00L; rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_ROM_ADDRESS, temp_dword); // enable card temp_word = 0x0157; // = PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE | PCI_COMMAND_PARITY | PCI_COMMAND_SERR rc = pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_COMMAND, temp_word); } // End of Not-A-Bridge else else { // It's some strange type of PCI adapter (Cardbus?) return(DEVICE_TYPE_NOT_SUPPORTED); } func->configured = 1; return 0; }